J. Semicond. >  Just Accepted

Structural and dielectric properties of prepared PbS and PbTe nanomaterials

A. A. Azab 1, , , Azza A. Ward 2, , G. M. Mahmoud 1, , Eman M. El-Hanafy 1, , H. El-Zahed 3, and F. S. Terra 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: In this work, PbS and PbTe nanomaterials with various morphologies were synthesized by a hydrothermal method. The structural properties were investigated by using x-ray diffraction (XRD) and corresponding scanning electron microscopy together with their EDX analysis. Both the PbS and PbTe nanomaterials possess good polycrystalline structure. The crystallite size, determined from the XRD data, of PbS is 5 nm whereas the corresponding value of PbTe is 2.69 nm. SEM micrographs reveal that the prepared PbS nanomaterial has star-shaped structures, micro-flowers, some cubes, and semi-dendrites, whereas PbTe has semi-flower structures. Additionally, the dielectric properties have been studied in a broad frequency range from 0.1 Hz up to 1 MHz at temperatures from 298–423 K. The real and imaginary parts of the complex dielectric constant ε′ and ε″ of PbTe are comparatively higher than those of PbS. Moreover, the dielectric data were analyzed on the basis of the electric modulus.

Key words: dielectric propertiesPbSPbTeSEMEDXelectric modulus

Abstract: In this work, PbS and PbTe nanomaterials with various morphologies were synthesized by a hydrothermal method. The structural properties were investigated by using x-ray diffraction (XRD) and corresponding scanning electron microscopy together with their EDX analysis. Both the PbS and PbTe nanomaterials possess good polycrystalline structure. The crystallite size, determined from the XRD data, of PbS is 5 nm whereas the corresponding value of PbTe is 2.69 nm. SEM micrographs reveal that the prepared PbS nanomaterial has star-shaped structures, micro-flowers, some cubes, and semi-dendrites, whereas PbTe has semi-flower structures. Additionally, the dielectric properties have been studied in a broad frequency range from 0.1 Hz up to 1 MHz at temperatures from 298–423 K. The real and imaginary parts of the complex dielectric constant ε′ and ε″ of PbTe are comparatively higher than those of PbS. Moreover, the dielectric data were analyzed on the basis of the electric modulus.

Key words: dielectric propertiesPbSPbTeSEMEDXelectric modulus



References:

[1]

Yadav S, Pal R K, Sharma S K, et al. Determination of trap depth and trap density in Se70Te30−xZnx thin films using thermally stimulated current measurements. Physica B, 2009, 404: 2225

[2]

Zakery A, Elliot S R. Optical properties and applications of chalcogenide glasses. J Non-Cryst Solids, 2003, 330: 1

[3]

Smith A W. Injection laser writing on chalcogenide films. Appl Opt, 1974, 13: 795

[4]

Ohta T, Inoue K, Uchida M, et al. Phase change disk media having rapid cooling structure. Jpn J Appl Phys, 1989, 28: 123

[5]

Masoud S N, Ghanbari D, Logh M R, et al. Star-shaped PbS nanocrystals prepared by hydrothermal process in the presence of thioglycolic acid. Polyhedron, 2012, 35: 149

[6]

Chengwen S, Sun M, Yin Y, et al. Synthesis of star-shaped lead sulfide (PbS) nanomaterials and their gas sensing properties. Mater Res, 2016, 19,6: 1351

[7]

Zhihui Z, Zhang K, Yang K, et al. Synthesis of size and shape controlled PbS nanocrystals and their self-assembly. Colloids and Surfaces A, 2010, 355: 114

[8]

Tohidi V, Jamshidi K, Namdar A, et al. Comparatve Studies on the structural, morphological, optical and electrical properties of nanocrystalline PbS thin films grown by using two different bath compositions. Mater Sci Semicond Process, 2014, 25: 197

[9]

Susan G, Masoud S, Bazarganipour M, et al. Novel precoursers for synthesis of dendrite-like PbTe nanostructures and investigation of photoluminescence behavior. Adv Powder Technol, 2014, 25(5): 1585

[10]

Poudel B, Wang W Z, Wang D Z, et al. Shape evolution of lead telluride and selenide nanostructures under different hydrothermal synthesis conditons. J Nanosci Nanotechnol, 2006, 6: 1050

[11]

Chongjian Z, Shi Z, Ge B, Wang K, et al. Scalable solution-based synthesis of component-controllable ultrathin PbTe1−xSex nanowires with high n-type thermoelectric performance. J Mater Chem A, 2017, 5: 2876

[12]

Kingumadevi and Sathya M R. Synthesis of PbTe nanocubes, worm-like structures and nanoparticles by simple thermal evaporation method. Bull Mater Sci, 2013, 36,5: 771

[13]

Clemens B, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem Rev, 2005, 105,4: 1025

[14]

Yadaiah K, Krishnaiah J, Vasudeva R, et al. Dielectric properties of (CdSe)1–x(ZnS)x mixed semiconductor compounds. Mater Sci Res Ind, 2012, 9(2): 179

[15]

Sedeek K, Adam A, Wahab L A, et al. Dielectric relaxation in Ge1–xSe2Pbx (x = 0, 0.2 and 0.6) nano-crystalline system. Mater Chem Phys, 2004, 85: 20

[16]

Anjali, Balbir S P, Suresh B, et al. On the AC-conductivity mechanism in nano-crystalline Se79–xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) alloys. Physica B, 2017, 523: 52

[17]

Petrik P. Parameterization of the dielectric function of semiconductor nanocrystals. Physica B, 2014, 453,15: 2

[18]

Himpsel F J, Karlsson U O, McFeely F R, et al. Dielectrics on semiconductors. Mater Sci Eng B, 1988, 1(1): 9

[19]

El-Menyawy E M, Mahmoud G M, Gad S A, et al. Dependence of the structural, electrical and optical properties of PbSe nanomaterial prepared by hydrothermal method on the polyethylene glycol content. J Inorg Organomet Polym, 2015, 25: 1044

[20]

Azab A A, Sukrat A. Effect of grinding time on the structural and magnetic properties of ultrafine Ni0.7Zn0.3Fe2O4. J Ovon Res, 2015, 11: 195

[21]

Ahmed M A, Afify H H, ElZawawi I K, et al. Novel structural and magnetic properties of Mg doped copper nanoferrites prepared by conventional and wet methods. J Magnet Magnet Mater, 2012, 324: 2199

[22]

Šalkus T, Kazakevičius E, Banys J, et al. Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics. Solid State Ion, 2014, 262: 597

[23]

Bellino M G, Lamas D G, Walsöe de Reca N E. Enhanced Ionic Conductivity in Nanostructured, Heavily Doped Ceria Ceramics. Adv Funct Mater, 2006, 16: 107

[24]

Bellino M G, Lamas D G, Walsöe de Reca N E. A mechanism for the fast ionic transport in nanostructured oxide-ion solid electrolytes. Adv Mater, 2006, 18: 3005

[25]

Jonscher A K. Understanding of the dielectric relaxation of solids. In: Physics of Thin Films. Ed by Hass, Francombe. New York: Academic, 1980, 11: 231

[26]

Taha T A, Azab A A. AC conductivity and dielectric properties of borotellurite glass. J Electron Mater, 2016, 45: 5170

[27]

Funke K. Jump relaxation in solid electrolytes. Prog Solid State Chem, 1993, 22: 111

[28]

Karthickprabhu S, Hirankumar G, Maheswaran A, et al. Structural and electrical studies on Zn2+ doped LiCoPO4. J Electrost, 2014, 72: 181

[29]

Murugavel S, Upadhyay M. Conduction in amorphous semiconductors. J Indian Inst Sci, 2011, 9: 1303

[30]

Elkony D. Electrical properties and conduction mechanism of Al-substituted Ni-Cdspinel ferrites. J Am Sci, 2012, 8: 8

[31]

Kumari N, Ghosh A, Bhattacharjee A. Investigation of structural and electrical transport mechanism of SnO2 with Al dopants. Indian J Phys, 2014, 88(10): 1059

[32]

Ahmed M A, Azab A A, El-Khawas E H, et al. Characterization and transport properties of mixed ferrite system Mn1–xCuxFe2O4; 0.0≤x≤0.7. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2016, 46: 376

[33]

Adachi S. Optical constants of crystalline and amorphous semiconductors. New York: Springer Science & Business,1999

[34]

Ahmed M A, Azab A A, El-Khawas E H. Structural, magnetic and electrical properties of Bi doped LaFeO3 nano-crystals, synthesized by auto-combustion method. J Mater Sci, 2015, 26: 8765

[35]

Ashery A A, Zaki A H, Mourad H. Structural and frequency dependencies of a.c. and dielectric characterizations of epitaxial InSb-based heterojunctions. Bull Mater Sci, 2016, 39: 1057

[36]

Elliott S R. Temperature dependence of a.c. conductivity of chalcogenide glasses. Philos Mag B, 1978, 37: 553

[37]

Long A R. Frequency-dependent loss in amorphous semiconductors. Adv Phys, 1982, 31: 553

[38]

Gad S A, Moustafa A M, Ward A A. Preparation and some physical properties of Zn1−xCrxO. J Inorgan Organometal Polym Mater, 2015, 25: 1077

[39]

El-Nahass M M, Hassanien A M, Atta A A, et al. Ward electrical conductivity and dielectric relaxation of cerium (IV) oxide. J Mater Sci, 2017, 28: 1501

[40]

Ahmed M K, Mohammad L H, Azza A W. Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohydrate Polymers, 2017, 157: 503

[41]

Ahmed M N, Abd El-Khalek H M, El-Nahass M M. Dielectric and electric modulus studies on Ni (II)tetraphenyl porphyrin thin films. Org Opto-Elect, 2015, 1(1): 25

[42]

Macedo P B, Moynihan C T, Bose R. Role of ionic diffusion in polarization in vitreous ionic conductors. J Phys Chem Glass, 1972, 13: 171

[43]

Suriani I, Siti M M, Meng Ng, et al. Conductivity and dielectric behavior of PEO-based solid nanocomposite polymer electrolytes. Solid State Commun, 2012, 152: 426

[44]

Baskaran R, Selvasekarapandian S, Hirankumar G, et al. Dielectric and conductivity relaxation in PVAc based polymer electrolytes. Ionics, 2004, 10: 129

[45]

Dhankhar S, Kund R S, Dult M, et al. Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses. AIP Conference Proceedings, 2016, 1728(1): 2

[46]

Abdellatif M H, Azab A A, Moustafa A M. Dielectric spectroscopy of localized electrical charges in ferrite thin film. J Electron Maters, 2018, 47(1): 378

[1]

Yadav S, Pal R K, Sharma S K, et al. Determination of trap depth and trap density in Se70Te30−xZnx thin films using thermally stimulated current measurements. Physica B, 2009, 404: 2225

[2]

Zakery A, Elliot S R. Optical properties and applications of chalcogenide glasses. J Non-Cryst Solids, 2003, 330: 1

[3]

Smith A W. Injection laser writing on chalcogenide films. Appl Opt, 1974, 13: 795

[4]

Ohta T, Inoue K, Uchida M, et al. Phase change disk media having rapid cooling structure. Jpn J Appl Phys, 1989, 28: 123

[5]

Masoud S N, Ghanbari D, Logh M R, et al. Star-shaped PbS nanocrystals prepared by hydrothermal process in the presence of thioglycolic acid. Polyhedron, 2012, 35: 149

[6]

Chengwen S, Sun M, Yin Y, et al. Synthesis of star-shaped lead sulfide (PbS) nanomaterials and their gas sensing properties. Mater Res, 2016, 19,6: 1351

[7]

Zhihui Z, Zhang K, Yang K, et al. Synthesis of size and shape controlled PbS nanocrystals and their self-assembly. Colloids and Surfaces A, 2010, 355: 114

[8]

Tohidi V, Jamshidi K, Namdar A, et al. Comparatve Studies on the structural, morphological, optical and electrical properties of nanocrystalline PbS thin films grown by using two different bath compositions. Mater Sci Semicond Process, 2014, 25: 197

[9]

Susan G, Masoud S, Bazarganipour M, et al. Novel precoursers for synthesis of dendrite-like PbTe nanostructures and investigation of photoluminescence behavior. Adv Powder Technol, 2014, 25(5): 1585

[10]

Poudel B, Wang W Z, Wang D Z, et al. Shape evolution of lead telluride and selenide nanostructures under different hydrothermal synthesis conditons. J Nanosci Nanotechnol, 2006, 6: 1050

[11]

Chongjian Z, Shi Z, Ge B, Wang K, et al. Scalable solution-based synthesis of component-controllable ultrathin PbTe1−xSex nanowires with high n-type thermoelectric performance. J Mater Chem A, 2017, 5: 2876

[12]

Kingumadevi and Sathya M R. Synthesis of PbTe nanocubes, worm-like structures and nanoparticles by simple thermal evaporation method. Bull Mater Sci, 2013, 36,5: 771

[13]

Clemens B, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem Rev, 2005, 105,4: 1025

[14]

Yadaiah K, Krishnaiah J, Vasudeva R, et al. Dielectric properties of (CdSe)1–x(ZnS)x mixed semiconductor compounds. Mater Sci Res Ind, 2012, 9(2): 179

[15]

Sedeek K, Adam A, Wahab L A, et al. Dielectric relaxation in Ge1–xSe2Pbx (x = 0, 0.2 and 0.6) nano-crystalline system. Mater Chem Phys, 2004, 85: 20

[16]

Anjali, Balbir S P, Suresh B, et al. On the AC-conductivity mechanism in nano-crystalline Se79–xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) alloys. Physica B, 2017, 523: 52

[17]

Petrik P. Parameterization of the dielectric function of semiconductor nanocrystals. Physica B, 2014, 453,15: 2

[18]

Himpsel F J, Karlsson U O, McFeely F R, et al. Dielectrics on semiconductors. Mater Sci Eng B, 1988, 1(1): 9

[19]

El-Menyawy E M, Mahmoud G M, Gad S A, et al. Dependence of the structural, electrical and optical properties of PbSe nanomaterial prepared by hydrothermal method on the polyethylene glycol content. J Inorg Organomet Polym, 2015, 25: 1044

[20]

Azab A A, Sukrat A. Effect of grinding time on the structural and magnetic properties of ultrafine Ni0.7Zn0.3Fe2O4. J Ovon Res, 2015, 11: 195

[21]

Ahmed M A, Afify H H, ElZawawi I K, et al. Novel structural and magnetic properties of Mg doped copper nanoferrites prepared by conventional and wet methods. J Magnet Magnet Mater, 2012, 324: 2199

[22]

Šalkus T, Kazakevičius E, Banys J, et al. Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics. Solid State Ion, 2014, 262: 597

[23]

Bellino M G, Lamas D G, Walsöe de Reca N E. Enhanced Ionic Conductivity in Nanostructured, Heavily Doped Ceria Ceramics. Adv Funct Mater, 2006, 16: 107

[24]

Bellino M G, Lamas D G, Walsöe de Reca N E. A mechanism for the fast ionic transport in nanostructured oxide-ion solid electrolytes. Adv Mater, 2006, 18: 3005

[25]

Jonscher A K. Understanding of the dielectric relaxation of solids. In: Physics of Thin Films. Ed by Hass, Francombe. New York: Academic, 1980, 11: 231

[26]

Taha T A, Azab A A. AC conductivity and dielectric properties of borotellurite glass. J Electron Mater, 2016, 45: 5170

[27]

Funke K. Jump relaxation in solid electrolytes. Prog Solid State Chem, 1993, 22: 111

[28]

Karthickprabhu S, Hirankumar G, Maheswaran A, et al. Structural and electrical studies on Zn2+ doped LiCoPO4. J Electrost, 2014, 72: 181

[29]

Murugavel S, Upadhyay M. Conduction in amorphous semiconductors. J Indian Inst Sci, 2011, 9: 1303

[30]

Elkony D. Electrical properties and conduction mechanism of Al-substituted Ni-Cdspinel ferrites. J Am Sci, 2012, 8: 8

[31]

Kumari N, Ghosh A, Bhattacharjee A. Investigation of structural and electrical transport mechanism of SnO2 with Al dopants. Indian J Phys, 2014, 88(10): 1059

[32]

Ahmed M A, Azab A A, El-Khawas E H, et al. Characterization and transport properties of mixed ferrite system Mn1–xCuxFe2O4; 0.0≤x≤0.7. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2016, 46: 376

[33]

Adachi S. Optical constants of crystalline and amorphous semiconductors. New York: Springer Science & Business,1999

[34]

Ahmed M A, Azab A A, El-Khawas E H. Structural, magnetic and electrical properties of Bi doped LaFeO3 nano-crystals, synthesized by auto-combustion method. J Mater Sci, 2015, 26: 8765

[35]

Ashery A A, Zaki A H, Mourad H. Structural and frequency dependencies of a.c. and dielectric characterizations of epitaxial InSb-based heterojunctions. Bull Mater Sci, 2016, 39: 1057

[36]

Elliott S R. Temperature dependence of a.c. conductivity of chalcogenide glasses. Philos Mag B, 1978, 37: 553

[37]

Long A R. Frequency-dependent loss in amorphous semiconductors. Adv Phys, 1982, 31: 553

[38]

Gad S A, Moustafa A M, Ward A A. Preparation and some physical properties of Zn1−xCrxO. J Inorgan Organometal Polym Mater, 2015, 25: 1077

[39]

El-Nahass M M, Hassanien A M, Atta A A, et al. Ward electrical conductivity and dielectric relaxation of cerium (IV) oxide. J Mater Sci, 2017, 28: 1501

[40]

Ahmed M K, Mohammad L H, Azza A W. Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohydrate Polymers, 2017, 157: 503

[41]

Ahmed M N, Abd El-Khalek H M, El-Nahass M M. Dielectric and electric modulus studies on Ni (II)tetraphenyl porphyrin thin films. Org Opto-Elect, 2015, 1(1): 25

[42]

Macedo P B, Moynihan C T, Bose R. Role of ionic diffusion in polarization in vitreous ionic conductors. J Phys Chem Glass, 1972, 13: 171

[43]

Suriani I, Siti M M, Meng Ng, et al. Conductivity and dielectric behavior of PEO-based solid nanocomposite polymer electrolytes. Solid State Commun, 2012, 152: 426

[44]

Baskaran R, Selvasekarapandian S, Hirankumar G, et al. Dielectric and conductivity relaxation in PVAc based polymer electrolytes. Ionics, 2004, 10: 129

[45]

Dhankhar S, Kund R S, Dult M, et al. Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses. AIP Conference Proceedings, 2016, 1728(1): 2

[46]

Abdellatif M H, Azab A A, Moustafa A M. Dielectric spectroscopy of localized electrical charges in ferrite thin film. J Electron Maters, 2018, 47(1): 378

[1]

Lin Yuanhua, Wang Jianfei, He Hongcai, Zhou Jianping, Zhou Xisong, Nan Cewen. Preparation of Dielectric Bi2Ti2O7 Thin Film by Pulsed Laser Deposition Method and Its Optical Absorption Properties. J. Semicond., 2005, 26(13): 74.

[2]

Wang Xiaoyan, Wang Xiaoliang, Hu Guoxin, Wang Baozhu, Li Jianping, Xiao Hongling, Wang Junxi, Liu Hongxin, Zeng Yiping, Li Jinmin. Growth of High AI Content AIGaN Epilayer by MOCVD. J. Semicond., 2007, 28(S1): 193.

[3]

Wang Baozhu, Wang Xiaoliang, Wang Xiaoyan, Wang Xinhua, Guo Lunchun, Xiao Hongling, Wang Cuimei, Ran Junxue, Wang Junxi, Liu Hongxin, Li Jinmin. Effects of Growth Temperature Oil the InAIGaN Epilayer by RF-MBE. J. Semicond., 2007, 28(S1): 197.

[4]

Zhu Hua, Li Cuiyun, Mo Chunlan, Jiang Fengyi, Zhang Meng. TEM Characterization of Defects in GaN/InGaN Multi-Quantum Wells Grown on Silicon by MOCVD. J. Semicond., 2008, 29(3): 539.

[5]

Zhang Xuhui, Tao Chunlan, Zhang Fujia, Liu Yiyang, Zhang Haoli. Dissolving Pentacene and Characterizing Pantecene Thin Films Fabricated from the Solution. J. Semicond., 2006, 27(10): 1771.

[6]

Li Zheyang, Dong Xun, Bai Song, Chen Gang, Chen Tangsheng, Chen Chen. Epitaxial Growth of 4H-SiC MESFET Structures. J. Semicond., 2007, 28(S1): 379.

[7]

K. Mahmood, M. Asghar, N. Amin, Adnan Ali. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing. J. Semicond., 2015, 36(3): 033001. doi: 10.1088/1674-4926/36/3/033001

[8]

K. Mahmood, N. Amin, A. Ali, M. Ajaz un Nabi, M. Imran Arshad, M. Zafar, M. Asghar. Enhancement of phosphors-solubility in ZnO by thermal annealing. J. Semicond., 2015, 36(12): 123001. doi: 10.1088/1674-4926/36/12/123001

[9]

D. Djouadi, M. Meddouri, A. Chelouche, L. Hammiche, A. Aksas. Structural and morphological characterizations of ZnO nanopowder synthesized by hydrothermal route using inorganic reactants. J. Semicond., 2014, 35(12): 123001. doi: 10.1088/1674-4926/35/12/123001

[10]

Nima E. Gorji. Deposition and doping of CdS/CdTe thin film solar cells. J. Semicond., 2015, 36(5): 054001. doi: 10.1088/1674-4926/36/5/054001

[11]

L. Bouhdjer, S. Addala, A. Chala, O. Halimi, B. Boudine, M. Sebais. Elaboration and characterization of a KCl single crystal doped with nanocrystalsof a Sb2O3 semiconductor. J. Semicond., 2013, 34(4): 043001. doi: 10.1088/1674-4926/34/4/043001

[12]

Xie Zili, Zhang Rong, Gao Chao, Liu Bin, Li Liang, Xiu Xiangqian, Zhu Shunming, Gu Shulin, Han Ping, Jiang Ruolian, Shi Yi, Zheng Youdou. Fabrication and Characteristics of In2O3 Nanowires. J. Semicond., 2006, 27(3): 536.

[13]

Xie Zili, Zhang Rong, Xiu Xiangqian, Bi Zhaoxia, Liu Bin, Pu Lin, Chen Dunjun, Han Ping, Gu Shulin, Jiang Ruoliang, Zhu Shunming, , Zhao Hong, Shi Yi. Characteristics of Annealing of InN Films. J. Semicond., 2006, 27(2): 340.

[14]

Abideen A. Ibiyemi, Ayodeji O Awodugba, Olusola Akinrinola, Abass A Faremi. Zinc-doped CdS nanoparticles synthesized by microwave-assisted deposition. J. Semicond., 2017, 38(9): 093002. doi: 10.1088/1674-4926/38/9/093002

[15]

Zengqin Lin, Xiangqian Xiu, Shiying Zhang, Xuemei Hua, Zili Xie, Rong Zhang, Peng Chen, Ping Han, Youdou Zheng. GaN nanopillars with a nickel nano-island mask. J. Semicond., 2013, 34(12): 123001. doi: 10.1088/1674-4926/34/12/123001

[16]

A. M. Saleh, S. M. Hraibat, R. M-L. Kitaneh, M. M. Abu-Samreh, S. M. Musameh. Dielectric response and electric properties of organic semiconducting phthalocyanine thin films. J. Semicond., 2012, 33(8): 082002. doi: 10.1088/1674-4926/33/8/082002

[17]

Mark N. Lockrey, Matthew R. Phillips. Characterisation of the optical properties of InGaN MQW structures using a combined SEM and CL spectral mapping system. J. Semicond., 2011, 32(1): 012001. doi: 10.1088/1674-4926/32/1/012001

[18]

Zhang Panfeng, Wei Hongyuan, Fan Haibo, Cong Guangwei, Yang Shaoyan, Zhu Qinsheng, Liu Xianglin. Effect of Different Facets of on the Growth of vapor deposition. J. Semicond., 2007, 28(S1): 289.

[19]

Yuelin Wang, Tie Li, Xiao Zhang, Hongjiang Zeng, Qinhua Jin. In situ TEM/SEM electronic/mechanical characterization of nano material with MEMS chip. J. Semicond., 2014, 35(8): 081001. doi: 10.1088/1674-4926/35/8/081001

[20]

Kai Han, Xiaolei Wang, Hong Yang, Wenwu Wang. Electric dipole formation at high-k dielectric/SiO2 interface. J. Semicond., 2015, 36(3): 036004. doi: 10.1088/1674-4926/36/3/036004

Search

Advanced Search >>

Article Metrics

Article views: 23 Times PDF downloads: 15 Times Cited by: 0 Times

History

Manuscript received: 20 July 2018 Manuscript revised: 15 September 2018 Online: Accepted Manuscript: 07 November 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误