J. Semicond. > Volume 39 > Issue 1 > Article Number: 011005

Oxide-based thin film transistors for flexible electronics

Yongli He , Xiangyu Wang , Ya Gao , Yahui Hou and Qing Wan ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends.

Key words: thin film transistorsflexible electronicsoxide semiconductor

Abstract: The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends.

Key words: thin film transistorsflexible electronicsoxide semiconductor



References:

[1]

Cao Q, Kim H S, Pimparkar N, et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature, 2008, 454(7203): 495

[2]

Li Y S, He J C, Hsu S M, et al. Flexible complementary oxide–semiconductor-based circuits employing n-channel ZnO and p-channel SnO thin-film transistors. IEEE Electron Device Lett, 2016, 37(1): 46

[3]

Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9(6): 511

[4]

Bock K. Polymer electronics systems-polytronics. Proc IEEE, 2005, 93(8): 1400

[5]

Heremans P. Electronics on plastic foil, for applications in flexible OLED displays, sensor arrays and circuits. IEEE 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014: 1

[6]

Allen K J. Reel to real: prospects for flexible displays. Proc IEEE, 2005, 93(8): 1394

[7]

Jeong J K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond Sci Technol, 2011, 26(3): 034008

[8]

Xu H, Luo D, Li M, et al. A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J Mater Chem C, 2014, 2(7): 1255

[9]

Gelinck G H, Huitema H E A, Van Veenendaal E, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater, 2004, 3(2): 106

[10]

Nathan A, Chalamala B R. Special issue on flexible electronics technology, Part 1: Systems and applications. Proc IEEE, 2005, 93(7): 1235

[11]

Ito M, Kon M, Ishizaki M, et al. A flexible active-matrix TFT array with amorphous oxide semiconductors for electronic paper. Proc IDW/AD, 2005, 5: 845

[12]

Rogers J A, Bao Z, Baldwin K, et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci, 2001, 98(9): 4835

[13]

Nathan A, Chalamala B R. Special issue on flexible electronics technology, Part II: Materials and devices. Proc IEEE, 2005, 93(8): 1391

[14]

Khan Y, Garg M, Gui Q, et al. Flexible Hybrid electronics: direct interfacing of soft and hard electronics for wearable health monitoring. Adv Funct Mater, 2016, 26(47): 8764

[15]

Pu X, Li L, Song H, et al. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv Mater, 2015, 27(15): 2472

[16]

Nathan A, Ahnood A, Cole M T, et al. Flexible electronics: the next ubiquitous platform. Proc IEEE, 2012, 100(Special Centennial Issue): 1486

[17]

Münzenrieder N, Petti L, Zysset C, et al. Flexible self-aligned amorphous InGaZnO thin-film transistors with submicrometer channel length and a transit frequency of 135 MHz. IEEE Trans Electron Devices, 2013, 60(9): 2815

[18]

Tripathi A, Smits E P, Van Der Putten J, et al. Low-voltage gallium–indium–zinc–oxide thin film transistors based logic circuits on thin plastic foil: building blocks for radio frequency identification application. Appl Phys Lett, 2011, 98(16): 162102

[19]

Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973): 1603

[20]

Sekitani T, Kaltenbrunner M, Yokota T, et al. Imperceptible Electronic Skin. SID Symp Dig Tech Pap, 2014, 45(1): 122

[21]

Sun Y, Rogers J A. Inorganic semiconductors for flexible electronics. Adv Mater, 2007, 19(15): 1897

[22]

Petti L, Münzenrieder N, Vogt C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev, 2016, 3(2): 021303

[23]

Lee J K, Lim Y S, Park C , et al. a-Si: H thin-film transistor-driven flexible color E-paper display on flexible substrates. IEEE Electron Device Lett, 2010, 31(8): 833

[24]

Huang J J, Chen Y P, Huang Y S, et al. A 4.1-inch flexible QVGA AMOLED using a microcrystalline-Si:H TFT on a polyimide substrate. SID Symp Dig Tech Pap, 2009, 40(1): 866

[25]

Fukuda K, Takeda Y, Yoshimura Y, et al. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat Commun, 2014, 5: 4147

[26]

Yi H T, Payne M M, Anthony J E, et al. Ultra-flexible solution-processed organic field-effect transistors. Nat Commun, 2012, 3: 1259

[27]

Guo X, Xu Y, Ogier S, et al. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans Electron Devices, 2017, 64(5): 1906

[28]

Dimitrakopoulos C D, Mascaro D J. Organic thin-film transistors: a review of recent advances. IBM J Res Dev, 2001, 45(1): 11

[29]

Lin P, Yan F. Organic thin-film transistors for chemical and biological sensing. Adv Mater, 2012, 24(1): 34

[30]

Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488

[31]

Nomura K, Takagi A, Kamiya T, et al. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn J Appl Phys, 2006, 45(5S): 4303

[32]

Kamiya T, Hiramatsu H, Nomura K, et al. Device applications of transparent oxide semiconductors: excitonic blue LED and transparent flexible TFT. J Electroceram, 2006, 17(2): 267

[33]

Raja J, Jang K, Nguyen C P T, et al. Improvement of mobility in oxide-based thin film transistors: a brief review. Trans Electr Electron Mater, 2015, 16(5): 234

[34]

Kwon J Y, Lee D J, Kim K B. Transparent amorphous oxide semiconductor thin film transistor. Electron Mater Lett, 2011, 7(1): 1

[35]

Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 24(22): 2945

[36]

Lee S, Nathan A. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science, 2016, 354(6310): 302

[37]

Park J S, Maeng W J, Kim H S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films, 2012, 520(6): 1679

[38]

Ahn B D, Jeon H J, Sheng J, et al. A review on the recent developments of solution processes for oxide thin film transistors. Semicond Sci Technol, 2015, 30(6): 064001

[39]

Kamiya T, Nomura K, Hosono H. Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. J Disp Technol, 2009, 5(7): 273

[40]

Liu N, Zhu L Q, Feng P, et al. Flexible sensory platform based on oxide-based neuromorphic transistors. Sci Rep, 2015, 5: 18082

[41]

Shah S, Smith J, Stowell J, et al. Biosensing platform on a flexible substrate. Sens Actuators B, 2015, 210: 197

[42]

Jung S W, Koo J B, Park C W, et al. Flexible nonvolatile memory transistors using indium gallium zinc oxide-channel and ferroelectric polymer poly (vinylidene fluoride-co-trifluoroethylene) fabricated on elastomer substrate. J Vac Sci Technol B, 2015, 33(5): 051201

[43]

Kim S J, Jeon D B, Park J H, et al. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate. ACS Appl Mater Inter, 2015, 7(8): 4869

[44]

Tripathi A K, Myny K, Hou B, et al. Electrical characterization of flexible InGaZnO transistors and 8-b transponder chip down to a bending radius of 2 mm. IEEE Trans Electron Devices, 2015, 62(12): 4063

[45]

Mativenga M, Choi M H, Choi J W, et al. Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2011, 32(2): 170

[46]

Dindar A, Kim J, Fuentes-Hernandez C, et al. Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates. Appl Phys Lett, 2011, 99(17): 172104

[47]

Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett, 2009, 95(1): 013503

[48]

Nakata M, Motomura G, Nakajima Y, et al. Development of flexible displays using back-channel-etched In–Sn–Zn–O thin-film transistors and air-stable inverted organic light-emitting diodes. J Soc Inf Display, 2016, 24(1): 3

[49]

Nag M, Bhoolokam A, Smout S, et al. Circuits and AMOLED display with self-aligned a-IGZO TFTs on polyimide foil. J Soc Inf Display, 2014, 22(10): 509

[50]

Hatano K, Chida A, Okano T, et al. 3.4-inch quarter high definition flexible active matrix organic light emitting display with oxide thin film transistor. Jpn J Appl Phys, 2011, 50(3S): 03CC06

[51]

Nakajima Y, Nakata M, Takei T, et al. Development of 8-in. oxide-TFT-driven flexible AMOLED display using high-performance red phosphorescent OLED. J Soc Inf Display, 2014, 22(3): 137

[52]

Xu H, Pang J, Xu M, et al. Fabrication of flexible amorphous indium-gallium-zinc-oxide thin-film transistors by a chemical vapor deposition-free process on polyethylene napthalate. ECS J Solid State Sci Technol, 2014, 3(9): Q3035

[53]

Komatsu R, Nakazato R, Sasaki T, et al. Repeatedly foldable AMOLED display. J Soc Inf Display, 2015, 23(2): 41

[54]

Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604

[55]

Tee B C, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol, 2012, 7(12): 825

[56]

Micera S, Carrozza M C, Beccai L, et al. Hybrid bionic systems for the replacement of hand function. Proc IEEE, 2006, 94(9): 1752

[57]

Coyle S, Wu Y, Lau K T, et al. Smart nanotextiles: a review of materials and applications. MRS Bull, 2007, 32(5): 434

[58]

Kinkeldei T, Zysset C, Münzenrieder N, et al. An electronic nose on flexible substrates integrated into a smart textile. Senss Actuators B, 2012, 174: 81

[59]

Vervust T, Buyle G, Bossuyt F, et al. Integration of stretchable and washable electronic modules for smart textile applications. J Text I, 2012, 103(10): 1127

[60]

Cherenack K, Zysset C, Kinkeldei T, et al. Woven electronic fibers with sensing and display functions for smart textiles. Adv Mater, 2010, 22(45): 5178

[61]

Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296

[62]

Benito-Lopez F, Coyle S, Byrne R, et al. Pump less wearable microfluidic device for real time pH sweat monitoring. Procedia Chemistry, 2009, 1(1): 1103

[63]

Lemey S, Agneessens S, Van Torre P, et al. Wearable flexible lightweight modular RFID tag with integrated energy harvester. IEEE Trans Microwave Theory Tech, 2016, 64(7): 2304

[64]

Yang L, Martin L, Staiculescu D, et al. A novel flexible magnetic composite material for RFID, wearable RF and bio-monitoring applications. IEEE MTT-S International Microwave Symposium Digest, 2008: 963

[65]

Hester J G, Tentzeris M M. Inkjet-printed flexible mm-wave Van-Atta reflectarrays: a solution for ultralong-range dense multitag and multisensing chipless RFID implementations for IoT smart skins. IEEE Trans Microwave Theory Tech, 2016, 64(12): 4763

[66]

Falco A, Salmerón J F, Loghin F C, et al. Fully printed flexible single-chip RFID tag with light detection capabilities. Sensors, 2017, 17(3): 534

[67]

Imenes K, Andersen M H, Nguyen A-T T, et al. Implantable MEMS acceleration sensor for heart monitoring recent development and outlook. IEEE 4th Electronic System-Integration Technology Conference (ESTC), 2012: 1

[68]

Lo R, Li P Y, Saati S, et al. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices, 2009, 11(5): 959

[69]

Hwang G T, Im D, Lee S E, et al. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano, 2013, 7(5): 4545

[70]

Martins R F, Ahnood A, Correia N, et al. Recyclable, flexible, low-power oxide electronics. Adv Funct Mater, 2013, 23(17): 2153

[71]

Yang S, Bak J Y, Yoon S M, et al. Low-temperature processed flexible In–Ga–Zn–O thin-film transistors exhibiting high electrical performance. IEEE Electron Device Lett, 2011, 32(12): 1692

[72]

Yin Y, Sawin H H. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma. J Vac Sci Technol A, 2008, 26(1): 151

[73]

Kim C J, Kim S, Lee J H, et al. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. Appl Phys Lett, 2009, 95(25): 252103

[74]

Jiang J, Sun J, Zhou B, et al. Vertical oxide homojunction TFTs of 0.8 V gated by H3PO4-treated SiO2 nanogranular dielectric. IEEE Electron Device Lett, 2010, 31(11): 1263

[75]

Weimer P K. The TFT a new thin-film transistor. Proc IRE, 1962, 50(6): 1462

[76]

Jeong S, Lee J Y, Ham M H, et al. Bendable thin-film transistors based on sol–gel derived amorphous Ga-doped In2O3 semiconductors. Superlattices Microstruct, 2013, 59: 21

[77]

Park J H, Yoo Y B, Lee K H, et al. Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl Mater Inter, 2013, 5(16): 8067

[78]

Ju S, Facchetti A, Xuan Y, et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat Nanotechnol, 2007, 2(6): 378

[79]

Lee C, Lin M, Wu W, et al. Flexible ZnO transparent thin-film transistors by a solution-based process at various solution concentrations. Semicond Sci Technol, 2010, 25(10): 105008

[80]

Zeumault A, Ma S, Holbery J. Fully inkjet-printed metal-oxide thin-film transistors on plastic. Phys Status Solidi A, 2016, 213(8): 2189

[81]

Kim S H, Yoon J, Yun S O, et al. Ultrathin sticker-type ZnO thin film transistors formed by transfer printing via topological confinement of water-soluble sacrificial polymer in dimple structure. Adv Funct Mater, 2013, 23(11): 1375

[82]

Kim M-G, Kanatzidis M G, Facchetti A, et al. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater, 2011, 10(5): 382

[83]

Dasgupta S, Kruk R, Mechau N, et al. Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature. ACS Nano, 2011, 5(12): 9628

[84]

Lee S, Jeon S, Chaji R, et al. Transparent semiconducting oxide technology for touch free interactive flexible displays. Proc IEEE, 2015, 103(4): 644

[85]

Ginley D S, Bright C. Transparent conducting oxides. MRS Bull, 2000, 25(8): 15

[86]

Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300(5623): 1269

[87]

Libsch F, Kanicki J. Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors. Appl Phys Lett, 1993, 62(11): 1286

[88]

Hosono H, Kikuchi N, Ueda N, et al. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J Non-Cryst Solids, 1996, 198: 165

[89]

Orita M, Ohta H, Hirano M, et al. Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤4): a Zn4s conductor. Philos Mag B, 2001, 81(5): 501

[90]

Park J S, Kim K, Park Y G, et al. Novel ZrInZnO thin-film transistor with excellent stability. Adv Mater, 2009, 21(3): 329

[91]

Xingqiang L, Jinshui M, Lei L, et al. High-mobility transparent amorphous metal oxide/nanostructure composite thin film transistors with enhanced-current paths for potential high-speed flexible electronics. J Mater Chem C, 2014, 2(7): 1201

[92]

Yu X, Zeng L, Zhou N, et al. Ultra-flexible," invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends. Adv Mater, 2015, 27(14): 2390

[93]

Özgür Ü, Hofstetter D, Morkoc H. ZnO devices and applications: a review of current status and future prospects. Proc IEEE, 2010, 98(7): 1255

[94]

Wang Z, Nayak P K, Caraveo-Frescas J A, et al. Recent developments in p-type oxide semiconductor materials and devices. Adv Mater, 2016, 28(20): 3831

[95]

Liang L Y, Cao H T, Chen X B, et al. Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Appl Phys Lett, 2012, 100(26): 263502

[96]

Yao Z, Liu S, Zhang L, et al. Room temperature fabrication of p-channel Cu2O thin-film transistors on flexible polyethylene terephthalate substrates. Appl Phys Lett, 2012, 101(4): 042114

[97]

Yabuta H, Kaji N, Hayashi R, et al. Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits. Appl Phys Lett, 2010, 97(7): 072111

[98]

Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, et al. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano, 2013, 7(6): 5160

[99]

Martins R, Nathan A, Barros R, et al. Complementary metal oxide semiconductor technology with and on paper. Adv Mater, 2011, 23(39): 4491

[100]

Caraveo-Frescas J, Khan M, Alshareef H N. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility. Sci Rep, 2014, 4: 5243

[101]

Shiosaki T, Ohnishi S, Hirokawa Y, et al. As-grown CVD ZnO optical waveguides on sapphire. Appl Phys Lett, 1978, 33(5): 406

[102]

Tynell T, Karppinen M. Atomic layer deposition of ZnO: a review. Semicond Sci Technol, 2014, 29(4): 043001

[103]

Diniz A S A C. The effects of various annealing regimes on the microstructure and physical properties of ITO (In2O3:Sn) thin films deposited by electron beam evaporation for solar energy applications. Renew Energ, 2011, 36(4): 1153

[104]

Kim S J, Yoon S, Kim H J. Review of solution-processed oxide thin-film transistors. Jpn J Appl Phys, 2014, 53(2S): 02B

[105]

Thomas S R, Pattanasattayavong P, Anthopoulos T D. Solution-processable metal oxide semiconductors for thin-film transistor applications. Chem Soc Rev, 2013, 42(16): 6910

[106]

Seo J S, Jeon J H, Hwang Y H, et al. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci Rep, 2013, 3: 2085

[107]

Kim S Y, Kim K, Hwang Y, et al. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance. Nanoscale, 2016, 8(39): 17113

[108]

Choi C H, Lin L Y, Cheng C C, et al. Printed oxide thin film transistors: a mini review. ECS J Solid State Sci Technol, 2015, 4(4): P3044

[109]

Wee D, Yoo S, Kang Y H, et al. Poly (imide-benzoxazole) gate insulators with high thermal resistance for solution-processed flexible indium-zinc oxide thin-film transistors. J Mater Chem C, 2014, 2(31): 6395

[110]

Leppäniemi J, Huttunen O H, Majumdar H, et al. Flexography-printed In2O3 semiconductor layers for high-mobility thin-film transistors on flexible plastic substrate. Adv Mater, 2015, 27(44): 7168

[111]

Nakata M, Takechi K, Eguchi T, et al. Effects of thermal annealing on ZnO thin-film transistor characteristics and the application of excimer laser annealing in plastic-based ZnO thin-film transistors. Jpn J Appl Phys, 2009, 48(8R): 081608

[112]

Zhang J, Wu G D. Ultralow-voltage electric-double-layer oxide-based thin-film transistors with faster switching response on flexible substrates. Chin Phys Lett, 2014, 31(7): 078502

[113]

Zhang J, Liu Y, Guo L, et al. Flexible oxide-based thin-film transistors on plastic substrates for logic applications. J Mater Sci Technol, 2015, 31(2): 171

[114]

Sheets W C, Kang S J, Hsieh H H, et al. Organic gate insulator materials for amorphous metal oxide TFTs. IEEE 65th Electronic Components and Technology Conference (ECTC), 2015: 1878

[115]

Gao P, Lan L, Xiao P, et al. Solution-processed flexible zinc-tin oxide thin-film transistors on ultra-thin polyimide substrates. J Soc Inf Display, 2016, 24(4): 211

[116]

Kim Y C, Lee S J, Oh I-K, et al. Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide–metal–oxide electrodes. J Alloy Compd, 2016, 688: 1108

[117]

Cantarella G, Ishida K, Petti L, et al. Flexible In–Ga–Zn–O-based circuits with two and three metal layers: simulation and fabrication study. IEEE Electron Device Lett, 2016, 37(12): 1582

[118]

Petti L, Frutiger A, Münzenrieder N, et al. Flexible quasi-vertical In–Ga–Zn–O thin-film transistor with 300-nm channel length. IEEE Electron Device Lett, 2015, 36(5): 475

[119]

Chen Y, Geng D, Lin T, et al. Full-swing clock generating circuits on plastic using a-IGZO dual-gate TFTs with pseudo-CMOS and bootstrapping. IEEE Electron Device Lett, 2016, 37(7): 882

[120]

Song K, Noh J, Jun T, et al. Fully flexible solution-deposited ZnO thin-film transistors. Adv Mater, 2010, 22(38): 4308

[121]

Bong H, Lee W H, Lee D Y, et al. High-mobility low-temperature ZnO transistors with low-voltage operation. Appl Phys Lett, 2010, 96(19): 192115

[122]

Jackson W, Hoffman R, Herman G. High-performance flexible zinc tin oxide field-effect transistors. Appl Phys Lett, 2005, 87(19): 193503

[123]

Cherenack K H, Münzenrieder N S, Troster G. Impact of mechanical bending on ZnO and IGZO thin-film transistors. IEEE Electron Device Lett, 2010, 31(11): 1254

[124]

Petti L, Münzenrieder N, Salvatore G A, et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs. IEEE Trans Electron Devices, 2014, 61(4): 1085

[125]

Petti L, Faber H, Münzenrieder N, et al. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits. Appl Phys Lett, 2015, 106(9): 092105

[126]

Kim I D, Choi Y, Tuller H L. Low-voltage ZnO thin-film transistors with high-k Bi1.0Nb1.5O7 gate insulator for transparent and flexible electronics. Appl Phys Lett, 2005, 87(4): 043509

[127]

Su N C, Wang S J, Huang C C, et al. Low-voltage-driven flexible InGaZnO thin-film transistor with small subthreshold swing. IEEE Electron Device Lett, 2010, 31(7): 680

[128]

Rim Y S, Jeong W H, Kim D L, et al. Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors. J Mater Chem, 2012, 22(25): 12491

[129]

Liao P Y, Chang T C, Su W C, et al. Effect of mechanical-strain-induced defect generation on the performance of flexible amorphous In–Ga–Zn–O thin-film transistors. Appl Phys Express, 2016, 9(12): 124101

[130]

Zhao D, Mourey D A, Jackson T N. Fast flexible plastic substrate ZnO circuits. IEEE Electron Device Lett, 2010, 31(4): 323

[131]

Hsieh H H, Wu C H, Wu C C, et al. Amorphous In2O3–Ga2O3–ZnO thin film transistors and integrated circuits on flexible and colorless polyimide substrates. SID Symp Dig Tech Pap, 2008, 39(1): 1207

[132]

Sheng J, Lee H J, Oh S, et al. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl Mater Inter, 2016, 8(49): 33821

[133]

Park J, Kim C S, Ahn B, et al. Flexible In–Ga–Zn–O thin-film transistors fabricated on polyimide substrates and mechanically induced instability under negative bias illumination stress. J Electroceram, 2015, 1(35): 106

[134]

Jo J W, Kim J, Kim K T, et al. Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors. Adv Mater, 2015, 27(7): 1182

[135]

You H C, Lin Y H. Investigation of the sol–gel method on the flexible ZnO device. Int J Electrochem Sci, 2012, 7: 9085

[136]

Hwang B U, Kim D I, Cho S W, et al. Role of ultrathin Al2O3 layer in organic/inorganic hybrid gate dielectrics for flexibility improvement of InGaZnO thin film transistors. Org Electron, 2014, 15(7): 1458

[137]

Rim Y S, Chen H, Liu Y, et al. Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Nano, 2014, 8(9): 9680

[138]

Kinkeldei T, Münzenrieder N, Zysset C, et al. Encapsulation for flexible electronic devices. IEEE Electron Device Lett, 2011, 32(12): 1743

[139]

Lai H C, Pei Z, Jian J R, et al. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability. Appl Phys Lett, 2014, 105(3): 033510

[140]

Kim J M, Nam T, Lim S, et al. Atomic layer deposition ZnO:N flexible thin film transistors and the effects of bending on device properties. Appl Phys Lett, 2011, 98(14): 142113

[141]

Marrs M A, Moyer C D, Bawolek E J, et al. Control of threshold voltage and saturation mobility using dual-active-layer device based on amorphous mixed metal–oxide–semiconductor on flexible plastic substrates. IEEE Trans Electron Devices, 2011, 58(10): 3428

[142]

Smith J T, Shah S S, Goryll M, et al. Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE Sens J, 2014, 14(4): 937

[143]

Dey A, Indluru A, Venugopal S M, et al. Effect of mechanical and electromechanical stress on a-ZIO TFTs. IEEE Electron Device Lett, 2010, 31(12): 1416

[144]

Yoon S M, Yang S, Park S H K. Flexible nonvolatile memory thin-film transistor using ferroelectric copolymer gate insulator and oxide semiconducting channel. J Electrochem Soc, 2011, 158(9): H892

[145]

Lujan R, Street R. Flexible X-ray detector array fabricated with oxide thin-film transistors. IEEE Electron Device Lett, 2012, 33(5): 688

[146]

Kim S J, Park M J, Yun D J, et al. High performance and stable flexible memory thin-film transistors using In–Ga–Zn–O channel and ZnO charge-trap layers on poly (ethylene naphthalate) substrate. IEEE Trans Electron Devices, 2016, 63(4): 1557

[147]

Xiao P, Dong T, Lan L, et al. High-mobility flexible thin-film transistors with a low-temperature zirconium-doped indium oxide channel layer. Phys Status Solidi R, 2016, 10(6): 493

[148]

Kaftanoglu K, Venugopal S M, Marrs M, et al. Stability of IZO and a-Si: H TFTs processed at low temperature (200 ℃). J Disp Technol, 2011, 7(6): 339

[149]

Lee G G, Tokumitsu E, Yoon S M, et al. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly (vinylidene fluoride-trifluoroethylene). Appl Phys Lett, 2011, 99(1): 012901

[150]

Smith J, Couture A, Allee D. Charge emission induced transient leakage currents of a-Si: H and IGZO TFTs on flexible plastic substrates. Electron Lett, 2014, 50(2): 105

[151]

Lin Y H, Faber H, Zhao K, et al. High-performance ZnO transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80–180 °C. Adv Mater, 2013, 25(31): 4340

[152]

Liu J, Buchholz D B, Chang R P, et al. High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. Adv Mater, 2010, 22(21): 2333

[153]

Han D, Chen Z, Cong Y, et al. High-performance flexible tin-zinc-oxide thin-film transistors fabricated on plastic substrates. IEEE Trans Electron Devices, 2016, 63(8): 3360

[154]

Liu J, Buchholz D B, Hennek J W, et al. All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics. J Am Chem Soc, 2010, 132(34): 11934

[155]

Huang L, Han D, Chen Z, et al. Flexible nickel-doped zinc oxide thin-film transistors fabricated on plastic substrates at low temperature. Jpn J Appl Phys, 2015, 54(4S): 04D

[156]

Lim W, Jang J H, Kim S H, et al. High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates. Appl Phys Lett, 2008, 93(8): 082102

[157]

Hyung G W, Park J, Wang J X, et al. Amorphous indium gallium zinc oxide thin-film transistors with a low-temperature polymeric gate dielectric on a flexible substrate. Jpn J Appl Phys, 2013, 52(7R): 071102

[158]

Choi K M, Hyung G W, Yang J W, et al. Fabrication of atomic layer deposited zinc oxide thin film transistors with organic gate insulator on flexible substrate. Mol Cryst Liq Cryst, 2010, 529(1): 131

[159]

Lee C Y, Chang C, Shih W P, et al. Wet etching rates of InGaZnO for the fabrication of transparent thin-film transistors on plastic substrates. Thin Solid Films, 2010, 518(14): 3992

[160]

Ha Y G, Everaerts K, Hersam M C, et al. Hybrid gate dielectric materials for unconventional electronic circuitry. Acc Chem Res, 2014, 47(4): 1019

[161]

Han D, Zhang Y, Cong Y, et al. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate. Sci Rep, 2016, 6: 38984

[162]

Kumomi H, Nomura K, Kamiya T, et al. Amorphous oxide channel TFTs. Thin Solid Films, 2008, 516(7): 1516

[163]

Liu Y, Zhou H, Cheng R, et al. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett, 2014, 14(3): 1413

[164]

Vidor F F, Meyers T, Wirth G I, et al. ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating technique. Microelectron Eng, 2016, 159: 155

[165]

Hsu H H, Chang C Y, Cheng C H, et al. High mobility field-effect thin film transistor using room-temperature high-k gate dielectrics. J Disp Technol, 2014, 10(10): 847

[166]

Hsu H H, Chang C Y, Cheng C H. A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature. IEEE Electron Device Lett, 2013, 34(6): 768

[167]

Hsu H H, Chiu Y C, Chiou P, et al. Improvement of dielectric flexibility and electrical properties of mechanically flexible thin film devices using titanium oxide materials fabricated at a very low temperature of 100 °C. J Alloy Compd, 2015, 643: S133

[168]

Jun J H, Park B, Cho K, et al. Flexible TFTs based on solution-processed ZnO nanoparticles. Nanotechnology, 2009, 20(50): 505201

[169]

Kim J, Fuentes-Hernandez C, Kim S J, et al. Flexible hybrid complementary inverters with high gain and balanced noise margins using pentacene and amorphous InGaZnO thin-film transistors. Org Electron, 2010, 11(6): 1074

[170]

Kim J, Fuentes-Hernandez C, Hwang D, et al. Vertically stacked hybrid organic–inorganic complementary inverters with low operating voltage on flexible substrates. Org Electron, 2011, 12(1): 45

[171]

Oh H, Cho K, Park S, et al. Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate structure. Microelectron Eng, 2016, 159: 179

[172]

Park S, Cho K, Yang K, et al. Electrical characteristics of flexible ZnO thin-film transistors annealed by microwave irradiation. J Vac Sci Technol B, 2014, 32(6): 062203

[173]

Park K, Lee D K, Kim B S, et al. Stretchable, transparent zinc oxide thin film transistors. Adv Funct Mater, 2010, 20(20): 3577

[174]

Cantarella G, Münzenrieder N, Petti L, et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE Electron Device Lett, 2015, 36(8): 781

[175]

Cheong W S, Bak J Y, Kim H S. Transparent flexible zinc–indium–tin oxide thin-film transistors fabricated on polyarylate films. Jpn J Appl Phys, 2010, 49(5S1): 05EB10

[176]

Jin S H, Kang S K, Cho I T, et al. Water-soluble thin film transistors and circuits based on amorphous indium–gallium–zinc oxide. ACS Appl Mater Inter, 2015, 7(15): 8268

[177]

Jin J, Ko J H, Yang S, et al. Rollable transparent glass‐fabric reinforced composite substrate for flexible devices. Adv Mater, 2010, 22(40): 4510

[178]

Ok K C, Park S H K, Hwang C S, et al. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Appl Phys Lett, 2014, 104(6): 063508

[179]

Chien C W, Wu C H, Tsai Y T, et al. High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates. IEEE Trans Electron Devices, 2011, 58(5): 1440

[180]

Ok K C, Oh S, Jeong H J, et al. Effect of alumina buffers on the stability of top-gate amorphous InGaZnO thin-film transistors on flexible substrates. IEEE Electron Device Lett, 2015, 36(9): 917

[181]

Park C B, Na H, Yoo S S, et al. Electrical characteristics of a-IGZO transistors along the in-plane axis during outward bending. Microelectron Reliab, 2016, 59: 37

[182]

Park S, Kim K H, Jo J W, et al. In-depth studies on rapid photochemical activation of various sol-gel metal oxide films for flexible transparent electronics. Adv Funct Mater, 2015, 25(19): 2807

[183]

Mativenga M, Geng D, Kim B, et al. Fully transparent and rollable electronics. ACS Appl Mater Inter, 2015, 7(3): 1578

[184]

Lin C Y, Chien C W, Wu C C, et al. Effects of mechanical strains on the characteristics of top-gate staggered a-IGZO thin-film transistors fabricated on polyimide-based nanocomposite substrates. IEEE Trans Electron Devices, 2012, 59(7): 1956

[185]

Li X, Billah M M, Mativenga M, et al. Highly robust flexible oxide thin-film transistors by bulk accumulation. IEEE Electron Device Lett, 2015, 36(8): 811

[186]

Münzenrieder N, Salvatore G A, Petti L, et al. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation. Appl Phys Lett, 2014, 105(26): 263504

[187]

Münzenrieder N, Cherenack K H, Troster G. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans Electron Devices, 2011, 58(7): 2041

[188]

Lee S J, Ko J, Park J H, et al. Effective work function modulation of SWCNT–AZO NP hybrid electrodes in fully solution-processed flexible metal-oxide thin film transistors. J Mater Chem C, 2015, 3(31): 8121

[189]

Kim D, Hwang B, Park J, et al. Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors. Org Electron, 2012, 13(11): 2401

[190]

Münzenrieder N, Petti L, Zysset C, et al. Flexible a-IGZO TFT amplifier fabricated on a free standing polyimide foil operating at 1.2 MHz while bent to a radius of 5 mm. IEEE International Electron Devices Meeting (IEDM), 2012: 5.2. 1

[191]

Ji L W, Wu C Z, Fang T H, et al. Characteristics of flexible thin-film transistors with ZnO channels. IEEE Sens J, 2013, 13(12): 4940

[192]

Münzenrieder N, Zysset C, Petti L, et al. Flexible double gate a-IGZO TFT fabricated on free standing polyimide foil. Solid-State Electron, 2013, 84: 198

[193]

Lim W, Douglas E, Kim S H, et al. Low-temperature-fabricated InGaZnO4 thin film transistors on polyimide clean-room tape. Appl Phys Lett, 2008, 93(25): 252103

[194]

Bak J Y, Yoon S M, Yang S, et al. Effect of In–Ga–Zn–O active layer channel composition on process temperature for flexible oxide thin-film transistors. J Vac Sci Technol B, 2012, 30(4): 041208

[195]

Wu S C, Feng H T, Yu M J, et al. Flexible three-bit-per-cell resistive switching memory using a-IGZO TFTs. IEEE Electron Device Lett, 2013, 34(10): 1265

[196]

Hwang Y H, Seo J S, Yun J M, et al. An ‘aqueous route’ for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates. NPG Asia Mater, 2013, 5(4): e45

[197]

Sharma B K, Jang B, Lee J E, et al. Load-controlled roll transfer of oxide transistors for stretchable electronics. Adv Funct Mater, 2013, 23(16): 2024

[198]

Eun K, Hwang W, Sharma B, et al. Mechanical flexibility of zinc oxide thin-film transistors prepared by transfer printing method. Mod Phys Lett B, 2012, 26(12): 1250077

[199]

Park M J, Yun D J, Ryu M K, et al. Improvements in the bending performance and bias stability of flexible InGaZnO thin film transistors and optimum barrier structures for plastic poly (ethylene naphthalate) substrates. J Mater Chem C, 2015, 3(18): 4779

[200]

Li H U, Jackson T N. Oxide semiconductor thin film transistors on thin solution-cast flexible substrates. IEEE Electron Device Lett, 2015, 36(1): 35

[201]

Salvatore G A, Münzenrieder N, Kinkeldei T, et al. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat Commun, 2014, 5: 2982

[202]

Petti L, Münzenrieder N, Salvatore G A, et al. Flexible electronics based on oxide semiconductors. IEEE 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014: 323

[203]

Yuan H, Wang H, Cui Y. Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling. ACC Chem Res, 2015, 48(1): 81

[204]

Fujimoto T, Awaga K. Electric-double-layer field-effect transistors with ionic liquids. Phys Chem Chem Phys, 2013, 15(23): 8983

[205]

Du H, Lin X, Xu Z, et al. Electric double-layer transistors: a review of recent progress. J Mater Sci, 2015, 50(17): 5641

[206]

Ono S, Seki S, Hirahara R, et al. High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl Phys Lett, 2008, 92(10): 93

[207]

Zhou J, Wu G, Guo L, et al. Flexible transparent junctionless TFTs with oxygen-tuned indium–zinc–oxide channels. IEEE Electron Device Lett, 2013, 34(7): 888

[208]

Hong K, Kim S H, Lee K H, et al. Printed, sub-2 V ZnO electrolyte gated transistors and inverters on plastic. Adv Mater, 2013, 25(25): 3413

[209]

Liu Y H, Zhu L Q, Feng P, et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater, 2015, 27(37): 5599

[210]

Martins R, Ferreira I, Fortunato E. Electronics with and on paper. Phys Status Solidi-R, 2011, 5(9): 332

[211]

Lim W, Douglas E, Norton D, et al. Low-voltage indium gallium zinc oxide thin film transistors on paper substrates. Appl Phys Lett, 2010, 96(5): 053510

[212]

Wu G, Wan X, Yang Y, et al. Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates. J Phys D: Appl Phys, 2014, 47(49): 495101

[213]

Dou W, Zhu L, Jiang J, et al. Flexible dual-gate oxide TFTs gated by chitosan film on paper substrates. IEEE Electron Device Lett, 2013, 34(2): 259

[214]

Jiang J, Sun J, Dou W, et al. Junctionless flexible oxide-based thin-film transistors on paper substrates. IEEE Electron Device Lett, 2012, 33(1): 65

[215]

Jiang J, Sun J, Dou W, et al. In-plane-gate indium–tin–oxide thin-film transistors self-assembled on paper substrates. Appl Phys Lett, 2011, 98(11): 113507

[216]

Lim W, Douglas E, Kim S H, et al. High mobility InGaZnO4 thin-film transistors on paper. Appl Phys Lett, 2009, 94(7): 072103

[217]

Jiang S, Feng P, Yang Y, et al. Flexible low-voltage In–Zn–O homojunction TFTs with beeswax gate dielectric on paper substrates. IEEE Electron Device Lett, 2016, 37(3): 287

[218]

Lu A, Dai M, Sun J, et al. Flexible low-voltage electric-double-layer TFTs self-assembled on paper substrates. IEEE Electron Device Lett, 2011, 32(4): 518

[219]

Thiemann S, Sachnov S J, Pettersson F, et al. Cellulose-based ionogels for paper electronics. Adv Funct Mater, 2014, 24(5): 625

[220]

Pereira L, Gaspar D, Guerin D, et al. The influence of fibril composition and dimension on the performance of paper gated oxide transistors. Nanotechnology, 2014, 25(9): 094007

[221]

Martins R, Barquinha P, Pereira L, et al. Write-erase and read paper memory transistor. Appl Phys Lett, 2008, 93(20): 203501

[222]

Gaspar D, Fernandes S, De Oliveira A, et al. Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology, 2014, 25(9): 094008

[223]

Wu G D, Zhang J, Wan X. Junctionless coplanar-gate oxide-based thin-film transistors gated by Al2O3 proton conducting films on paper substrates. Chin Phys Lett, 2014, 31(10): 108505

[224]

Sun J, Jiang J, Lu A, et al. One-volt oxide thin-film transistors on paper substrates gated by SiO2-based solid electrolyte with controllable operation modes. IEEE Trans Electron Devices, 2010, 57(9): 2258

[225]

Choi N, Khan S A, Ma X, et al. Amorphous oxide thin film transistors with methyl siloxane based gate dielectric on paper substrate. Electrochem Solid-State Lett, 2011, 14(6): H247

[226]

Fortunato E, Correia N, Barquinha P, et al. High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Device Lett, 2008, 29(9): 988

[227]

Martins R, Barquinha P, Pereira L, et al. Selective floating gate non-volatile paper memory transistor. Phys Status Solidi R, 2009, 3(9): 308

[228]

Mahmoudabadi F, Ma X, Hatalis M K, et al. Amorphous IGZO TFTs and circuits on conformable aluminum substrates. Solid-State Electron, 2014, 101: 57

[229]

Park I J, Jeong C Y, Cho I T, et al. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors. Semicond Sci Technol, 2012, 27(10): 105019

[230]

Plichta A, Weber A, Habeck A. Ultra thin flexible glass substrates. Symposium on Flexible Electronics-Materials and Device Technology held at the 2003 MRS Spring Meeting, 2003: 273

[231]

Lee G J, Kim J, Kim J H, et al. High performance, transparent a-IGZO TFTs on a flexible thin glass substrate. Semicond Sci Technol, 2014, 29(3): 035003

[232]

Yamauchi N, Itoh T, Noguchi T. Low energy-cost TFT technologies using ultra-thin flexible glass substrate. IEEE 19th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2012: 213

[233]

Dai M K, Lian J T, Lin T Y, et al. High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO. J Mater Chem C, 2013, 1(33): 5064

[234]

Münzenrieder N, Voser P, Petti L, et al. Flexible self-aligned double-gate IGZO TFT. IEEE Electron Device Lett, 2014, 35(1): 69

[235]

Li Y, Liu Y, Yun F, et al. Self-assembled transparent a-IGZO based TFTs for flexible sensing applications. International Symposium on Photonics and Optoelectronics, 2014: 92332A

[236]

Smith J T, Couture A J, Stowell J R, et al. Optically seamless flexible electronic tiles for ultra large-area digital X-ray imaging. IEEE Trans Compon Packag Manuf Technol, 2014, 4(6): 1109

[237]

Gelinck G H, Kumar A, Van Der Steen J L P, et al. X-ray detector-on-plastic with high sensitivity using low cost, solution-processed organic photodiodes. IEEE Trans Electron Devices, 2016, 63(1): 197

[238]

Honda W, Harada S, Ishida S, et al. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv Mater, 2015, 27(32): 4674

[239]

Kim J, Kim J, Jo S, et al. Ultrahigh detective heterogeneous photosensor arrays with in-pixel signal boosting capability for large-area and skin-compatible electronics. Adv Mater, 2016, 28(16): 3078

[240]

Van Breemen A, Kam B, Cobb B, et al. Ferroelectric transistor memory arrays on flexible foils. Org Electron, 2013, 14(8): 1966

[241]

Myny K, Steudel S. Flexible thin-film nfc transponder chip exhibiting data rates compatible to ISO NFC standards using self-aligned metal-oxide tfts. IEEE International Solid-State Circuits Conference (ISSCC), 2016: 298

[242]

Zhang L R, Huang C Y, Li G M, et al. A low-power high-stability flexible scan driver integrated by IZO TFTs. IEEE Trans Electron Devices, 2016, 63(4): 1779

[243]

Meister T, Ishida K, Shabanpour R, et al. 20.3 dB 0.39 mW AM detector with single-transistor active inductor in bendable a-IGZO TFT. IEEE 46th European Solid-State Device Research Conference (ESSDERC), 2016: 71

[244]

Huang T C, Fukuda K, Lo C M, et al. Pseudo-CMOS: a design style for low-cost and robust flexible electronics. IEEE Trans Electron Devices, 2011, 58(1): 141

[245]

Münzenrieder N, Zysset C, Kinkeldei T, et al. Design rules for IGZO logic gates on plastic foil enabling operation at bending radii of 3.5 mm. IEEE Trans Electron Devices, 2012, 59(8): 2153

[246]

Kim Y H, Heo J S, Kim T H, et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature, 2012, 489(7414): 128

[247]

Zysset C, Münzenrieder N, Petti L, et al. IGZO TFT-based all-enhancement operational amplifier bent to a radius of 5 mm. IEEE Electron Device Lett, 2013, 34(11): 1394

[248]

Perumal C, Ishida K, Shabanpour R, et al. A Compact a-IGZO TFT model based on MOSFET SPICE Level=3 template for analog/RF circuit designs. IEEE Electron Device Lett, 2013, 34(11): 1391

[249]

Nomura K, Aoki T, Nakamura K, et al. Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer hybrid complementary inverter using n-type a-In–Ga–Zn–O and p-type poly-(9, 9-dioctylfluorene-co-bithiophene) thin-film transistors. Appl Phys Lett, 2010, 96(26): 263509

[250]

Rockelé M, Pham D V, Steiger J, et al. Solution-processed and low-temperature metal oxide n-channel thin-film transistors and low-voltage complementary circuitry on large-area flexible polyimide foil. J Soc Inf Display, 2012, 20(9): 499

[251]

Oh M S, Choi W, Lee K, et al. Flexible high gain complementary inverter using n-ZnO and p-pentacene channels on polyethersulfone substrate. Appl Phys Lett, 2008, 93(3): 033510

[252]

Honda W, Arie T, Akita S, et al. Mechanically flexible and high-performance CMOS logic circuits. Sci Rep, 2015, 5: 15099

[253]

Nag M, Chasin A, Rockele M, et al. Single-source dual-layer amorphous IGZO thin-film transistors for display and circuit applications. J Soc Inf Display, 2013, 21(3): 129

[254]

Yamamoto T, Takei T, Nakajima Y, et al. Simple transfer technology for fabrication of TFT backplane for flexible displays. IEEE T Ind Appl, 2012, 48(5): 1662

[255]

Oh T. Tunneling phenomenon of amorphous indium-gallium-zinc-oxide thin film transistors for flexible display. Electron Mater Lett, 2015, 11(5): 853

[256]

Kim H, Kim Y J. Influence of external forces on the mechanical characteristics of the a-IGZO and graphene based flexible display. Global Conference on Polymer and Composite Materials (PCM), 2014: 012022

[257]

Genoe J, Obata K, Ameys M, et al. Integrated line driver for digital pulse-width modulation driven AMOLED displays on flex. IEEE J Soild-State Circuits, 2015, 50(1): 282

[258]

Zysset C, Münzenrieder N, Kinkeldei T, et al. Woven active-matrix display. IEEE Trans Electron Devices, 2012, 59(3): 721

[1]

Cao Q, Kim H S, Pimparkar N, et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature, 2008, 454(7203): 495

[2]

Li Y S, He J C, Hsu S M, et al. Flexible complementary oxide–semiconductor-based circuits employing n-channel ZnO and p-channel SnO thin-film transistors. IEEE Electron Device Lett, 2016, 37(1): 46

[3]

Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9(6): 511

[4]

Bock K. Polymer electronics systems-polytronics. Proc IEEE, 2005, 93(8): 1400

[5]

Heremans P. Electronics on plastic foil, for applications in flexible OLED displays, sensor arrays and circuits. IEEE 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014: 1

[6]

Allen K J. Reel to real: prospects for flexible displays. Proc IEEE, 2005, 93(8): 1394

[7]

Jeong J K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond Sci Technol, 2011, 26(3): 034008

[8]

Xu H, Luo D, Li M, et al. A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J Mater Chem C, 2014, 2(7): 1255

[9]

Gelinck G H, Huitema H E A, Van Veenendaal E, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater, 2004, 3(2): 106

[10]

Nathan A, Chalamala B R. Special issue on flexible electronics technology, Part 1: Systems and applications. Proc IEEE, 2005, 93(7): 1235

[11]

Ito M, Kon M, Ishizaki M, et al. A flexible active-matrix TFT array with amorphous oxide semiconductors for electronic paper. Proc IDW/AD, 2005, 5: 845

[12]

Rogers J A, Bao Z, Baldwin K, et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci, 2001, 98(9): 4835

[13]

Nathan A, Chalamala B R. Special issue on flexible electronics technology, Part II: Materials and devices. Proc IEEE, 2005, 93(8): 1391

[14]

Khan Y, Garg M, Gui Q, et al. Flexible Hybrid electronics: direct interfacing of soft and hard electronics for wearable health monitoring. Adv Funct Mater, 2016, 26(47): 8764

[15]

Pu X, Li L, Song H, et al. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv Mater, 2015, 27(15): 2472

[16]

Nathan A, Ahnood A, Cole M T, et al. Flexible electronics: the next ubiquitous platform. Proc IEEE, 2012, 100(Special Centennial Issue): 1486

[17]

Münzenrieder N, Petti L, Zysset C, et al. Flexible self-aligned amorphous InGaZnO thin-film transistors with submicrometer channel length and a transit frequency of 135 MHz. IEEE Trans Electron Devices, 2013, 60(9): 2815

[18]

Tripathi A, Smits E P, Van Der Putten J, et al. Low-voltage gallium–indium–zinc–oxide thin film transistors based logic circuits on thin plastic foil: building blocks for radio frequency identification application. Appl Phys Lett, 2011, 98(16): 162102

[19]

Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973): 1603

[20]

Sekitani T, Kaltenbrunner M, Yokota T, et al. Imperceptible Electronic Skin. SID Symp Dig Tech Pap, 2014, 45(1): 122

[21]

Sun Y, Rogers J A. Inorganic semiconductors for flexible electronics. Adv Mater, 2007, 19(15): 1897

[22]

Petti L, Münzenrieder N, Vogt C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev, 2016, 3(2): 021303

[23]

Lee J K, Lim Y S, Park C , et al. a-Si: H thin-film transistor-driven flexible color E-paper display on flexible substrates. IEEE Electron Device Lett, 2010, 31(8): 833

[24]

Huang J J, Chen Y P, Huang Y S, et al. A 4.1-inch flexible QVGA AMOLED using a microcrystalline-Si:H TFT on a polyimide substrate. SID Symp Dig Tech Pap, 2009, 40(1): 866

[25]

Fukuda K, Takeda Y, Yoshimura Y, et al. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat Commun, 2014, 5: 4147

[26]

Yi H T, Payne M M, Anthony J E, et al. Ultra-flexible solution-processed organic field-effect transistors. Nat Commun, 2012, 3: 1259

[27]

Guo X, Xu Y, Ogier S, et al. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans Electron Devices, 2017, 64(5): 1906

[28]

Dimitrakopoulos C D, Mascaro D J. Organic thin-film transistors: a review of recent advances. IBM J Res Dev, 2001, 45(1): 11

[29]

Lin P, Yan F. Organic thin-film transistors for chemical and biological sensing. Adv Mater, 2012, 24(1): 34

[30]

Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488

[31]

Nomura K, Takagi A, Kamiya T, et al. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn J Appl Phys, 2006, 45(5S): 4303

[32]

Kamiya T, Hiramatsu H, Nomura K, et al. Device applications of transparent oxide semiconductors: excitonic blue LED and transparent flexible TFT. J Electroceram, 2006, 17(2): 267

[33]

Raja J, Jang K, Nguyen C P T, et al. Improvement of mobility in oxide-based thin film transistors: a brief review. Trans Electr Electron Mater, 2015, 16(5): 234

[34]

Kwon J Y, Lee D J, Kim K B. Transparent amorphous oxide semiconductor thin film transistor. Electron Mater Lett, 2011, 7(1): 1

[35]

Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 24(22): 2945

[36]

Lee S, Nathan A. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science, 2016, 354(6310): 302

[37]

Park J S, Maeng W J, Kim H S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films, 2012, 520(6): 1679

[38]

Ahn B D, Jeon H J, Sheng J, et al. A review on the recent developments of solution processes for oxide thin film transistors. Semicond Sci Technol, 2015, 30(6): 064001

[39]

Kamiya T, Nomura K, Hosono H. Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. J Disp Technol, 2009, 5(7): 273

[40]

Liu N, Zhu L Q, Feng P, et al. Flexible sensory platform based on oxide-based neuromorphic transistors. Sci Rep, 2015, 5: 18082

[41]

Shah S, Smith J, Stowell J, et al. Biosensing platform on a flexible substrate. Sens Actuators B, 2015, 210: 197

[42]

Jung S W, Koo J B, Park C W, et al. Flexible nonvolatile memory transistors using indium gallium zinc oxide-channel and ferroelectric polymer poly (vinylidene fluoride-co-trifluoroethylene) fabricated on elastomer substrate. J Vac Sci Technol B, 2015, 33(5): 051201

[43]

Kim S J, Jeon D B, Park J H, et al. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate. ACS Appl Mater Inter, 2015, 7(8): 4869

[44]

Tripathi A K, Myny K, Hou B, et al. Electrical characterization of flexible InGaZnO transistors and 8-b transponder chip down to a bending radius of 2 mm. IEEE Trans Electron Devices, 2015, 62(12): 4063

[45]

Mativenga M, Choi M H, Choi J W, et al. Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2011, 32(2): 170

[46]

Dindar A, Kim J, Fuentes-Hernandez C, et al. Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates. Appl Phys Lett, 2011, 99(17): 172104

[47]

Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett, 2009, 95(1): 013503

[48]

Nakata M, Motomura G, Nakajima Y, et al. Development of flexible displays using back-channel-etched In–Sn–Zn–O thin-film transistors and air-stable inverted organic light-emitting diodes. J Soc Inf Display, 2016, 24(1): 3

[49]

Nag M, Bhoolokam A, Smout S, et al. Circuits and AMOLED display with self-aligned a-IGZO TFTs on polyimide foil. J Soc Inf Display, 2014, 22(10): 509

[50]

Hatano K, Chida A, Okano T, et al. 3.4-inch quarter high definition flexible active matrix organic light emitting display with oxide thin film transistor. Jpn J Appl Phys, 2011, 50(3S): 03CC06

[51]

Nakajima Y, Nakata M, Takei T, et al. Development of 8-in. oxide-TFT-driven flexible AMOLED display using high-performance red phosphorescent OLED. J Soc Inf Display, 2014, 22(3): 137

[52]

Xu H, Pang J, Xu M, et al. Fabrication of flexible amorphous indium-gallium-zinc-oxide thin-film transistors by a chemical vapor deposition-free process on polyethylene napthalate. ECS J Solid State Sci Technol, 2014, 3(9): Q3035

[53]

Komatsu R, Nakazato R, Sasaki T, et al. Repeatedly foldable AMOLED display. J Soc Inf Display, 2015, 23(2): 41

[54]

Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604

[55]

Tee B C, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol, 2012, 7(12): 825

[56]

Micera S, Carrozza M C, Beccai L, et al. Hybrid bionic systems for the replacement of hand function. Proc IEEE, 2006, 94(9): 1752

[57]

Coyle S, Wu Y, Lau K T, et al. Smart nanotextiles: a review of materials and applications. MRS Bull, 2007, 32(5): 434

[58]

Kinkeldei T, Zysset C, Münzenrieder N, et al. An electronic nose on flexible substrates integrated into a smart textile. Senss Actuators B, 2012, 174: 81

[59]

Vervust T, Buyle G, Bossuyt F, et al. Integration of stretchable and washable electronic modules for smart textile applications. J Text I, 2012, 103(10): 1127

[60]

Cherenack K, Zysset C, Kinkeldei T, et al. Woven electronic fibers with sensing and display functions for smart textiles. Adv Mater, 2010, 22(45): 5178

[61]

Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296

[62]

Benito-Lopez F, Coyle S, Byrne R, et al. Pump less wearable microfluidic device for real time pH sweat monitoring. Procedia Chemistry, 2009, 1(1): 1103

[63]

Lemey S, Agneessens S, Van Torre P, et al. Wearable flexible lightweight modular RFID tag with integrated energy harvester. IEEE Trans Microwave Theory Tech, 2016, 64(7): 2304

[64]

Yang L, Martin L, Staiculescu D, et al. A novel flexible magnetic composite material for RFID, wearable RF and bio-monitoring applications. IEEE MTT-S International Microwave Symposium Digest, 2008: 963

[65]

Hester J G, Tentzeris M M. Inkjet-printed flexible mm-wave Van-Atta reflectarrays: a solution for ultralong-range dense multitag and multisensing chipless RFID implementations for IoT smart skins. IEEE Trans Microwave Theory Tech, 2016, 64(12): 4763

[66]

Falco A, Salmerón J F, Loghin F C, et al. Fully printed flexible single-chip RFID tag with light detection capabilities. Sensors, 2017, 17(3): 534

[67]

Imenes K, Andersen M H, Nguyen A-T T, et al. Implantable MEMS acceleration sensor for heart monitoring recent development and outlook. IEEE 4th Electronic System-Integration Technology Conference (ESTC), 2012: 1

[68]

Lo R, Li P Y, Saati S, et al. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices, 2009, 11(5): 959

[69]

Hwang G T, Im D, Lee S E, et al. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano, 2013, 7(5): 4545

[70]

Martins R F, Ahnood A, Correia N, et al. Recyclable, flexible, low-power oxide electronics. Adv Funct Mater, 2013, 23(17): 2153

[71]

Yang S, Bak J Y, Yoon S M, et al. Low-temperature processed flexible In–Ga–Zn–O thin-film transistors exhibiting high electrical performance. IEEE Electron Device Lett, 2011, 32(12): 1692

[72]

Yin Y, Sawin H H. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma. J Vac Sci Technol A, 2008, 26(1): 151

[73]

Kim C J, Kim S, Lee J H, et al. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. Appl Phys Lett, 2009, 95(25): 252103

[74]

Jiang J, Sun J, Zhou B, et al. Vertical oxide homojunction TFTs of 0.8 V gated by H3PO4-treated SiO2 nanogranular dielectric. IEEE Electron Device Lett, 2010, 31(11): 1263

[75]

Weimer P K. The TFT a new thin-film transistor. Proc IRE, 1962, 50(6): 1462

[76]

Jeong S, Lee J Y, Ham M H, et al. Bendable thin-film transistors based on sol–gel derived amorphous Ga-doped In2O3 semiconductors. Superlattices Microstruct, 2013, 59: 21

[77]

Park J H, Yoo Y B, Lee K H, et al. Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl Mater Inter, 2013, 5(16): 8067

[78]

Ju S, Facchetti A, Xuan Y, et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat Nanotechnol, 2007, 2(6): 378

[79]

Lee C, Lin M, Wu W, et al. Flexible ZnO transparent thin-film transistors by a solution-based process at various solution concentrations. Semicond Sci Technol, 2010, 25(10): 105008

[80]

Zeumault A, Ma S, Holbery J. Fully inkjet-printed metal-oxide thin-film transistors on plastic. Phys Status Solidi A, 2016, 213(8): 2189

[81]

Kim S H, Yoon J, Yun S O, et al. Ultrathin sticker-type ZnO thin film transistors formed by transfer printing via topological confinement of water-soluble sacrificial polymer in dimple structure. Adv Funct Mater, 2013, 23(11): 1375

[82]

Kim M-G, Kanatzidis M G, Facchetti A, et al. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater, 2011, 10(5): 382

[83]

Dasgupta S, Kruk R, Mechau N, et al. Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature. ACS Nano, 2011, 5(12): 9628

[84]

Lee S, Jeon S, Chaji R, et al. Transparent semiconducting oxide technology for touch free interactive flexible displays. Proc IEEE, 2015, 103(4): 644

[85]

Ginley D S, Bright C. Transparent conducting oxides. MRS Bull, 2000, 25(8): 15

[86]

Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300(5623): 1269

[87]

Libsch F, Kanicki J. Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors. Appl Phys Lett, 1993, 62(11): 1286

[88]

Hosono H, Kikuchi N, Ueda N, et al. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J Non-Cryst Solids, 1996, 198: 165

[89]

Orita M, Ohta H, Hirano M, et al. Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤4): a Zn4s conductor. Philos Mag B, 2001, 81(5): 501

[90]

Park J S, Kim K, Park Y G, et al. Novel ZrInZnO thin-film transistor with excellent stability. Adv Mater, 2009, 21(3): 329

[91]

Xingqiang L, Jinshui M, Lei L, et al. High-mobility transparent amorphous metal oxide/nanostructure composite thin film transistors with enhanced-current paths for potential high-speed flexible electronics. J Mater Chem C, 2014, 2(7): 1201

[92]

Yu X, Zeng L, Zhou N, et al. Ultra-flexible," invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends. Adv Mater, 2015, 27(14): 2390

[93]

Özgür Ü, Hofstetter D, Morkoc H. ZnO devices and applications: a review of current status and future prospects. Proc IEEE, 2010, 98(7): 1255

[94]

Wang Z, Nayak P K, Caraveo-Frescas J A, et al. Recent developments in p-type oxide semiconductor materials and devices. Adv Mater, 2016, 28(20): 3831

[95]

Liang L Y, Cao H T, Chen X B, et al. Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Appl Phys Lett, 2012, 100(26): 263502

[96]

Yao Z, Liu S, Zhang L, et al. Room temperature fabrication of p-channel Cu2O thin-film transistors on flexible polyethylene terephthalate substrates. Appl Phys Lett, 2012, 101(4): 042114

[97]

Yabuta H, Kaji N, Hayashi R, et al. Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits. Appl Phys Lett, 2010, 97(7): 072111

[98]

Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, et al. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano, 2013, 7(6): 5160

[99]

Martins R, Nathan A, Barros R, et al. Complementary metal oxide semiconductor technology with and on paper. Adv Mater, 2011, 23(39): 4491

[100]

Caraveo-Frescas J, Khan M, Alshareef H N. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility. Sci Rep, 2014, 4: 5243

[101]

Shiosaki T, Ohnishi S, Hirokawa Y, et al. As-grown CVD ZnO optical waveguides on sapphire. Appl Phys Lett, 1978, 33(5): 406

[102]

Tynell T, Karppinen M. Atomic layer deposition of ZnO: a review. Semicond Sci Technol, 2014, 29(4): 043001

[103]

Diniz A S A C. The effects of various annealing regimes on the microstructure and physical properties of ITO (In2O3:Sn) thin films deposited by electron beam evaporation for solar energy applications. Renew Energ, 2011, 36(4): 1153

[104]

Kim S J, Yoon S, Kim H J. Review of solution-processed oxide thin-film transistors. Jpn J Appl Phys, 2014, 53(2S): 02B

[105]

Thomas S R, Pattanasattayavong P, Anthopoulos T D. Solution-processable metal oxide semiconductors for thin-film transistor applications. Chem Soc Rev, 2013, 42(16): 6910

[106]

Seo J S, Jeon J H, Hwang Y H, et al. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci Rep, 2013, 3: 2085

[107]

Kim S Y, Kim K, Hwang Y, et al. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance. Nanoscale, 2016, 8(39): 17113

[108]

Choi C H, Lin L Y, Cheng C C, et al. Printed oxide thin film transistors: a mini review. ECS J Solid State Sci Technol, 2015, 4(4): P3044

[109]

Wee D, Yoo S, Kang Y H, et al. Poly (imide-benzoxazole) gate insulators with high thermal resistance for solution-processed flexible indium-zinc oxide thin-film transistors. J Mater Chem C, 2014, 2(31): 6395

[110]

Leppäniemi J, Huttunen O H, Majumdar H, et al. Flexography-printed In2O3 semiconductor layers for high-mobility thin-film transistors on flexible plastic substrate. Adv Mater, 2015, 27(44): 7168

[111]

Nakata M, Takechi K, Eguchi T, et al. Effects of thermal annealing on ZnO thin-film transistor characteristics and the application of excimer laser annealing in plastic-based ZnO thin-film transistors. Jpn J Appl Phys, 2009, 48(8R): 081608

[112]

Zhang J, Wu G D. Ultralow-voltage electric-double-layer oxide-based thin-film transistors with faster switching response on flexible substrates. Chin Phys Lett, 2014, 31(7): 078502

[113]

Zhang J, Liu Y, Guo L, et al. Flexible oxide-based thin-film transistors on plastic substrates for logic applications. J Mater Sci Technol, 2015, 31(2): 171

[114]

Sheets W C, Kang S J, Hsieh H H, et al. Organic gate insulator materials for amorphous metal oxide TFTs. IEEE 65th Electronic Components and Technology Conference (ECTC), 2015: 1878

[115]

Gao P, Lan L, Xiao P, et al. Solution-processed flexible zinc-tin oxide thin-film transistors on ultra-thin polyimide substrates. J Soc Inf Display, 2016, 24(4): 211

[116]

Kim Y C, Lee S J, Oh I-K, et al. Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide–metal–oxide electrodes. J Alloy Compd, 2016, 688: 1108

[117]

Cantarella G, Ishida K, Petti L, et al. Flexible In–Ga–Zn–O-based circuits with two and three metal layers: simulation and fabrication study. IEEE Electron Device Lett, 2016, 37(12): 1582

[118]

Petti L, Frutiger A, Münzenrieder N, et al. Flexible quasi-vertical In–Ga–Zn–O thin-film transistor with 300-nm channel length. IEEE Electron Device Lett, 2015, 36(5): 475

[119]

Chen Y, Geng D, Lin T, et al. Full-swing clock generating circuits on plastic using a-IGZO dual-gate TFTs with pseudo-CMOS and bootstrapping. IEEE Electron Device Lett, 2016, 37(7): 882

[120]

Song K, Noh J, Jun T, et al. Fully flexible solution-deposited ZnO thin-film transistors. Adv Mater, 2010, 22(38): 4308

[121]

Bong H, Lee W H, Lee D Y, et al. High-mobility low-temperature ZnO transistors with low-voltage operation. Appl Phys Lett, 2010, 96(19): 192115

[122]

Jackson W, Hoffman R, Herman G. High-performance flexible zinc tin oxide field-effect transistors. Appl Phys Lett, 2005, 87(19): 193503

[123]

Cherenack K H, Münzenrieder N S, Troster G. Impact of mechanical bending on ZnO and IGZO thin-film transistors. IEEE Electron Device Lett, 2010, 31(11): 1254

[124]

Petti L, Münzenrieder N, Salvatore G A, et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs. IEEE Trans Electron Devices, 2014, 61(4): 1085

[125]

Petti L, Faber H, Münzenrieder N, et al. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits. Appl Phys Lett, 2015, 106(9): 092105

[126]

Kim I D, Choi Y, Tuller H L. Low-voltage ZnO thin-film transistors with high-k Bi1.0Nb1.5O7 gate insulator for transparent and flexible electronics. Appl Phys Lett, 2005, 87(4): 043509

[127]

Su N C, Wang S J, Huang C C, et al. Low-voltage-driven flexible InGaZnO thin-film transistor with small subthreshold swing. IEEE Electron Device Lett, 2010, 31(7): 680

[128]

Rim Y S, Jeong W H, Kim D L, et al. Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors. J Mater Chem, 2012, 22(25): 12491

[129]

Liao P Y, Chang T C, Su W C, et al. Effect of mechanical-strain-induced defect generation on the performance of flexible amorphous In–Ga–Zn–O thin-film transistors. Appl Phys Express, 2016, 9(12): 124101

[130]

Zhao D, Mourey D A, Jackson T N. Fast flexible plastic substrate ZnO circuits. IEEE Electron Device Lett, 2010, 31(4): 323

[131]

Hsieh H H, Wu C H, Wu C C, et al. Amorphous In2O3–Ga2O3–ZnO thin film transistors and integrated circuits on flexible and colorless polyimide substrates. SID Symp Dig Tech Pap, 2008, 39(1): 1207

[132]

Sheng J, Lee H J, Oh S, et al. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl Mater Inter, 2016, 8(49): 33821

[133]

Park J, Kim C S, Ahn B, et al. Flexible In–Ga–Zn–O thin-film transistors fabricated on polyimide substrates and mechanically induced instability under negative bias illumination stress. J Electroceram, 2015, 1(35): 106

[134]

Jo J W, Kim J, Kim K T, et al. Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors. Adv Mater, 2015, 27(7): 1182

[135]

You H C, Lin Y H. Investigation of the sol–gel method on the flexible ZnO device. Int J Electrochem Sci, 2012, 7: 9085

[136]

Hwang B U, Kim D I, Cho S W, et al. Role of ultrathin Al2O3 layer in organic/inorganic hybrid gate dielectrics for flexibility improvement of InGaZnO thin film transistors. Org Electron, 2014, 15(7): 1458

[137]

Rim Y S, Chen H, Liu Y, et al. Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Nano, 2014, 8(9): 9680

[138]

Kinkeldei T, Münzenrieder N, Zysset C, et al. Encapsulation for flexible electronic devices. IEEE Electron Device Lett, 2011, 32(12): 1743

[139]

Lai H C, Pei Z, Jian J R, et al. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability. Appl Phys Lett, 2014, 105(3): 033510

[140]

Kim J M, Nam T, Lim S, et al. Atomic layer deposition ZnO:N flexible thin film transistors and the effects of bending on device properties. Appl Phys Lett, 2011, 98(14): 142113

[141]

Marrs M A, Moyer C D, Bawolek E J, et al. Control of threshold voltage and saturation mobility using dual-active-layer device based on amorphous mixed metal–oxide–semiconductor on flexible plastic substrates. IEEE Trans Electron Devices, 2011, 58(10): 3428

[142]

Smith J T, Shah S S, Goryll M, et al. Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE Sens J, 2014, 14(4): 937

[143]

Dey A, Indluru A, Venugopal S M, et al. Effect of mechanical and electromechanical stress on a-ZIO TFTs. IEEE Electron Device Lett, 2010, 31(12): 1416

[144]

Yoon S M, Yang S, Park S H K. Flexible nonvolatile memory thin-film transistor using ferroelectric copolymer gate insulator and oxide semiconducting channel. J Electrochem Soc, 2011, 158(9): H892

[145]

Lujan R, Street R. Flexible X-ray detector array fabricated with oxide thin-film transistors. IEEE Electron Device Lett, 2012, 33(5): 688

[146]

Kim S J, Park M J, Yun D J, et al. High performance and stable flexible memory thin-film transistors using In–Ga–Zn–O channel and ZnO charge-trap layers on poly (ethylene naphthalate) substrate. IEEE Trans Electron Devices, 2016, 63(4): 1557

[147]

Xiao P, Dong T, Lan L, et al. High-mobility flexible thin-film transistors with a low-temperature zirconium-doped indium oxide channel layer. Phys Status Solidi R, 2016, 10(6): 493

[148]

Kaftanoglu K, Venugopal S M, Marrs M, et al. Stability of IZO and a-Si: H TFTs processed at low temperature (200 ℃). J Disp Technol, 2011, 7(6): 339

[149]

Lee G G, Tokumitsu E, Yoon S M, et al. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly (vinylidene fluoride-trifluoroethylene). Appl Phys Lett, 2011, 99(1): 012901

[150]

Smith J, Couture A, Allee D. Charge emission induced transient leakage currents of a-Si: H and IGZO TFTs on flexible plastic substrates. Electron Lett, 2014, 50(2): 105

[151]

Lin Y H, Faber H, Zhao K, et al. High-performance ZnO transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80–180 °C. Adv Mater, 2013, 25(31): 4340

[152]

Liu J, Buchholz D B, Chang R P, et al. High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. Adv Mater, 2010, 22(21): 2333

[153]

Han D, Chen Z, Cong Y, et al. High-performance flexible tin-zinc-oxide thin-film transistors fabricated on plastic substrates. IEEE Trans Electron Devices, 2016, 63(8): 3360

[154]

Liu J, Buchholz D B, Hennek J W, et al. All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics. J Am Chem Soc, 2010, 132(34): 11934

[155]

Huang L, Han D, Chen Z, et al. Flexible nickel-doped zinc oxide thin-film transistors fabricated on plastic substrates at low temperature. Jpn J Appl Phys, 2015, 54(4S): 04D

[156]

Lim W, Jang J H, Kim S H, et al. High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates. Appl Phys Lett, 2008, 93(8): 082102

[157]

Hyung G W, Park J, Wang J X, et al. Amorphous indium gallium zinc oxide thin-film transistors with a low-temperature polymeric gate dielectric on a flexible substrate. Jpn J Appl Phys, 2013, 52(7R): 071102

[158]

Choi K M, Hyung G W, Yang J W, et al. Fabrication of atomic layer deposited zinc oxide thin film transistors with organic gate insulator on flexible substrate. Mol Cryst Liq Cryst, 2010, 529(1): 131

[159]

Lee C Y, Chang C, Shih W P, et al. Wet etching rates of InGaZnO for the fabrication of transparent thin-film transistors on plastic substrates. Thin Solid Films, 2010, 518(14): 3992

[160]

Ha Y G, Everaerts K, Hersam M C, et al. Hybrid gate dielectric materials for unconventional electronic circuitry. Acc Chem Res, 2014, 47(4): 1019

[161]

Han D, Zhang Y, Cong Y, et al. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate. Sci Rep, 2016, 6: 38984

[162]

Kumomi H, Nomura K, Kamiya T, et al. Amorphous oxide channel TFTs. Thin Solid Films, 2008, 516(7): 1516

[163]

Liu Y, Zhou H, Cheng R, et al. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett, 2014, 14(3): 1413

[164]

Vidor F F, Meyers T, Wirth G I, et al. ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating technique. Microelectron Eng, 2016, 159: 155

[165]

Hsu H H, Chang C Y, Cheng C H, et al. High mobility field-effect thin film transistor using room-temperature high-k gate dielectrics. J Disp Technol, 2014, 10(10): 847

[166]

Hsu H H, Chang C Y, Cheng C H. A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature. IEEE Electron Device Lett, 2013, 34(6): 768

[167]

Hsu H H, Chiu Y C, Chiou P, et al. Improvement of dielectric flexibility and electrical properties of mechanically flexible thin film devices using titanium oxide materials fabricated at a very low temperature of 100 °C. J Alloy Compd, 2015, 643: S133

[168]

Jun J H, Park B, Cho K, et al. Flexible TFTs based on solution-processed ZnO nanoparticles. Nanotechnology, 2009, 20(50): 505201

[169]

Kim J, Fuentes-Hernandez C, Kim S J, et al. Flexible hybrid complementary inverters with high gain and balanced noise margins using pentacene and amorphous InGaZnO thin-film transistors. Org Electron, 2010, 11(6): 1074

[170]

Kim J, Fuentes-Hernandez C, Hwang D, et al. Vertically stacked hybrid organic–inorganic complementary inverters with low operating voltage on flexible substrates. Org Electron, 2011, 12(1): 45

[171]

Oh H, Cho K, Park S, et al. Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate structure. Microelectron Eng, 2016, 159: 179

[172]

Park S, Cho K, Yang K, et al. Electrical characteristics of flexible ZnO thin-film transistors annealed by microwave irradiation. J Vac Sci Technol B, 2014, 32(6): 062203

[173]

Park K, Lee D K, Kim B S, et al. Stretchable, transparent zinc oxide thin film transistors. Adv Funct Mater, 2010, 20(20): 3577

[174]

Cantarella G, Münzenrieder N, Petti L, et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE Electron Device Lett, 2015, 36(8): 781

[175]

Cheong W S, Bak J Y, Kim H S. Transparent flexible zinc–indium–tin oxide thin-film transistors fabricated on polyarylate films. Jpn J Appl Phys, 2010, 49(5S1): 05EB10

[176]

Jin S H, Kang S K, Cho I T, et al. Water-soluble thin film transistors and circuits based on amorphous indium–gallium–zinc oxide. ACS Appl Mater Inter, 2015, 7(15): 8268

[177]

Jin J, Ko J H, Yang S, et al. Rollable transparent glass‐fabric reinforced composite substrate for flexible devices. Adv Mater, 2010, 22(40): 4510

[178]

Ok K C, Park S H K, Hwang C S, et al. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Appl Phys Lett, 2014, 104(6): 063508

[179]

Chien C W, Wu C H, Tsai Y T, et al. High-performance flexible a-IGZO TFTs adopting stacked electrodes and transparent polyimide-based nanocomposite substrates. IEEE Trans Electron Devices, 2011, 58(5): 1440

[180]

Ok K C, Oh S, Jeong H J, et al. Effect of alumina buffers on the stability of top-gate amorphous InGaZnO thin-film transistors on flexible substrates. IEEE Electron Device Lett, 2015, 36(9): 917

[181]

Park C B, Na H, Yoo S S, et al. Electrical characteristics of a-IGZO transistors along the in-plane axis during outward bending. Microelectron Reliab, 2016, 59: 37

[182]

Park S, Kim K H, Jo J W, et al. In-depth studies on rapid photochemical activation of various sol-gel metal oxide films for flexible transparent electronics. Adv Funct Mater, 2015, 25(19): 2807

[183]

Mativenga M, Geng D, Kim B, et al. Fully transparent and rollable electronics. ACS Appl Mater Inter, 2015, 7(3): 1578

[184]

Lin C Y, Chien C W, Wu C C, et al. Effects of mechanical strains on the characteristics of top-gate staggered a-IGZO thin-film transistors fabricated on polyimide-based nanocomposite substrates. IEEE Trans Electron Devices, 2012, 59(7): 1956

[185]

Li X, Billah M M, Mativenga M, et al. Highly robust flexible oxide thin-film transistors by bulk accumulation. IEEE Electron Device Lett, 2015, 36(8): 811

[186]

Münzenrieder N, Salvatore G A, Petti L, et al. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation. Appl Phys Lett, 2014, 105(26): 263504

[187]

Münzenrieder N, Cherenack K H, Troster G. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans Electron Devices, 2011, 58(7): 2041

[188]

Lee S J, Ko J, Park J H, et al. Effective work function modulation of SWCNT–AZO NP hybrid electrodes in fully solution-processed flexible metal-oxide thin film transistors. J Mater Chem C, 2015, 3(31): 8121

[189]

Kim D, Hwang B, Park J, et al. Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors. Org Electron, 2012, 13(11): 2401

[190]

Münzenrieder N, Petti L, Zysset C, et al. Flexible a-IGZO TFT amplifier fabricated on a free standing polyimide foil operating at 1.2 MHz while bent to a radius of 5 mm. IEEE International Electron Devices Meeting (IEDM), 2012: 5.2. 1

[191]

Ji L W, Wu C Z, Fang T H, et al. Characteristics of flexible thin-film transistors with ZnO channels. IEEE Sens J, 2013, 13(12): 4940

[192]

Münzenrieder N, Zysset C, Petti L, et al. Flexible double gate a-IGZO TFT fabricated on free standing polyimide foil. Solid-State Electron, 2013, 84: 198

[193]

Lim W, Douglas E, Kim S H, et al. Low-temperature-fabricated InGaZnO4 thin film transistors on polyimide clean-room tape. Appl Phys Lett, 2008, 93(25): 252103

[194]

Bak J Y, Yoon S M, Yang S, et al. Effect of In–Ga–Zn–O active layer channel composition on process temperature for flexible oxide thin-film transistors. J Vac Sci Technol B, 2012, 30(4): 041208

[195]

Wu S C, Feng H T, Yu M J, et al. Flexible three-bit-per-cell resistive switching memory using a-IGZO TFTs. IEEE Electron Device Lett, 2013, 34(10): 1265

[196]

Hwang Y H, Seo J S, Yun J M, et al. An ‘aqueous route’ for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates. NPG Asia Mater, 2013, 5(4): e45

[197]

Sharma B K, Jang B, Lee J E, et al. Load-controlled roll transfer of oxide transistors for stretchable electronics. Adv Funct Mater, 2013, 23(16): 2024

[198]

Eun K, Hwang W, Sharma B, et al. Mechanical flexibility of zinc oxide thin-film transistors prepared by transfer printing method. Mod Phys Lett B, 2012, 26(12): 1250077

[199]

Park M J, Yun D J, Ryu M K, et al. Improvements in the bending performance and bias stability of flexible InGaZnO thin film transistors and optimum barrier structures for plastic poly (ethylene naphthalate) substrates. J Mater Chem C, 2015, 3(18): 4779

[200]

Li H U, Jackson T N. Oxide semiconductor thin film transistors on thin solution-cast flexible substrates. IEEE Electron Device Lett, 2015, 36(1): 35

[201]

Salvatore G A, Münzenrieder N, Kinkeldei T, et al. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat Commun, 2014, 5: 2982

[202]

Petti L, Münzenrieder N, Salvatore G A, et al. Flexible electronics based on oxide semiconductors. IEEE 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014: 323

[203]

Yuan H, Wang H, Cui Y. Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling. ACC Chem Res, 2015, 48(1): 81

[204]

Fujimoto T, Awaga K. Electric-double-layer field-effect transistors with ionic liquids. Phys Chem Chem Phys, 2013, 15(23): 8983

[205]

Du H, Lin X, Xu Z, et al. Electric double-layer transistors: a review of recent progress. J Mater Sci, 2015, 50(17): 5641

[206]

Ono S, Seki S, Hirahara R, et al. High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl Phys Lett, 2008, 92(10): 93

[207]

Zhou J, Wu G, Guo L, et al. Flexible transparent junctionless TFTs with oxygen-tuned indium–zinc–oxide channels. IEEE Electron Device Lett, 2013, 34(7): 888

[208]

Hong K, Kim S H, Lee K H, et al. Printed, sub-2 V ZnO electrolyte gated transistors and inverters on plastic. Adv Mater, 2013, 25(25): 3413

[209]

Liu Y H, Zhu L Q, Feng P, et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater, 2015, 27(37): 5599

[210]

Martins R, Ferreira I, Fortunato E. Electronics with and on paper. Phys Status Solidi-R, 2011, 5(9): 332

[211]

Lim W, Douglas E, Norton D, et al. Low-voltage indium gallium zinc oxide thin film transistors on paper substrates. Appl Phys Lett, 2010, 96(5): 053510

[212]

Wu G, Wan X, Yang Y, et al. Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates. J Phys D: Appl Phys, 2014, 47(49): 495101

[213]

Dou W, Zhu L, Jiang J, et al. Flexible dual-gate oxide TFTs gated by chitosan film on paper substrates. IEEE Electron Device Lett, 2013, 34(2): 259

[214]

Jiang J, Sun J, Dou W, et al. Junctionless flexible oxide-based thin-film transistors on paper substrates. IEEE Electron Device Lett, 2012, 33(1): 65

[215]

Jiang J, Sun J, Dou W, et al. In-plane-gate indium–tin–oxide thin-film transistors self-assembled on paper substrates. Appl Phys Lett, 2011, 98(11): 113507

[216]

Lim W, Douglas E, Kim S H, et al. High mobility InGaZnO4 thin-film transistors on paper. Appl Phys Lett, 2009, 94(7): 072103

[217]

Jiang S, Feng P, Yang Y, et al. Flexible low-voltage In–Zn–O homojunction TFTs with beeswax gate dielectric on paper substrates. IEEE Electron Device Lett, 2016, 37(3): 287

[218]

Lu A, Dai M, Sun J, et al. Flexible low-voltage electric-double-layer TFTs self-assembled on paper substrates. IEEE Electron Device Lett, 2011, 32(4): 518

[219]

Thiemann S, Sachnov S J, Pettersson F, et al. Cellulose-based ionogels for paper electronics. Adv Funct Mater, 2014, 24(5): 625

[220]

Pereira L, Gaspar D, Guerin D, et al. The influence of fibril composition and dimension on the performance of paper gated oxide transistors. Nanotechnology, 2014, 25(9): 094007

[221]

Martins R, Barquinha P, Pereira L, et al. Write-erase and read paper memory transistor. Appl Phys Lett, 2008, 93(20): 203501

[222]

Gaspar D, Fernandes S, De Oliveira A, et al. Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology, 2014, 25(9): 094008

[223]

Wu G D, Zhang J, Wan X. Junctionless coplanar-gate oxide-based thin-film transistors gated by Al2O3 proton conducting films on paper substrates. Chin Phys Lett, 2014, 31(10): 108505

[224]

Sun J, Jiang J, Lu A, et al. One-volt oxide thin-film transistors on paper substrates gated by SiO2-based solid electrolyte with controllable operation modes. IEEE Trans Electron Devices, 2010, 57(9): 2258

[225]

Choi N, Khan S A, Ma X, et al. Amorphous oxide thin film transistors with methyl siloxane based gate dielectric on paper substrate. Electrochem Solid-State Lett, 2011, 14(6): H247

[226]

Fortunato E, Correia N, Barquinha P, et al. High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Device Lett, 2008, 29(9): 988

[227]

Martins R, Barquinha P, Pereira L, et al. Selective floating gate non-volatile paper memory transistor. Phys Status Solidi R, 2009, 3(9): 308

[228]

Mahmoudabadi F, Ma X, Hatalis M K, et al. Amorphous IGZO TFTs and circuits on conformable aluminum substrates. Solid-State Electron, 2014, 101: 57

[229]

Park I J, Jeong C Y, Cho I T, et al. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors. Semicond Sci Technol, 2012, 27(10): 105019

[230]

Plichta A, Weber A, Habeck A. Ultra thin flexible glass substrates. Symposium on Flexible Electronics-Materials and Device Technology held at the 2003 MRS Spring Meeting, 2003: 273

[231]

Lee G J, Kim J, Kim J H, et al. High performance, transparent a-IGZO TFTs on a flexible thin glass substrate. Semicond Sci Technol, 2014, 29(3): 035003

[232]

Yamauchi N, Itoh T, Noguchi T. Low energy-cost TFT technologies using ultra-thin flexible glass substrate. IEEE 19th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2012: 213

[233]

Dai M K, Lian J T, Lin T Y, et al. High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO. J Mater Chem C, 2013, 1(33): 5064

[234]

Münzenrieder N, Voser P, Petti L, et al. Flexible self-aligned double-gate IGZO TFT. IEEE Electron Device Lett, 2014, 35(1): 69

[235]

Li Y, Liu Y, Yun F, et al. Self-assembled transparent a-IGZO based TFTs for flexible sensing applications. International Symposium on Photonics and Optoelectronics, 2014: 92332A

[236]

Smith J T, Couture A J, Stowell J R, et al. Optically seamless flexible electronic tiles for ultra large-area digital X-ray imaging. IEEE Trans Compon Packag Manuf Technol, 2014, 4(6): 1109

[237]

Gelinck G H, Kumar A, Van Der Steen J L P, et al. X-ray detector-on-plastic with high sensitivity using low cost, solution-processed organic photodiodes. IEEE Trans Electron Devices, 2016, 63(1): 197

[238]

Honda W, Harada S, Ishida S, et al. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv Mater, 2015, 27(32): 4674

[239]

Kim J, Kim J, Jo S, et al. Ultrahigh detective heterogeneous photosensor arrays with in-pixel signal boosting capability for large-area and skin-compatible electronics. Adv Mater, 2016, 28(16): 3078

[240]

Van Breemen A, Kam B, Cobb B, et al. Ferroelectric transistor memory arrays on flexible foils. Org Electron, 2013, 14(8): 1966

[241]

Myny K, Steudel S. Flexible thin-film nfc transponder chip exhibiting data rates compatible to ISO NFC standards using self-aligned metal-oxide tfts. IEEE International Solid-State Circuits Conference (ISSCC), 2016: 298

[242]

Zhang L R, Huang C Y, Li G M, et al. A low-power high-stability flexible scan driver integrated by IZO TFTs. IEEE Trans Electron Devices, 2016, 63(4): 1779

[243]

Meister T, Ishida K, Shabanpour R, et al. 20.3 dB 0.39 mW AM detector with single-transistor active inductor in bendable a-IGZO TFT. IEEE 46th European Solid-State Device Research Conference (ESSDERC), 2016: 71

[244]

Huang T C, Fukuda K, Lo C M, et al. Pseudo-CMOS: a design style for low-cost and robust flexible electronics. IEEE Trans Electron Devices, 2011, 58(1): 141

[245]

Münzenrieder N, Zysset C, Kinkeldei T, et al. Design rules for IGZO logic gates on plastic foil enabling operation at bending radii of 3.5 mm. IEEE Trans Electron Devices, 2012, 59(8): 2153

[246]

Kim Y H, Heo J S, Kim T H, et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature, 2012, 489(7414): 128

[247]

Zysset C, Münzenrieder N, Petti L, et al. IGZO TFT-based all-enhancement operational amplifier bent to a radius of 5 mm. IEEE Electron Device Lett, 2013, 34(11): 1394

[248]

Perumal C, Ishida K, Shabanpour R, et al. A Compact a-IGZO TFT model based on MOSFET SPICE Level=3 template for analog/RF circuit designs. IEEE Electron Device Lett, 2013, 34(11): 1391

[249]

Nomura K, Aoki T, Nakamura K, et al. Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer hybrid complementary inverter using n-type a-In–Ga–Zn–O and p-type poly-(9, 9-dioctylfluorene-co-bithiophene) thin-film transistors. Appl Phys Lett, 2010, 96(26): 263509

[250]

Rockelé M, Pham D V, Steiger J, et al. Solution-processed and low-temperature metal oxide n-channel thin-film transistors and low-voltage complementary circuitry on large-area flexible polyimide foil. J Soc Inf Display, 2012, 20(9): 499

[251]

Oh M S, Choi W, Lee K, et al. Flexible high gain complementary inverter using n-ZnO and p-pentacene channels on polyethersulfone substrate. Appl Phys Lett, 2008, 93(3): 033510

[252]

Honda W, Arie T, Akita S, et al. Mechanically flexible and high-performance CMOS logic circuits. Sci Rep, 2015, 5: 15099

[253]

Nag M, Chasin A, Rockele M, et al. Single-source dual-layer amorphous IGZO thin-film transistors for display and circuit applications. J Soc Inf Display, 2013, 21(3): 129

[254]

Yamamoto T, Takei T, Nakajima Y, et al. Simple transfer technology for fabrication of TFT backplane for flexible displays. IEEE T Ind Appl, 2012, 48(5): 1662

[255]

Oh T. Tunneling phenomenon of amorphous indium-gallium-zinc-oxide thin film transistors for flexible display. Electron Mater Lett, 2015, 11(5): 853

[256]

Kim H, Kim Y J. Influence of external forces on the mechanical characteristics of the a-IGZO and graphene based flexible display. Global Conference on Polymer and Composite Materials (PCM), 2014: 012022

[257]

Genoe J, Obata K, Ameys M, et al. Integrated line driver for digital pulse-width modulation driven AMOLED displays on flex. IEEE J Soild-State Circuits, 2015, 50(1): 282

[258]

Zysset C, Münzenrieder N, Kinkeldei T, et al. Woven active-matrix display. IEEE Trans Electron Devices, 2012, 59(3): 721

[1]

Jiazhen Sheng, Ki-Lim Han, TaeHyun Hong, Wan-Ho Choi, Jin-Seong Park. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes. J. Semicond., 2018, 39(1): 011008. doi: 10.1088/1674-4926/39/1/011008

[2]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[3]

Jie Wu, Junfei Shi, Chengyuan Dong, Zhongfei Zou, Yuting Chen, Daxiang Zhou, Zhe Hu, Runze Zhan. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors. J. Semicond., 2014, 35(1): 014003. doi: 10.1088/1674-4926/35/1/014003

[4]

Xian Huang. Materials and applications of bioresorbable electronics. J. Semicond., 2018, 39(1): 011003. doi: 10.1088/1674-4926/39/1/011003

[5]

Zhefeng Li, Xianye Luo. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors. J. Semicond., 2014, 35(10): 104004. doi: 10.1088/1674-4926/35/10/104004

[6]

Paragjyoti Gogoi, Rajib Saikia, Sanjib Changmai. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique. J. Semicond., 2015, 36(4): 044002. doi: 10.1088/1674-4926/36/4/044002

[7]

Tao Cheng, Youwei Wu, Xiaoqin Shen, Wenyong Lai, Wei Huang. Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality. J. Semicond., 2018, 39(1): 015001. doi: 10.1088/1674-4926/39/1/015001

[8]

Hong Zhu, Yang Shen, Yanqing Li, Jianxin Tang. Recent advances in flexible and wearable organic optoelectronic devices. J. Semicond., 2018, 39(1): 011011. doi: 10.1088/1674-4926/39/1/011011

[9]

Zhu Xiaming, Wu Huizhen, Wang Shuangjiang, Zhang Yingying, Cai Chunfeng, Si Jianxiao, Yuan Zijian, Du Xiaoyang, Dong Shurong. Optical and electrical properties of N-doped ZnO and fabrication of thin-film transistors. J. Semicond., 2009, 30(3): 033001. doi: 10.1088/1674-4926/30/3/033001

[10]

Lin Liu, Yingyi Wang, Guanghui Li, Sujie Qin, Ting Zhang. Ultrathin free-standing graphene oxide film based flexible touchless sensor. J. Semicond., 2018, 39(1): 013002. doi: 10.1088/1674-4926/39/1/013002

[11]

Shuxin Tan, Takashi Egawa. Influence of growth conditions of oxide on electrical properties of AlGaN/GaN metal–insulator–semiconductor transistors. J. Semicond., 2019, 40(4): 042801. doi: 10.1088/1674-4926/40/4/042801

[12]

Lan Bo, Guo Qi, Sun Jing, Cui Jiangwei, Li Maoshun, Chen Rui, Fei Wuxiong, Zhao Yun. Dose-rate effects of p-channel metal oxide semiconductor field-effect transistors at various biasing conditions. J. Semicond., 2010, 31(5): 054004. doi: 10.1088/1674-4926/31/5/054004

[13]

Ma Junwei, Ran Feng, Xu Meihua, Ji Huijie. Influence of substrate temperature on the performance of zinc oxide thin film transistor. J. Semicond., 2011, 32(4): 044002. doi: 10.1088/1674-4926/32/4/044002

[14]

Ping Sheng, Baomin Wang, Runwei Li. Flexible magnetic thin films and devices. J. Semicond., 2018, 39(1): 011006. doi: 10.1088/1674-4926/39/1/011006

[15]

Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701

[16]

Yu Bo, Wang Yuan, Jia Song, Zhang Ganggang. Novel mixed-voltage I/O buffer with thin-oxide CMOS transistors. J. Semicond., 2009, 30(7): 075001. doi: 10.1088/1674-4926/30/7/075001

[17]

Poornima Mittal, Y.S. Negi, R.K. Singh. Impact of source and drain contact thickness on the performance of organic thin film transistors. J. Semicond., 2014, 35(12): 124002. doi: 10.1088/1674-4926/35/12/124002

[18]

Dai Zhenqing, Zhang Liying, Chen Changxin, Qian Bingjian, Xu Dong, Chen Haiyan, Wei Liangming, Zhang Yafei. Fabrication of SiC nanowire thin-film transistors using dielectrophoresis. J. Semicond., 2012, 33(11): 114001. doi: 10.1088/1674-4926/33/11/114001

[19]

Wu Huizhen, Liang Jun, Lao Yanfeng, Yu Ping, Xu Tianning, Qiu Dongjiang. Electrical Properties of Wide Bandgap ZnMgO and Fabricationof Transparent Thin Film Transistors. J. Semicond., 2006, 27(S1): 218.

[20]

Zhang Xin’an, Zhang Jingwen, Yang Xiaodong, Lou Hui, , Liu Zhenling, Zhang Weifeng. Fabrication of ZnO Thin-Film Transistors by L-MBE. J. Semicond., 2006, 27(6): 1051.

Search

Advanced Search >>

GET CITATION

Y L He, X Y Wang, Y Gao, Y H Hou, Q Wan, Oxide-based thin film transistors for flexible electronics[J]. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005.

Export: BibTex EndNote

Article Metrics

Article views: 1644 Times PDF downloads: 99 Times Cited by: 0 Times

History

Manuscript received: 05 August 2017 Manuscript revised: 29 September 2017 Online: Accepted Manuscript: 27 December 2017 Published: 01 January 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误