REVIEWS

Recent advances of heterogeneously integrated III–V laser on Si

Xuhan Guo, An He and Yikai Su

+ Author Affiliations

 Corresponding author: Xuhan Guo, Email: guoxuhan@sjtu.edu.cn

PDF

Turn off MathJax

Abstract: Due to the indirect bandgap nature, the widely used silicon CMOS is very inefficient at light emitting. The integration of silicon lasers is deemed as the ‘Mount Everest’ for the full take-up of Si photonics. The major challenge has been the materials dissimilarity caused impaired device performance. We present a brief overview of the recent advances of integrated III–V laser on Si. We will then focus on the heterogeneous direct/adhesive bonding enabling methods and associated light coupling structures. A selected review of recent representative novel heterogeneously integrated Si lasers for emerging applications like spectroscopy, sensing, metrology and microwave photonics will be presented, including DFB laser array, ultra-dense comb lasers and nanolasers. Finally, the challenges and opportunities of heterogeneous integration approach are discussed.

Key words: heterogeneous integrationlaserssilicon photonicsintegrated circuits



[1]
Doerr C. Silicon photonic integration in telecommunications. Front Phys Rev, 2015, 3 doi: 10.3389/fphy.2015.00037
[2]
Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12, 1678 doi: 10.1109/JSTQE.2006.883151
[3]
Heck M J R, Bauters J F, Davenport M L, et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev, 2014, 8, 667 doi: 10.1002/lpor.201300183
[4]
Graham T R, Goran Z M, Y. Frederic Y G, et al Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 2014, 3, 229 doi: 10.1515/nanoph-2013-0016
[5]
Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photon, 2010, 4, 518 doi: 10.1038/nphoton.2010.179
[6]
Casalino M, Coppola G, De La Rue R M, et al. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev, 2016, 10, 895 doi: 10.1002/lpor.201600065
[7]
David T, Aaron Z, John E B, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003 doi: 10.1088/2040-8978/18/7/073003
[8]
Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photon, 2011, 5, 416 doi: 10.1038/nphoton.2011.120
[9]
Zhu S, Shi B, Li Q, et al. Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si. Opt Express, 2018, 26, 14514 doi: 10.1364/OE.26.014514
[10]
Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104, 041104 doi: 10.1063/1.4863223
[11]
Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33, 123002 doi: 10.1088/1361-6641/aae6a5
[12]
Hatori N, Shimizu T, Okano M, et al. A hybrid integrated light source on a silicon platform using a trident spot-size converter. J Lightwave Technol, 2014, 32, 1329 doi: 10.1109/JLT.2014.2304305
[13]
Davenport M L, Tran M A, Komljenovic T, et al. Heterogeneous integration of III–V lasers on Si by bonding. Semiconductors and Semimetals, 2018, 99, 139 doi: 10.1016/bs.semsem.2018.07.001
[14]
Komljenovic T, Davenport M, Hulme J, et al. Heterogeneous silicon photonic integrated circuits. J Lightwave Technol, 2016, 34, 20 doi: 10.1109/JLT.2015.2465382
[15]
Liang D, Roelkens G, Baets R, et al. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3, 1782 doi: 10.3390/ma3031782
[16]
Liang D, Fiorentino M, Srinivasan S, et al. Low threshold electrically-pumped hybrid silicon microring lasers. IEEE J Sel Top Quantum Electron, 2011, 17, 1528 doi: 10.1109/JSTQE.2010.2103552
[17]
Keyvaninia S, Muneeb M, Stanković S, et al. Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 2013, 3, 35 doi: 10.1364/OME.3.000035
[18]
Van Campenhout J, Rojo-Romeo P, Regreny P, et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt Express, 2007, 15, 6744 doi: 10.1364/OE.15.006744
[19]
Koninck Y D, Roelkens G, Baets R. Design of a hybrid III–V-on-silicon microlaser with resonant cavity mirrors. IEEE Photonics J, 2013, 5, 2700413 doi: 10.1109/JPHOT.2013.2259586
[20]
Ben Bakir B, Descos A, Olivier N, et al. Electrically driven hybrid Si/III–V Fabry-Pérot lasers based on adiabatic mode transformers. Opt Express, 2011, 19, 10317 doi: 10.1364/OE.19.010317
[21]
Keyvaninia S, Roelkens G, Van Thourhout D, et al. Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser. Opt Express, 2013, 21, 3784 doi: 10.1364/OE.21.003784
[22]
Keyvaninia S, Verstuyft S, Van Landschoot L, et al. Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt Lett, 2013, 38, 5434 doi: 10.1364/OL.38.005434
[23]
Sun X, Liu H C, Yariv A. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Opt Lett, 2009, 34, 280 doi: 10.1364/OL.34.000280
[24]
Sun X, Yariv A. Engineering supermode silicon/III–V hybrid waveguides for laser oscillation. J Opt Soc Am B, 2008, 25, 923 doi: 10.1364/JOSAB.25.000923
[25]
Yariv A, Sun X. Supermode Si/III–V hybrid lasers, optical amplifiers and modulators: A proposal and analysis. Opt Express, 2007, 15, 9147 doi: 10.1364/OE.15.009147
[26]
Kurczveil G, Heck M J R, Peters J D, et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quantum Electron, 2011, 17, 1521 doi: 10.1109/JSTQE.2011.2112639
[27]
Uvin S, Kumari S, De Groote A, et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Express, 2018, 26, 18302 doi: 10.1364/OE.26.018302
[28]
Bowers J E, Huang D, Jung D, et al. Realities and challenges of III–V/Si integration technologies. Optical Fiber Communication Conference (OFC), 2019, Tu3E.1 doi: 10.1364/OFC.2019.Tu3E.1
[29]
He L S A, Wang H W, Guo X H, et al. Ultra-compact coupling structures for heterogeneously integrated silicon lasers. arXiv: 1906.12027 [physics.optics], 2019
[30]
Ohana D, Levy U. Mode conversion based on dielectric metamaterial in silicon. Opt Express, 2014, 22, 27617 doi: 10.1364/OE.22.027617
[31]
Wang Z, Abbasi A, Dave E, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11, 1700063 doi: 10.1002/lpor.201700063
[32]
Roelkens G, Liu L, Liang D, et al. III–V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev, 2010, 4, 751 doi: 10.1002/lpor.200900033
[33]
Fang A W, Lively E, Kuo Y H, et al. A distributed feedback silicon evanescent laser. Opt Express, 2008, 16, 4413 doi: 10.1364/OE.16.004413
[34]
Abbasi A, Keyvaninia S, Verbist J, et al. 43 Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser. J Lightwave Technol, 2017, 35, 1235 doi: 10.1109/JLT.2016.2638619
[35]
Abbasi A, Moeneclaey B, Verbist J, et al. Direct and electroabsorption modulation of a III–V-on-silicon DFB laser at 56 Gb/s. IEEE J Sel Top Quantum Electron, 2017, 23, 1 doi: 10.1109/JSTQE.2017.2708606
[36]
Zou Y, Chakravarty S, Chung C J, et al. Mid-infrared silicon photonic waveguides and devices. Photonics Res, 2018, 6 doi: 10.1364/PRJ.6.000254
[37]
Wang R, Sprengel S, Malik A, et al. Heterogeneously integrated IIIV-on-silicon 2.3x μm distributed feedback lasers based on a typeII active region. Appl Phys Lett, 2016, 109, 221111 doi: 10.1063/1.4971350
[38]
Wang R, Sprengel S, Boehm G, et al. Broad wavelength coverage 2.3 μm III–V-on-silicon DFB laser array. Optica, 2017, 4, 972 doi: 10.1364/OPTICA.4.000972
[39]
Delfyett P J, Hartman D H, Ahmad S Z. Optical clock distribution using a mode-locked semiconductor laser diode system. J Lightwave Technol, 1991, 9, 1646 doi: 10.1109/50.108709
[40]
Picqué N, Hänsch T W. Frequency comb spectroscopy. Nat Photonics, 2019, 13, 146 doi: 10.1038/s41566-018-0347-5
[41]
Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat Photonics, 2009, 3, 99 doi: 10.1038/nphoton.2008.293
[42]
Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs. Nat Photonics, 2019, 13, 158 doi: 10.1038/s41566-019-0358-x
[43]
Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81 doi: 10.1038/s41586-018-0065-7
[44]
Wang Z, Van Gasse K, Moskalenko V, et al. A III–V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6, e16260 doi: 10.1038/lsa.2016.260
[45]
Dong G, Deng W, Hou J, et al. Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics. Opt Express, 2018, 26, 25630 doi: 10.1364/OE.26.025630
[46]
Altug H, Englund D, Vučković J. Ultrafast photonic crystal nanocavity laser. Nat Phys, 2006, 2, 484 doi: 10.1038/nphys343
[47]
Nozaki K, Tanabe T, Shinya A, et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics, 2010, 4, 477 doi: 10.1038/nphoton.2010.89
[48]
Matsuo S, Shinya A, Kakitsuka T, et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat Photonics, 2010, 4, 648 doi: 10.1038/nphoton.2010.177
[49]
Monat C, Seassal C, Letartre X, et al. InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm. Electron Lett, 2001, 37, 764 doi: 10.1049/el:20010543
[50]
Vecchi G, Raineri F, Sagnes I, et al. Photonic-crystal surface-emitting laser near 1.55 μm on gold-coated silicon wafer. Electron Lett, 2007, 43, 39 doi: 10.1049/el:20072652
[51]
Tanabe K, Nomura M, Guimard D, et al. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate. Opt Express, 2009, 17, 7036 doi: 10.1364/OE.17.007036
[52]
Karle T J, Halioua Y, Raineri F, et al. Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides. J Appl Phys, 2010, 107, 063103 doi: 10.1063/1.3319667
[53]
Takeda K, Sato T, Shinya A, et al. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat Photonics, 2013, 7, 569 doi: 10.1038/nphoton.2013.110
[54]
Crosnier G, Sanchez D, Bazin A, et al. High Q factor InP photonic crystal nanobeam cavities on silicon wire waveguides. Opt Lett, 2016, 41, 579 doi: 10.1364/OL.41.000579
[55]
Atlasov K A, Felici M, Karlsson K F, et al. 1D photonic band formation and photon localization in finite-size photonic-crystal waveguides. Opt Express, 2010, 18, 117 doi: 10.1364/OE.18.000117
[56]
Seo M K, Jeong K Y, Yang J K, et al. Low threshold current single-cell hexapole mode photonic crystal laser. Appl Phys Lett, 2007, 90, 171122 doi: 10.1063/1.2734391
[57]
Crosnier G, Sanchez D, Bouchoule S, et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nat Photon, 2017, 11, 297 doi: 10.1038/nphoton.2017.56
[58]
Spuesens T, Mandorlo F, Rojo-Romeo P, et al. Compact integration of optical sources and detectors on soi for optical interconnects fabricated in a 200 mm CMOS pilot line. J Lightwave Technol, 2012, 30, 1764 doi: 10.1109/JLT.2012.2189871
[59]
Jeong K Y, No Y S, Hwang Y, et al. Electrically driven nanobeam laser. Nat Commun, 2013, 4, 2822 doi: 10.1038/ncomms3822
[60]
Kobayashi W, Ito T, Yamanaka T, et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J Sel Top Quantum Electron, 2013, 19, 1500908 doi: 10.1109/JSTQE.2013.2238509
[61]
Kim H, Lee W J, Farrell A C, et al. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano Lett, 2017, 17, 5244 doi: 10.1021/acs.nanolett.7b01360
[62]
Intel®. (2016). Intel® Silicon Photonics 100G PSM4 QSFP28 Optical Transceiver. Available: https://ark.intel.com/content/www/us/en/ark/products/96610/intel-silicon-photonics-100g-psm4-qsfp28-optical-transceiver.html
Fig. 1.  (Color online) Schematic O2 plasma-assisted and SiO2 covalent wafer bonding process flow. Reproduced from Ref. [15].

Fig. 2.  (Color online) Schematic process flow for DVS-BCB adhesive bonding, referred to as “cold bonding”. Reproduced from Ref. [17].

Fig. 3.  (Color online) (a) Side view of the proposed hybrid laser structure and the evolution of the lasing supermode power transfer between the upper amplifying III–V section and adiabatic tapered lower silicon waveguide. (b) Refractive index profile of the coupled system. (c) Even supermode of the coupled system (at the phase-matching point). (d) Odd supermode of the coupled system (at the phase-matching point). Reproduced from Refs. [23, 24].

Fig. 4.  (Color online) (a) Three-dimensional view of the coupling structure in the gain section with representative mode profiles in two cross-sections. (b) Coupling power transmission and reflection. Reproduced from Ref. [21].

Fig. 5.  (Color online) Schematics of heterogeneous integration of Si waveguides and III–V laser sources through (a)–(d) taper coupler, (f)–(i) slot coupler and (k)–(n) bridge-SWG coupler. (e), (j) and (o) Mode transformation from Si taper waveguide, Si slot waveguide, Si bridge-SWG waveguide to III–V lasers, the coupling ranges are from 0 to 4 μm, 0 to 5.5 μm, 0 to 5 μm, respectively. Reproduced from Ref. [29].

Fig. 6.  (Color online) (a, b) Schematic of the III–V-on-silicon DFB laser array and SEM image of the longitudinal cross section of the gain section. (c) Normalized lasing spectra of four 700 μm long DFB lasers with a grating pitch ranging from 343 to 357 nm. (d, e) Evolution of the lasing spectra as a function of the bias current (20 mA step) for four DFB lasers with different gain section widths and silicon grating pitches of 353 nm (left) and 357 nm (right). Reproduced from Ref. [38].

Fig. 7.  (Color online) (a–c) Illustration and microscope image of the anti-colliding III–V-on-Si MLL design. (d) Optical comb generated by the passively locked 1 GHz MLL with details of evenly spaced optical modes in the comb. (e) Beat between the optical comb and the tunable laser at a wavelength of 1600 nm. (f) Measured optical linewidth of the MLL indicates an optical linewidth below 250 kHz (delayed self-heterodyne method). The black dots are the measured data, and the red curve is the corresponding Lorentzian fitting. Reproduced from Ref. [44].

Fig. 8.  (Color online) InP PhC nanolaser bonded on Si . (a) SEM image of the fabricated hybrid nanolaser after metallic contact deposition. (b) Optical microscope image of the structure in its final stage. (c) Emission wavelength and spectral linewidth against injection current at room temperature; inset: lasing spectrum at an injection current of 150 μA. (d) L–I–V measurements of the nanolaser at room temperature. Reproduced from Ref. [57].

Table 1.   Overall comparison between different III–V lasers integration strategies on silicon.

TechnologyIntegration densityCost/CMOS compatibilityComplexity/Maturity
Monolithic integrationPotentially highPotentially low/NoEarly R&D
Hybrid integrationLowHigh/NoLow/High
Direct bondingMediumMedium/NoHigh/Medium
Adhesive bondingMediumMedium/NoLow/Medium
DownLoad: CSV

Table 2.   General characteristics of direct bonding and adhesive bonding.

Bonding characteristicsDirect bondingAdhesive bonding
Surface roughness toleranceLowHigh
Bonding strengthHighHigh
Bonding induced strainLowLow
Integration density and uniformityHighMedium high
ComplexityMediumLow
StabilityHighHigh
ScalabilityHighHigh
DownLoad: CSV
[1]
Doerr C. Silicon photonic integration in telecommunications. Front Phys Rev, 2015, 3 doi: 10.3389/fphy.2015.00037
[2]
Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12, 1678 doi: 10.1109/JSTQE.2006.883151
[3]
Heck M J R, Bauters J F, Davenport M L, et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev, 2014, 8, 667 doi: 10.1002/lpor.201300183
[4]
Graham T R, Goran Z M, Y. Frederic Y G, et al Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 2014, 3, 229 doi: 10.1515/nanoph-2013-0016
[5]
Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photon, 2010, 4, 518 doi: 10.1038/nphoton.2010.179
[6]
Casalino M, Coppola G, De La Rue R M, et al. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev, 2016, 10, 895 doi: 10.1002/lpor.201600065
[7]
David T, Aaron Z, John E B, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003 doi: 10.1088/2040-8978/18/7/073003
[8]
Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photon, 2011, 5, 416 doi: 10.1038/nphoton.2011.120
[9]
Zhu S, Shi B, Li Q, et al. Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si. Opt Express, 2018, 26, 14514 doi: 10.1364/OE.26.014514
[10]
Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104, 041104 doi: 10.1063/1.4863223
[11]
Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33, 123002 doi: 10.1088/1361-6641/aae6a5
[12]
Hatori N, Shimizu T, Okano M, et al. A hybrid integrated light source on a silicon platform using a trident spot-size converter. J Lightwave Technol, 2014, 32, 1329 doi: 10.1109/JLT.2014.2304305
[13]
Davenport M L, Tran M A, Komljenovic T, et al. Heterogeneous integration of III–V lasers on Si by bonding. Semiconductors and Semimetals, 2018, 99, 139 doi: 10.1016/bs.semsem.2018.07.001
[14]
Komljenovic T, Davenport M, Hulme J, et al. Heterogeneous silicon photonic integrated circuits. J Lightwave Technol, 2016, 34, 20 doi: 10.1109/JLT.2015.2465382
[15]
Liang D, Roelkens G, Baets R, et al. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3, 1782 doi: 10.3390/ma3031782
[16]
Liang D, Fiorentino M, Srinivasan S, et al. Low threshold electrically-pumped hybrid silicon microring lasers. IEEE J Sel Top Quantum Electron, 2011, 17, 1528 doi: 10.1109/JSTQE.2010.2103552
[17]
Keyvaninia S, Muneeb M, Stanković S, et al. Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 2013, 3, 35 doi: 10.1364/OME.3.000035
[18]
Van Campenhout J, Rojo-Romeo P, Regreny P, et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt Express, 2007, 15, 6744 doi: 10.1364/OE.15.006744
[19]
Koninck Y D, Roelkens G, Baets R. Design of a hybrid III–V-on-silicon microlaser with resonant cavity mirrors. IEEE Photonics J, 2013, 5, 2700413 doi: 10.1109/JPHOT.2013.2259586
[20]
Ben Bakir B, Descos A, Olivier N, et al. Electrically driven hybrid Si/III–V Fabry-Pérot lasers based on adiabatic mode transformers. Opt Express, 2011, 19, 10317 doi: 10.1364/OE.19.010317
[21]
Keyvaninia S, Roelkens G, Van Thourhout D, et al. Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser. Opt Express, 2013, 21, 3784 doi: 10.1364/OE.21.003784
[22]
Keyvaninia S, Verstuyft S, Van Landschoot L, et al. Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt Lett, 2013, 38, 5434 doi: 10.1364/OL.38.005434
[23]
Sun X, Liu H C, Yariv A. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Opt Lett, 2009, 34, 280 doi: 10.1364/OL.34.000280
[24]
Sun X, Yariv A. Engineering supermode silicon/III–V hybrid waveguides for laser oscillation. J Opt Soc Am B, 2008, 25, 923 doi: 10.1364/JOSAB.25.000923
[25]
Yariv A, Sun X. Supermode Si/III–V hybrid lasers, optical amplifiers and modulators: A proposal and analysis. Opt Express, 2007, 15, 9147 doi: 10.1364/OE.15.009147
[26]
Kurczveil G, Heck M J R, Peters J D, et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quantum Electron, 2011, 17, 1521 doi: 10.1109/JSTQE.2011.2112639
[27]
Uvin S, Kumari S, De Groote A, et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Express, 2018, 26, 18302 doi: 10.1364/OE.26.018302
[28]
Bowers J E, Huang D, Jung D, et al. Realities and challenges of III–V/Si integration technologies. Optical Fiber Communication Conference (OFC), 2019, Tu3E.1 doi: 10.1364/OFC.2019.Tu3E.1
[29]
He L S A, Wang H W, Guo X H, et al. Ultra-compact coupling structures for heterogeneously integrated silicon lasers. arXiv: 1906.12027 [physics.optics], 2019
[30]
Ohana D, Levy U. Mode conversion based on dielectric metamaterial in silicon. Opt Express, 2014, 22, 27617 doi: 10.1364/OE.22.027617
[31]
Wang Z, Abbasi A, Dave E, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11, 1700063 doi: 10.1002/lpor.201700063
[32]
Roelkens G, Liu L, Liang D, et al. III–V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev, 2010, 4, 751 doi: 10.1002/lpor.200900033
[33]
Fang A W, Lively E, Kuo Y H, et al. A distributed feedback silicon evanescent laser. Opt Express, 2008, 16, 4413 doi: 10.1364/OE.16.004413
[34]
Abbasi A, Keyvaninia S, Verbist J, et al. 43 Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser. J Lightwave Technol, 2017, 35, 1235 doi: 10.1109/JLT.2016.2638619
[35]
Abbasi A, Moeneclaey B, Verbist J, et al. Direct and electroabsorption modulation of a III–V-on-silicon DFB laser at 56 Gb/s. IEEE J Sel Top Quantum Electron, 2017, 23, 1 doi: 10.1109/JSTQE.2017.2708606
[36]
Zou Y, Chakravarty S, Chung C J, et al. Mid-infrared silicon photonic waveguides and devices. Photonics Res, 2018, 6 doi: 10.1364/PRJ.6.000254
[37]
Wang R, Sprengel S, Malik A, et al. Heterogeneously integrated IIIV-on-silicon 2.3x μm distributed feedback lasers based on a typeII active region. Appl Phys Lett, 2016, 109, 221111 doi: 10.1063/1.4971350
[38]
Wang R, Sprengel S, Boehm G, et al. Broad wavelength coverage 2.3 μm III–V-on-silicon DFB laser array. Optica, 2017, 4, 972 doi: 10.1364/OPTICA.4.000972
[39]
Delfyett P J, Hartman D H, Ahmad S Z. Optical clock distribution using a mode-locked semiconductor laser diode system. J Lightwave Technol, 1991, 9, 1646 doi: 10.1109/50.108709
[40]
Picqué N, Hänsch T W. Frequency comb spectroscopy. Nat Photonics, 2019, 13, 146 doi: 10.1038/s41566-018-0347-5
[41]
Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat Photonics, 2009, 3, 99 doi: 10.1038/nphoton.2008.293
[42]
Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs. Nat Photonics, 2019, 13, 158 doi: 10.1038/s41566-019-0358-x
[43]
Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81 doi: 10.1038/s41586-018-0065-7
[44]
Wang Z, Van Gasse K, Moskalenko V, et al. A III–V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6, e16260 doi: 10.1038/lsa.2016.260
[45]
Dong G, Deng W, Hou J, et al. Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics. Opt Express, 2018, 26, 25630 doi: 10.1364/OE.26.025630
[46]
Altug H, Englund D, Vučković J. Ultrafast photonic crystal nanocavity laser. Nat Phys, 2006, 2, 484 doi: 10.1038/nphys343
[47]
Nozaki K, Tanabe T, Shinya A, et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics, 2010, 4, 477 doi: 10.1038/nphoton.2010.89
[48]
Matsuo S, Shinya A, Kakitsuka T, et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat Photonics, 2010, 4, 648 doi: 10.1038/nphoton.2010.177
[49]
Monat C, Seassal C, Letartre X, et al. InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm. Electron Lett, 2001, 37, 764 doi: 10.1049/el:20010543
[50]
Vecchi G, Raineri F, Sagnes I, et al. Photonic-crystal surface-emitting laser near 1.55 μm on gold-coated silicon wafer. Electron Lett, 2007, 43, 39 doi: 10.1049/el:20072652
[51]
Tanabe K, Nomura M, Guimard D, et al. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate. Opt Express, 2009, 17, 7036 doi: 10.1364/OE.17.007036
[52]
Karle T J, Halioua Y, Raineri F, et al. Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides. J Appl Phys, 2010, 107, 063103 doi: 10.1063/1.3319667
[53]
Takeda K, Sato T, Shinya A, et al. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat Photonics, 2013, 7, 569 doi: 10.1038/nphoton.2013.110
[54]
Crosnier G, Sanchez D, Bazin A, et al. High Q factor InP photonic crystal nanobeam cavities on silicon wire waveguides. Opt Lett, 2016, 41, 579 doi: 10.1364/OL.41.000579
[55]
Atlasov K A, Felici M, Karlsson K F, et al. 1D photonic band formation and photon localization in finite-size photonic-crystal waveguides. Opt Express, 2010, 18, 117 doi: 10.1364/OE.18.000117
[56]
Seo M K, Jeong K Y, Yang J K, et al. Low threshold current single-cell hexapole mode photonic crystal laser. Appl Phys Lett, 2007, 90, 171122 doi: 10.1063/1.2734391
[57]
Crosnier G, Sanchez D, Bouchoule S, et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nat Photon, 2017, 11, 297 doi: 10.1038/nphoton.2017.56
[58]
Spuesens T, Mandorlo F, Rojo-Romeo P, et al. Compact integration of optical sources and detectors on soi for optical interconnects fabricated in a 200 mm CMOS pilot line. J Lightwave Technol, 2012, 30, 1764 doi: 10.1109/JLT.2012.2189871
[59]
Jeong K Y, No Y S, Hwang Y, et al. Electrically driven nanobeam laser. Nat Commun, 2013, 4, 2822 doi: 10.1038/ncomms3822
[60]
Kobayashi W, Ito T, Yamanaka T, et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J Sel Top Quantum Electron, 2013, 19, 1500908 doi: 10.1109/JSTQE.2013.2238509
[61]
Kim H, Lee W J, Farrell A C, et al. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano Lett, 2017, 17, 5244 doi: 10.1021/acs.nanolett.7b01360
[62]
Intel®. (2016). Intel® Silicon Photonics 100G PSM4 QSFP28 Optical Transceiver. Available: https://ark.intel.com/content/www/us/en/ark/products/96610/intel-silicon-photonics-100g-psm4-qsfp28-optical-transceiver.html
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4943 Times PDF downloads: 196 Times Cited by: 0 Times

    History

    Received: 18 July 2019 Revised: 19 September 2019 Online: Accepted Manuscript: 25 September 2019Uncorrected proof: 25 September 2019Published: 01 October 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xuhan Guo, An He, Yikai Su. Recent advances of heterogeneously integrated III–V laser on Si[J]. Journal of Semiconductors, 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304 X H Guo, A He, Y K Su, Recent advances of heterogeneously integrated III–V laser on Si[J]. J. Semicond., 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304.Export: BibTex EndNote
      Citation:
      Xuhan Guo, An He, Yikai Su. Recent advances of heterogeneously integrated III–V laser on Si[J]. Journal of Semiconductors, 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304

      X H Guo, A He, Y K Su, Recent advances of heterogeneously integrated III–V laser on Si[J]. J. Semicond., 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304.
      Export: BibTex EndNote

      Recent advances of heterogeneously integrated III–V laser on Si

      doi: 10.1088/1674-4926/40/10/101304
      More Information
      • Corresponding author: Email: guoxuhan@sjtu.edu.cn
      • Received Date: 2019-07-18
      • Revised Date: 2019-09-19
      • Published Date: 2019-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return