J. Semicond. > Volume 38 > Issue 12 > Article Number: 121001

High-speed photodetectors in optical communication system

Zeping Zhao 1, 2, , Jianguo Liu 1, 2, , , Yu Liu 1, 2, and Ninghua Zhu 1, 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems.

Key words: high-speed photodetectorsPIN photodetectorspackagingintegration

Abstract: This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems.

Key words: high-speed photodetectorsPIN photodetectorspackagingintegration



References:

[1]

Kawanishi S. Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing[J]. IEEE J Quantum Electron, 1998, 34(11): 2064. doi: 10.1109/3.726595

[2]

Cai J X, Cai Y, Davidson C, et al. Transmission of 96 × 100 G pre-filtered PDM–RZ–QPSK channels with 300% spectral efficiency over 10 608 km and 400% spectral efficiency over 4,368 km. National Fiber Optic Engineers Conference, 2010: PDPB10

[3]

Qian D, Huang M F, Ip E. High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C-and L-bands[J]. J Lightw Technol, 2012, 30(10): 1540. doi: 10.1109/JLT.2012.2189096

[4]

Kaneda N, Pfau T, Zhang H. Field demonstration of 100-Gb/s real-time coherent optical OFDM detection[J]. The European Conference on Optical Communication, 2014: 1.

[5]

Zhou X, Zhong K, Huo J. 112-Gbit/s PDM-PAM4 transmission over 80-km SMF using digital coherent detection without optical amplifier[J]. International Symposium on Communication Systems, Networks and Digital Signal Processing, 2016: 1.

[6]

Campbell J C. Recent advances in telecommunications avalanche photodiodes[J]. J Lightw Technol, 2007, 25(1): 109. doi: 10.1109/JLT.2006.888481

[7]

You A H, Tan S L, Lim T L. Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes[J]. IEEE International Conference on Semiconductor Electronics, 2008: 259.

[8]

Lei W, Guo F M, Lu W. Based simulation of high gain and low breakdown voltage InGaAs/InP avalanche photodiode[J]. International Conference on Numerical Simulation of Optoelectronic Devices, 2008: 37.

[9]

Kharraz O, Forsyth D. Performance comparisons between PIN and APD photodetectors for use in optical communication systems[J]. Optik - Int J Light Electron Opt, 2013, 124(13): 1493. doi: 10.1016/j.ijleo.2012.04.008

[10]

Mawatari H, Fukuda M, Kato K. Reliability of planar waveguide photodiodes for optical subscriber systems[J]. J Lightw Technol, 1998, 16(12): 2428. doi: 10.1109/50.736629

[11]

Shimizu N, Miyamoto Y, Hirano A. RF saturation mechanism of InP/InGaAs uni-travelling-carrier photodiode[J]. Electron Lett, 2000, 36: 750. doi: 10.1049/el:20000555

[12]

Giboney K, Nagarajan R, Reynolds T. Traveling-wave photodetectors with 172-GHz and 76-GHz bandwidth-efficiency product[J]. IEEE Photon Technol Lett, 1995, 7: 412. doi: 10.1109/68.376819

[13]

Giboney K S, Rodwell M J W, Bowers J E. Traveling-wave photodetector theory[J]. IEEE Trans Microwave Theory Tech, 1997, 45: 1310. doi: 10.1109/22.618429

[14]

Gimlett J L. Low-noise 8 GHz PIN/FET optical receiver[J]. Electron Lett, 1987, 23(6): 281. doi: 10.1049/el:19870205

[15]

Gimlett J L. A new low noise 16 GHz PIN/HEMT optical receiver[J]. Opt Commun, 1988, 12: 13.

[16]

Violas M A R. 10 GHz bandwidth low-noise optical receiver using discrete commercial devices[J]. Electron Lett, 1990, 26(1): 35. doi: 10.1049/el:19900023

[17]

Ohkawna . 20 GHz bandwidth low-noise HEMT preamplifier for optical receivers[J]. Electron Lett, 1988, 24: 1061. doi: 10.1049/el:19880719

[18]

Bowers J E, Burrus C A. High-speed zero-bias waveguide photodetectors[J]. Electron Lett, 1986, 22: 905. doi: 10.1049/el:19860617

[19]

Kato K, Hata S, Kozen A, et al. High-efficiency waveguide InGaAs p–i–n photodiode with bandwidth of greater than 40 GHz. OFC’91, 1991

[20]

Kato K, Hata S, Kozen A. Highly efficient 40 GHz waveguide InGaAs p–i–n photodiode employing multimode waveguide structure[J]. IEEE Photon Technol Lett, 1991, 3: 820. doi: 10.1109/68.84505

[21]

Kato K, Hata S, Kawano K. A highefficiency 50 GHz InGaAs multimode waveguide photodetector[J]. IEEE J Quantum Electron, 1992, 28: 2728. doi: 10.1109/3.166466

[22]

Kato K, Kozen A, Muramoto Y. 110-GHz, 50% efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-mm wavelength[J]. IEEE Photon Technol Lett, 1994, 6: 719. doi: 10.1109/68.300173

[23]

Nagatsuma T. Progress in instrumentation and measurement toward millimeter-wave photonics[J]. Tech Dig Int Topical Meeting Microwave Photonics, 1999: 91.

[24]

Fukuchi K, Kasamatsu T, Morie M. 10.92-Tb/s (273 × 40-Gb/s) triple-band/ ultra-dense WDM optical repeatered transmission experiment[J]. Tech Dig Optical Fiber Communication Conf, 2001: PD24.

[25]

Ishibashi T, Kodama S, Shimizu N. High-speed response of uni-traveling-carrier photodiodes[J]. Jpn J Appl Phys, 1997, 36(10): 6263.

[26]

Ito H, Furuta T, Kodama S. InP/InGaAs uni-travelling-carrier photodiode with 220 GHz bandwidth[J]. Electron Lett, 1999, 35(18): 1556. doi: 10.1049/el:19991043

[27]

Ito H, Furuta T, Kodama S. InP/InGaAs uni-travelling-carrier photodiode with a 310 GHz bandwidth[J]. Electron Lett, 2000, 36: 1809. doi: 10.1049/el:20001274

[28]

Muramoto Y, Hirota Y, Yoshino K. Uni-travelling-carrier photodiode module with bandwidth of 80 GHz[J]. Electron Lett, 2003, 39(39): 1851.

[29]

Ito H, Nagatsuma T, Hirata A. High-power photonic millimeter-wave generation at 100GHz using matching- circuit-integrated uni-travelling-carrier photodiodes[J]. Proc Inst Elect Eng Optoelectron, 2003, 150: 138. doi: 10.1049/ip-opt:20030384

[30]

Wu Y S, Shi J W, Chiu P H. High-performance dual-step evanescently coupled uni-traveling-carrier photodiodes[J]. IEEE Photonics Technol Lett, 2007, 19(20): 1682. doi: 10.1109/LPT.2007.905185

[31]

Shishikura M, Nakamura H, Hanatani S, et al. An InAlAs/InGaAs superlattice avalanche photodiode with a waveguide structure. OEC’94, 1994

[32]

Cohen-Jonathan C, Giraudet L, Bonzo A. Waveguide AlInAs avalanche photodiode with a gain-bandwidth product over 160 GHz[J]. Electron Lett, 1997, 33: 1492. doi: 10.1049/el:19970988

[33]

Nakata T, Takeuchi T, Makita K, et al. High-speed and highsensitivity waveguide InAlAs avalanche photodiode for 10–40 Gb/s receivers. Proc Laser Electro-Optical Soc, 2001: ThN3

[34]

Kinsey G S, Campbell J C, Dentai A G. Waveguide avalanche photodiode operating at 1.55 _x0016_m with a gain-bandwidth product of 320 GHz[J]. IEEE Photonics Tech Lett, 2001, 13: 842. doi: 10.1109/68.935822

[35]

Demiguel S, Li N, Li X. Very high-responsivity evanescently-coupled photodiodes integrating a short planar multimode waveguide for high-speed applications[J]. IEEE Photon Technol Lett, 2003, 15: 1761. doi: 10.1109/LPT.2003.819724

[36]

Tabasky M J, Chirravuri J, Choudhury A N M M. Four-channel hybrid receiver using a silicon substrate for packaging[J]. Proc SPIE, 1992, 1582: 152. doi: 10.1117/12.135013

[37]

Fukashiro Y, Kaneko S, Oishi A. 800 Mbit/s/ch-10 channel fully-integrated low-skew optical modules for optical subsystem interconnections[J]. Lasers and Electro-Optics Society Meeting, 1996: 67.

[38]

Doi Y, Ishii M, Kamei S. Flat and high responsivity CWDM photoreceiver using silica-based AWG with multimode output waveguides[J]. Electron Lett, 2003, 39(22): 1603. doi: 10.1049/el:20031010

[39]

Rouvalis E, Müller P, Trommer D. A 1 × 4 MMI-integrated high-power waveguide photodetector[J]. International Conference on Indium Phosphide and Related Materials, 2013: 1.

[40]

Jiang C, Krozer V, Bach H G. Broadband packaging of photodetectors for 100 Gb/s ethernet applications[J]. IEEE Trans Compon Pack Manuf Technol, 2013, 3(3): 422. doi: 10.1109/TCPMT.2012.2236149

[41]

Runge P, Zhou G, Ganzer F. Waveguide integrated InP-based photodetector for 100 Gbaud applications operating at wavelengths of 1310 nm and 1550 nm[J]. European Conference on Optical Communication (ECOC), 2015: 1.

[42]

Beling A, Steffan A G, Rouvalis E. High-power and high-linearity photodetector modules for microwave photonic applications[J]. J Lightw Technol, 2014, 32(20): 3810. doi: 10.1109/JLT.2014.2310252

[43]

Zhou G, Runge P, Keyvaninia S. high-power inp-based waveguide integrated modified uni-traveling-carrier photodiodes[J]. J Lightw Technol, 2017, 4(35): 717.

[44]

Aruga H, Mochizuki K, Itamoto H, et al. Four-channel 25 Gbps optical receiver for 100 Gbps ethernet with built-in demultiplexer optics. 36th European Conference and Exhibition on Optical Communication (ECOC), 2010: 1

[45]

Baek Y, Han Y T, Lee C W. Optical components for 100G ethernet transceivers[J]. Opto-Electronics and Communications Conference, 2012: 218.

[46]

Doi Y, Oguma M, Yoshimatsu T. Compact high-responsivity receiver optical subassembly with a multimode-output-arrayed waveguide grating for 100-Gb/s ethernet[J]. J Lightw Technol, 2015, 33(15): 3286. doi: 10.1109/JLT.2015.2427367

[47]

Zhao Z, Liu Y, Zhang Z. 1.5 μm, 8 × 12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application[J]. Chin Opt Lett, 2016, 14: 120603. doi: 10.3788/COL

[48]

Nada M, Muramoto Y, Yokohama H. High-sensitivity 25 Gbit/s avalanche photodiode receiver sub-assembly for 40-km transmission[J]. Electron Lett, 2012, 48: 777. doi: 10.1049/el.2012.1081

[49]

Caillaud C, Chanclou P, Blache F. High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON[J]. European Conference on Optical Communication, 2014: 1.

[50]

Anagnosti M, Caillaud C, Glastre G. High performance monolithically integrated SOA-UTC photoreceiver for 100Gbit/s applications[J]. International Conference on Indium Phosphide and Related Materials, 2014: 1.

[51]

Caillaud C, Glastre G, Lelarge F. Monolithic integration of a semiconductor optical amplifier and a high speed photodiode with low polarization dependence loss[J]. IEEE Photon Tech Lett, 2012, 24: 897. doi: 10.1109/LPT.2012.2190275

[52]

Caillaud C, Chanclou P, Blache F. High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON[J]. Eur Conf Exhib Opt Commun, Cannes, France, 2014: Tu3.2.3.

[53]

Caillaud C, Chanclou P, Blache F. Integrated SOA-PIN detector for high-speed short reach applications[J]. J Lightw Technol, 2015, 33(8): 1596. doi: 10.1109/JLT.2015.2389533

[54]

Krems T, Haydl W, Massler H. Millimeter-wave performance of chip interconnections using wire bonding and flip chip[J]. Proc IEEE MTT-S Int Microw Symp Dig, San Francisco, CA, 1996: 247.

[55]

Alimenti F, Mezzanotte P, Roselli L. Modeling and characterization of the bonding-wire interconnection[J]. IEEE Trans Microw Theory Tech, 2001, 49: 142. doi: 10.1109/22.899975

[56]

Lim L, Kwon D, Rieh J S. RF characterization and modeling of various wire bond transitions[J]. IEEE Trans Adv Packag, 2005, 28: 772. doi: 10.1109/TADVP.2005.853554

[57]

Jentzsch A, Heinrich W. Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz[J]. IEEE Trans Microw Theory Tech, 2001, 49: 871. doi: 10.1109/22.920143

[58]

Tessmann A, Riessle M, Kudszus S. A flip-chip packaged coplanar 94 GHz amplifier module with efficient suppression of parasitic substrate effects[J]. IEEE Microw Wireless Compon Lett, 2004, 14: 145. doi: 10.1109/LMWC.2004.827115

[59]

Sakai K, Kawano M, Aruga H. Photodiode packaging technique using ball lens and offset parabolic mirror[J]. J Lightw Technol, 2009, 27(17): 3874. doi: 10.1109/JLT.2009.2020068

[60]

Doi Y, Oguma M, Ito M. Compact ROSA for 100-Gb/s (4 × 25 Gb/s) ethernet with a PLC-based AWG demultiplexer[J]. National Fiber Optic Engineers Conference, 2013: NW1J.5.

[61]

Lee J K, Kang S K, Huh J Y, et al. Highly alignment tolerant 4 × 25 Gb/s ROSA module for 100G ethernet optical transceiver. 39th European Conference and Exhibition on Optical Communication, 2013: 1

[62]

Isaac B, Song B, Xia X, et al. Hybrid integration of UTC-PDs on silicon photonics. CLEO: Science and Innovations, 2017: SM4O.1

[1]

Kawanishi S. Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing[J]. IEEE J Quantum Electron, 1998, 34(11): 2064. doi: 10.1109/3.726595

[2]

Cai J X, Cai Y, Davidson C, et al. Transmission of 96 × 100 G pre-filtered PDM–RZ–QPSK channels with 300% spectral efficiency over 10 608 km and 400% spectral efficiency over 4,368 km. National Fiber Optic Engineers Conference, 2010: PDPB10

[3]

Qian D, Huang M F, Ip E. High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C-and L-bands[J]. J Lightw Technol, 2012, 30(10): 1540. doi: 10.1109/JLT.2012.2189096

[4]

Kaneda N, Pfau T, Zhang H. Field demonstration of 100-Gb/s real-time coherent optical OFDM detection[J]. The European Conference on Optical Communication, 2014: 1.

[5]

Zhou X, Zhong K, Huo J. 112-Gbit/s PDM-PAM4 transmission over 80-km SMF using digital coherent detection without optical amplifier[J]. International Symposium on Communication Systems, Networks and Digital Signal Processing, 2016: 1.

[6]

Campbell J C. Recent advances in telecommunications avalanche photodiodes[J]. J Lightw Technol, 2007, 25(1): 109. doi: 10.1109/JLT.2006.888481

[7]

You A H, Tan S L, Lim T L. Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes[J]. IEEE International Conference on Semiconductor Electronics, 2008: 259.

[8]

Lei W, Guo F M, Lu W. Based simulation of high gain and low breakdown voltage InGaAs/InP avalanche photodiode[J]. International Conference on Numerical Simulation of Optoelectronic Devices, 2008: 37.

[9]

Kharraz O, Forsyth D. Performance comparisons between PIN and APD photodetectors for use in optical communication systems[J]. Optik - Int J Light Electron Opt, 2013, 124(13): 1493. doi: 10.1016/j.ijleo.2012.04.008

[10]

Mawatari H, Fukuda M, Kato K. Reliability of planar waveguide photodiodes for optical subscriber systems[J]. J Lightw Technol, 1998, 16(12): 2428. doi: 10.1109/50.736629

[11]

Shimizu N, Miyamoto Y, Hirano A. RF saturation mechanism of InP/InGaAs uni-travelling-carrier photodiode[J]. Electron Lett, 2000, 36: 750. doi: 10.1049/el:20000555

[12]

Giboney K, Nagarajan R, Reynolds T. Traveling-wave photodetectors with 172-GHz and 76-GHz bandwidth-efficiency product[J]. IEEE Photon Technol Lett, 1995, 7: 412. doi: 10.1109/68.376819

[13]

Giboney K S, Rodwell M J W, Bowers J E. Traveling-wave photodetector theory[J]. IEEE Trans Microwave Theory Tech, 1997, 45: 1310. doi: 10.1109/22.618429

[14]

Gimlett J L. Low-noise 8 GHz PIN/FET optical receiver[J]. Electron Lett, 1987, 23(6): 281. doi: 10.1049/el:19870205

[15]

Gimlett J L. A new low noise 16 GHz PIN/HEMT optical receiver[J]. Opt Commun, 1988, 12: 13.

[16]

Violas M A R. 10 GHz bandwidth low-noise optical receiver using discrete commercial devices[J]. Electron Lett, 1990, 26(1): 35. doi: 10.1049/el:19900023

[17]

Ohkawna . 20 GHz bandwidth low-noise HEMT preamplifier for optical receivers[J]. Electron Lett, 1988, 24: 1061. doi: 10.1049/el:19880719

[18]

Bowers J E, Burrus C A. High-speed zero-bias waveguide photodetectors[J]. Electron Lett, 1986, 22: 905. doi: 10.1049/el:19860617

[19]

Kato K, Hata S, Kozen A, et al. High-efficiency waveguide InGaAs p–i–n photodiode with bandwidth of greater than 40 GHz. OFC’91, 1991

[20]

Kato K, Hata S, Kozen A. Highly efficient 40 GHz waveguide InGaAs p–i–n photodiode employing multimode waveguide structure[J]. IEEE Photon Technol Lett, 1991, 3: 820. doi: 10.1109/68.84505

[21]

Kato K, Hata S, Kawano K. A highefficiency 50 GHz InGaAs multimode waveguide photodetector[J]. IEEE J Quantum Electron, 1992, 28: 2728. doi: 10.1109/3.166466

[22]

Kato K, Kozen A, Muramoto Y. 110-GHz, 50% efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-mm wavelength[J]. IEEE Photon Technol Lett, 1994, 6: 719. doi: 10.1109/68.300173

[23]

Nagatsuma T. Progress in instrumentation and measurement toward millimeter-wave photonics[J]. Tech Dig Int Topical Meeting Microwave Photonics, 1999: 91.

[24]

Fukuchi K, Kasamatsu T, Morie M. 10.92-Tb/s (273 × 40-Gb/s) triple-band/ ultra-dense WDM optical repeatered transmission experiment[J]. Tech Dig Optical Fiber Communication Conf, 2001: PD24.

[25]

Ishibashi T, Kodama S, Shimizu N. High-speed response of uni-traveling-carrier photodiodes[J]. Jpn J Appl Phys, 1997, 36(10): 6263.

[26]

Ito H, Furuta T, Kodama S. InP/InGaAs uni-travelling-carrier photodiode with 220 GHz bandwidth[J]. Electron Lett, 1999, 35(18): 1556. doi: 10.1049/el:19991043

[27]

Ito H, Furuta T, Kodama S. InP/InGaAs uni-travelling-carrier photodiode with a 310 GHz bandwidth[J]. Electron Lett, 2000, 36: 1809. doi: 10.1049/el:20001274

[28]

Muramoto Y, Hirota Y, Yoshino K. Uni-travelling-carrier photodiode module with bandwidth of 80 GHz[J]. Electron Lett, 2003, 39(39): 1851.

[29]

Ito H, Nagatsuma T, Hirata A. High-power photonic millimeter-wave generation at 100GHz using matching- circuit-integrated uni-travelling-carrier photodiodes[J]. Proc Inst Elect Eng Optoelectron, 2003, 150: 138. doi: 10.1049/ip-opt:20030384

[30]

Wu Y S, Shi J W, Chiu P H. High-performance dual-step evanescently coupled uni-traveling-carrier photodiodes[J]. IEEE Photonics Technol Lett, 2007, 19(20): 1682. doi: 10.1109/LPT.2007.905185

[31]

Shishikura M, Nakamura H, Hanatani S, et al. An InAlAs/InGaAs superlattice avalanche photodiode with a waveguide structure. OEC’94, 1994

[32]

Cohen-Jonathan C, Giraudet L, Bonzo A. Waveguide AlInAs avalanche photodiode with a gain-bandwidth product over 160 GHz[J]. Electron Lett, 1997, 33: 1492. doi: 10.1049/el:19970988

[33]

Nakata T, Takeuchi T, Makita K, et al. High-speed and highsensitivity waveguide InAlAs avalanche photodiode for 10–40 Gb/s receivers. Proc Laser Electro-Optical Soc, 2001: ThN3

[34]

Kinsey G S, Campbell J C, Dentai A G. Waveguide avalanche photodiode operating at 1.55 _x0016_m with a gain-bandwidth product of 320 GHz[J]. IEEE Photonics Tech Lett, 2001, 13: 842. doi: 10.1109/68.935822

[35]

Demiguel S, Li N, Li X. Very high-responsivity evanescently-coupled photodiodes integrating a short planar multimode waveguide for high-speed applications[J]. IEEE Photon Technol Lett, 2003, 15: 1761. doi: 10.1109/LPT.2003.819724

[36]

Tabasky M J, Chirravuri J, Choudhury A N M M. Four-channel hybrid receiver using a silicon substrate for packaging[J]. Proc SPIE, 1992, 1582: 152. doi: 10.1117/12.135013

[37]

Fukashiro Y, Kaneko S, Oishi A. 800 Mbit/s/ch-10 channel fully-integrated low-skew optical modules for optical subsystem interconnections[J]. Lasers and Electro-Optics Society Meeting, 1996: 67.

[38]

Doi Y, Ishii M, Kamei S. Flat and high responsivity CWDM photoreceiver using silica-based AWG with multimode output waveguides[J]. Electron Lett, 2003, 39(22): 1603. doi: 10.1049/el:20031010

[39]

Rouvalis E, Müller P, Trommer D. A 1 × 4 MMI-integrated high-power waveguide photodetector[J]. International Conference on Indium Phosphide and Related Materials, 2013: 1.

[40]

Jiang C, Krozer V, Bach H G. Broadband packaging of photodetectors for 100 Gb/s ethernet applications[J]. IEEE Trans Compon Pack Manuf Technol, 2013, 3(3): 422. doi: 10.1109/TCPMT.2012.2236149

[41]

Runge P, Zhou G, Ganzer F. Waveguide integrated InP-based photodetector for 100 Gbaud applications operating at wavelengths of 1310 nm and 1550 nm[J]. European Conference on Optical Communication (ECOC), 2015: 1.

[42]

Beling A, Steffan A G, Rouvalis E. High-power and high-linearity photodetector modules for microwave photonic applications[J]. J Lightw Technol, 2014, 32(20): 3810. doi: 10.1109/JLT.2014.2310252

[43]

Zhou G, Runge P, Keyvaninia S. high-power inp-based waveguide integrated modified uni-traveling-carrier photodiodes[J]. J Lightw Technol, 2017, 4(35): 717.

[44]

Aruga H, Mochizuki K, Itamoto H, et al. Four-channel 25 Gbps optical receiver for 100 Gbps ethernet with built-in demultiplexer optics. 36th European Conference and Exhibition on Optical Communication (ECOC), 2010: 1

[45]

Baek Y, Han Y T, Lee C W. Optical components for 100G ethernet transceivers[J]. Opto-Electronics and Communications Conference, 2012: 218.

[46]

Doi Y, Oguma M, Yoshimatsu T. Compact high-responsivity receiver optical subassembly with a multimode-output-arrayed waveguide grating for 100-Gb/s ethernet[J]. J Lightw Technol, 2015, 33(15): 3286. doi: 10.1109/JLT.2015.2427367

[47]

Zhao Z, Liu Y, Zhang Z. 1.5 μm, 8 × 12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application[J]. Chin Opt Lett, 2016, 14: 120603. doi: 10.3788/COL

[48]

Nada M, Muramoto Y, Yokohama H. High-sensitivity 25 Gbit/s avalanche photodiode receiver sub-assembly for 40-km transmission[J]. Electron Lett, 2012, 48: 777. doi: 10.1049/el.2012.1081

[49]

Caillaud C, Chanclou P, Blache F. High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON[J]. European Conference on Optical Communication, 2014: 1.

[50]

Anagnosti M, Caillaud C, Glastre G. High performance monolithically integrated SOA-UTC photoreceiver for 100Gbit/s applications[J]. International Conference on Indium Phosphide and Related Materials, 2014: 1.

[51]

Caillaud C, Glastre G, Lelarge F. Monolithic integration of a semiconductor optical amplifier and a high speed photodiode with low polarization dependence loss[J]. IEEE Photon Tech Lett, 2012, 24: 897. doi: 10.1109/LPT.2012.2190275

[52]

Caillaud C, Chanclou P, Blache F. High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON[J]. Eur Conf Exhib Opt Commun, Cannes, France, 2014: Tu3.2.3.

[53]

Caillaud C, Chanclou P, Blache F. Integrated SOA-PIN detector for high-speed short reach applications[J]. J Lightw Technol, 2015, 33(8): 1596. doi: 10.1109/JLT.2015.2389533

[54]

Krems T, Haydl W, Massler H. Millimeter-wave performance of chip interconnections using wire bonding and flip chip[J]. Proc IEEE MTT-S Int Microw Symp Dig, San Francisco, CA, 1996: 247.

[55]

Alimenti F, Mezzanotte P, Roselli L. Modeling and characterization of the bonding-wire interconnection[J]. IEEE Trans Microw Theory Tech, 2001, 49: 142. doi: 10.1109/22.899975

[56]

Lim L, Kwon D, Rieh J S. RF characterization and modeling of various wire bond transitions[J]. IEEE Trans Adv Packag, 2005, 28: 772. doi: 10.1109/TADVP.2005.853554

[57]

Jentzsch A, Heinrich W. Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz[J]. IEEE Trans Microw Theory Tech, 2001, 49: 871. doi: 10.1109/22.920143

[58]

Tessmann A, Riessle M, Kudszus S. A flip-chip packaged coplanar 94 GHz amplifier module with efficient suppression of parasitic substrate effects[J]. IEEE Microw Wireless Compon Lett, 2004, 14: 145. doi: 10.1109/LMWC.2004.827115

[59]

Sakai K, Kawano M, Aruga H. Photodiode packaging technique using ball lens and offset parabolic mirror[J]. J Lightw Technol, 2009, 27(17): 3874. doi: 10.1109/JLT.2009.2020068

[60]

Doi Y, Oguma M, Ito M. Compact ROSA for 100-Gb/s (4 × 25 Gb/s) ethernet with a PLC-based AWG demultiplexer[J]. National Fiber Optic Engineers Conference, 2013: NW1J.5.

[61]

Lee J K, Kang S K, Huh J Y, et al. Highly alignment tolerant 4 × 25 Gb/s ROSA module for 100G ethernet optical transceiver. 39th European Conference and Exhibition on Optical Communication, 2013: 1

[62]

Isaac B, Song B, Xia X, et al. Hybrid integration of UTC-PDs on silicon photonics. CLEO: Science and Innovations, 2017: SM4O.1

Liu Yang, Ye Nan, Wang Baojun, Zhou Daibing, An Xin, Bian Jing, Pan Jiaoqing, Zhao Lingjuan, Wang Wei. Monolithic integration of widely tunable sampled grating DBR laser with tilted semiconductor optical amplifier. J. Semicond., 2010, 31(7): 074003. doi: 10.1088/1674-4926/31/7/074003

R. H. Poelma, S. Tarashioon, H. W. van Zeijl, S. Goldbach, J. L. J. Zijl, G. Q. Zhang. Multi-LED package design, fabrication and thermal analysis. J. Semicond., 2013, 34(5): 054002. doi: 10.1088/1674-4926/34/5/054002

Jie Zhang, Jianqiang Han, Yijun Yin, Lizhen Dong, Wenju Niu. Study on the failure temperature of Ti/Pt/Au and Pt5Si2-Ti/Pt/Au metallization systems. J. Semicond., 2017, 38(9): 096005. doi: 10.1088/1674-4926/38/9/096005

Li Junfei, Rao Haibo, Hou Bin, Hu Yue, Shen Fahua. Improving the Luminescence Efficiency of Power White LEDs with Slurry. J. Semicond., 2008, 29(5): 984.

Chen Xinkai, Jiang Hanjun, Wang Zhihua. An Integrated Power Management Unit for a Battery-Operated Wireless Endoscopic System. J. Semicond., 2008, 29(11): 2245.

Li Yongliang, Xu Qiuxia. Dry etching of poly-Si/TaN/HfSiON gate stack for advanced complementary metal–oxide–semiconductor devices. J. Semicond., 2011, 32(7): 076001. doi: 10.1088/1674-4926/32/7/076001

Yongping Zhang, Changde He, Jiaqi Yu, Chunhui Du, Juanting Zhang, Xiujian Chou, Wendong Zhang. An integrated MEMS piezoresistive tri-axis accelerometer. J. Semicond., 2013, 34(10): 104009. doi: 10.1088/1674-4926/34/10/104009

Li Yongliang, Xu Qiuxia. TaN wet etch for application in dual-metal-gate integration technology. J. Semicond., 2009, 30(12): 126001. doi: 10.1088/1674-4926/30/12/126001

Wen Jimin, San Haisheng, Huang Hengpei, Xie Liang, Zhu Ninghua, Zhao Lingjuan, Wang Wei. Accurate Characterization for the Frequency Response of High-Speed Photodetectors. J. Semicond., 2006, 27(9): 1630.

Dongdong Yin, Tingting He, Qin Han, Qianqian Lü, Yejin Zhang, Xiaohong Yang. High-responsivity 40 Gbit/s InGaAs/InP PIN photodetectors integrated on siliconon-insulator waveguide circuitss. J. Semicond., 2016, 37(11): 114006. doi: 10.1088/1674-4926/37/11/114006

Liu Yanxiang, Tang Shaoqiu, Xia Guanqun, Cheng Zongquan, Zheng Yanlan. CH3CSNH2/NH4OH Passivation on GaInAsSb/GaSb PIN Infrared Photodetectors. J. Semicond., 2005, 26(13): 132.

Zhou Jianjun, Jiang Ruolian, Ji Xiaoli, Xie Zili, Han Ping, Zhang Rong, Zheng Youdou. Influence of Interface Polarization Effects on Photoelectric Response of AlGaN/GaN Heterojunction pin Photodetectors. J. Semicond., 2007, 28(6): 947.

Zhang Shangjian, Liu Jian, Wen Jimin, Zhu Ninghua. Analysis and Improvement on the High Frequency Effect of TO Packaging for Photodiodes. J. Semicond., 2005, 26(11): 2254.

Huang Limin, Xie Jiachun, Liang Jin. High Quality Ultraviolet Photodetectors Based on Silicon Carbide. J. Semicond., 2005, 26(13): 256.

Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

Yuxi Ni, Xiaoyu Ma, Hongqi Jing, Suping Liu. Finite element analysis of expansion-matched submounts for high-power laser diodes packaging. J. Semicond., 2016, 37(6): 064005. doi: 10.1088/1674-4926/37/6/064005

Ma Long, Zhang Yang, Dai Yang, Yang Fuhua, Zeng Yiping, Wang Liangchen. Monolithic Integration of Resonant Tunneling Diodes and High Electron Mobility Transistors on InP Substrates. J. Semicond., 2007, 28(S1): 414.

Zhike Zhang, Yu Liu, Jianguo Liu, Ninghua Zhu. Packaging investigation of optoelectronic devices. J. Semicond., 2015, 36(10): 101001. doi: 10.1088/1674-4926/36/10/101001

Bin Li, Xiaohong Yang, Weihong Yin, Qianqian Lü, Rong Cui, Qin Han. A high-speed avalanche photodiode. J. Semicond., 2014, 35(7): 074009. doi: 10.1088/1674-4926/35/7/074009

Liu Ming, Chen Baoqin, Xie Changqing, , Wang Congshun, Long Shibing, Xu Qiuxia, , Li Zhigang, Yili Chengrong. Nano Electrical Devices and Integration. J. Semicond., 2006, 27(13): 7.

Search

Advanced Search >>

GET CITATION

Z P Zhao, J G Liu, Y Liu, N H Zhu. High-speed photodetectors in optical communication system[J]. J. Semicond., 2017, 38(12): 121001. doi: 10.1088/1674-4926/38/12/121001.

Export: BibTex EndNote

Article Metrics

Article views: 1277 Times PDF downloads: 146 Times

History

Manuscript received: 17 August 2017 Manuscript revised: 22 September 2017 Online: Accepted Manuscript: 11 November 2017 Corrected proof: 15 November 2017 Published: 01 December 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误