REVIEWS

Metal-organic framework composites for energy conversion and storage

Hang Wang1, Na Zhang1, Shumin Li2, Qinfei Ke1, , Zhengquan Li2, and Min Zhou3,

+ Author Affiliations

 Corresponding author: Qinfei Ke, E-mail: kqf@shnu.edu.cn; Zhengquan Li, zqli@zjnu.edu.cn; Min Zhou, mzchem@ustc.edu.cn

PDF

Turn off MathJax

Abstract: Metal-organic frameworks (MOFs) with orderly porous structure, large surface area, high electrochemical response and chemical tunability have been widely studied for energy conversion and storage. However, most reported MOFs still suffer from poor stability, insufficient conductivity, and low utilization of active sites. One strategy to circumvent these issues is to optimize MOFs via designing composites. Here, the design principle from the viewpoint of the intrinsic relationships among various components will be illuminated to acquire the synergistic effects, including two working modes: (1) MOFs with assistant components, (2) MOFs with other function components. This review introduces recent research progress of MOF-based composites with their typical applications in energy conversion (catalysis) and storage (supercapacitor and ion battery). Finally, the challenges and future prospects of MOF-based composites will be discussed in terms of maximizing composite properties.

Key words: metal-organic frameworkscompositessynergistic effectenergy conversionenergy storage



[1]
Dhakshinamoorthy A, Asiri A M, García H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew Chem Int Ed, 2016, 55(18), 5414 doi: 10.1002/anie.201505581
[2]
Zheng S, Li X, Yan B, et al. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater, 2017, 7(18), 1602733 doi: 10.1002/aenm.201602733
[3]
Liang Z, Qu C, Guo W, et al. Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv Mater, 2018, 30(37), 1702891 doi: 10.1002/adma.201702891
[4]
Dong R, Han P, Arora H, et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat Mater, 2018, 17(11), 1027 doi: 10.1038/s41563-018-0189-z
[5]
Song Y, Li Z, Zhu Y, et al. Titanium hydroxide secondary building units in metal-organic frameworks catalyze hydrogen evolution under visible light. J Am Chem Soc, 2019, 141(31), 12219 doi: 10.1021/jacs.9b05964
[6]
Sheberla D, Bachman J C, Elias J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater, 2017, 16(2), 220 doi: 10.1038/nmat4766
[7]
Lee J H, Ali G, Kim D H, et al. Metal-organic framework cathodes based on a vanadium hexacyanoferrate prussian blue analogue for high-performance aqueous rechargeable batteries. Adv Energy Mater, 2017, 7(2), 1601491 doi: 10.1002/aenm.201601491
[8]
Wilmer C E, Leaf M, Lee C Y, et al. Large-scale screening of hypothetical metal-organic frameworks. Nat Chem, 2012, 4(2), 83 doi: 10.1038/nchem.1192
[9]
Falcaro P, Okada K, Hara T, et al. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat Mater, 2017, 16(3), 342 doi: 10.1038/nmat4815
[10]
Zhu Y, Ciston J, Zheng B, et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat Mater, 2017, 16(5), 532 doi: 10.1038/nmat4852
[11]
Liu G, Chernikova V, Liu Y, et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat Mater, 2018, 17(3), 283 doi: 10.1038/s41563-017-0013-1
[12]
Van Wyk A, Smith T, Park J, et al. Charge-transfer within Zr-based metal-organic framework: The role of polar node. J Am Chem Soc, 2018, 140(8), 2756 doi: 10.1021/jacs.7b13211
[13]
Feng D, Lei T, Lukatskaya M R, et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat Energy, 2018, 3(1), 30 doi: 10.1038/s41560-017-0044-5
[14]
Jiang Q, Xiong P, Liu J, et al. A redox-active 2D metal-organic framework for efficient lithium storage with extraordinary high capacity. Angew Chem Int Ed, 2020, 59(13), 5273 doi: 10.1002/anie.201914395
[15]
Yuan Y P, Yin L S, Cao S W, et al. Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization. Appl Catal B, 2015, 168/169, 572 doi: 10.1016/j.apcatb.2014.11.007
[16]
Wu D, Guo Z, Yin X, et al. Metal-organic frameworks as cathode materials for Li-O2 batteries. Adv Mater, 2014, 26(20), 3258 doi: 10.1002/adma.201305492
[17]
Chen Y Z, Wang Z U, Wang H, et al. Singlet oxygen-engaged selective photo-oxidation over pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and pt electronic state. J Am Chem Soc, 2017, 139(5), 2035 doi: 10.1021/jacs.6b12074
[18]
Asakura D, Li C H, Mizuno Y, et al. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. J Am Chem Soc, 2013, 135(7), 2793 doi: 10.1021/ja312160v
[19]
Zhong H, Ghorbani-Asl M, Ly K H, et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat Commun, 2020, 11(1), 1409 doi: 10.1038/s41467-020-15141-y
[20]
Zhu Y P, Yin J, Abou-Hamad E, et al. Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv Mater, 2020, 32(16), 1906368 doi: 10.1002/adma.201906368
[21]
Li Q, Fan Z L, Xue D X, et al. A multi-dye@MOF composite boosts highly efficient photodegradation of an ultra-stubborn dye reactive blue 21 under visible-light irradiation. J Mater Chem A, 2018, 6(5), 2148 doi: 10.1039/C7TA10184H
[22]
Li M, Zheng Z, Zheng Y, et al. Controlled growth of metal-organic framework on upconversion nanocrystals for NIR-enhanced photocatalysis. ACS Appl Mater Interfaces, 2017, 9(3), 2899 doi: 10.1021/acsami.6b15792
[23]
Liu N, Huang W, Zhang X, et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl Catal B, 2018, 221, 119 doi: 10.1016/j.apcatb.2017.09.020
[24]
Li S, Ji K, Zhang M, et al. Boosting photocatalytic CO2 reduction of metal-organic frameworks by encapsulating carbon dots. Nanoscale, 2020, 12(17), 9533 doi: 10.1039/D0NR01696A
[25]
Jahan M, Bao Q, Loh K P. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J Am Chem Soc, 2012, 134(15), 6707 doi: 10.1021/ja211433h
[26]
Fang Y, Li X, Li F, et al. Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst. J Power Sources, 2016, 326, 50 doi: 10.1016/j.jpowsour.2016.06.114
[27]
Xiong W, Li H, You H, et al. Encapsulating metal organic framework into hollow mesoporous carbon sphere as efficient oxygen bifunctional electrocatalyst. Natl Sci Rev, 2019, 7(3), 609 doi: 10.1093/nsr/nwz166
[28]
Xu C, Pan Y, Wan G, et al. Turning on visible-light photocatalytic C-H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J Am Chem Soc, 2019, 141(48), 19110 doi: 10.1021/jacs.9b09954
[29]
Zhang W, Wang Y, Zheng H, et al. Embedding ultrafine metal oxide nanoparticles in monolayered metal-organic framework nanosheets enables efficient electrocatalytic oxygen evolution. ACS Nano, 2020, 14(2), 1971 doi: 10.1021/acsnano.9b08458
[30]
Zhang H, Wei J, Dong J, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew Chem Int Ed, 2016, 55(46), 14310 doi: 10.1002/anie.201608597
[31]
Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat Mater, 2020, 19(5), 552 doi: 10.1038/s41563-019-0598-7
[32]
Skorupskii G, Trump B A, Kasel T W, et al. Efficient and tunable one-dimensional charge transport in layered lanthanide metal-organic frameworks. Nat Chem, 2020, 12(2), 131 doi: 10.1038/s41557-019-0372-0
[33]
Rajak R, Saraf M, Mobin S M. Robust heterostructures of a bimetallic sodium-zinc metal-organic framework and reduced graphene oxide for high-performance supercapacitors. J Mater Chem A, 2019, 7(4), 1725 doi: 10.1039/C8TA09528K
[34]
Zhou Y, Mao Z, Wang W, et al. In-situ fabrication of graphene oxide hybrid ni-based metal-organic framework (Ni-MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials. ACS Appl Mater Interfaces, 2016, 8(42), 28904 doi: 10.1021/acsami.6b10640
[35]
Wen P, Gong P, Sun J, et al. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J Mater Chem A, 2015, 3(26), 13874 doi: 10.1039/C5TA02461G
[36]
Deng T, Lu Y, Zhang W, et al. Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv Energy Mater, 2018, 8(7), 1702294 doi: 10.1002/aenm.201702294
[37]
Zhou S, Kong X, Zheng B, et al. Cellulose nanofiber @ conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano, 2019, 13(8), 9578 doi: 10.1021/acsnano.9b04670
[38]
Tian D, Song N, Zhong M, et al. Bimetallic MOF nanosheets decorated on electrospun nanofibers for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces, 2020, 12(1), 1280 doi: 10.1021/acsami.9b16420
[39]
Jiang H, Liu X C, Wu Y, et al. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew Chem Int Ed, 2018, 57(15), 3916 doi: 10.1002/anie.201712872
[40]
Gao C, Wang P, Wang Z, et al. The disordering-enhanced performances of the Al-MOF/graphene composite anodes for lithium ion batteries. Nano Energy, 2019, 65, 104032 doi: 10.1016/j.nanoen.2019.104032
[41]
Wei T, Zhang M, Wu P, et al. POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage. Nano Energy, 2017, 34, 205 doi: 10.1016/j.nanoen.2017.02.028
[42]
Hou Y, Mao H, Xu L. MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res, 2017, 10(1), 344 doi: 10.1007/s12274-016-1326-0
[43]
Mao Y, Li G, Guo Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat Commun, 2017, 8(1), 14628 doi: 10.1038/ncomms14628
[44]
Zhang H, Zhao W, Zou M, et al. 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv Energy Mater, 2018, 8(19), 1800013 doi: 10.1002/aenm.201800013
[45]
Zang Y, Pei F, Huang J, et al. Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries. Adv Energy Mater, 2018, 8(31), 1802052 doi: 10.1002/aenm.201802052
[46]
He Y, Chang Z, Wu S, et al. simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li –S batteries. Adv Energy Mater, 2018, 8(34), 1802130 doi: 10.1002/aenm.201802130
[47]
Zhang C, Shen L, Shen J, et al. Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv Mater, 2019, 31(21), 1808338 doi: 10.1002/adma.201808338
[48]
Zhang F M, Sheng J L, Yang Z D, et al. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew Chem Int Ed, 2018, 57(37), 12106 doi: 10.1002/anie.201806862
[49]
Ran J, Qu J, Zhang H, et al. 2D metal organic framework nanosheet: A universal platform promoting highly efficient visible-light-induced hydrogen production. Adv Energy Mater, 2019, 9(11), 1803402 doi: 10.1002/aenm.201803402
[50]
Shi L, Wang T, Zhang H, et al. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv Funct Mater, 2015, 25(33), 5360 doi: 10.1002/adfm.201502253
[51]
Kong Z C, Liao J F, Dong Y J, et al. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett, 2018, 3(11), 2656 doi: 10.1021/acsenergylett.8b01658
[52]
Wu L Y, Mu Y F, Guo X X, et al. encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew Chem Int Ed, 2019, 58(28), 9491 doi: 10.1002/anie.201904537
[53]
Fang X, Shang Q, Wang Y, et al. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv Mater, 2018, 30(7), 1705112 doi: 10.1002/adma.201705112
[54]
Xia Z, Fang J, Zhang X, et al. Pt nanoparticles embedded metal-organic framework nanosheets: A synergistic strategy towards bifunctional oxygen electrocatalysis. Appl Catal B, 2019, 245, 389 doi: 10.1016/j.apcatb.2018.12.073
[55]
Rui K, Zhao G, Lao M, et al. Direct hybridization of noble metal nanostructures on 2D metal-organic framework nanosheets to catalyze hydrogen evolution. Nano Lett, 2019, 19(12), 8447 doi: 10.1021/acs.nanolett.9b02729
[56]
Zhao L, Dong B, Li S, et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano, 2017, 11(6), 5800 doi: 10.1021/acsnano.7b01409
[57]
Liu T, Li P, Yao N, et al. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew Chem Int Ed, 2019, 58(14), 4679 doi: 10.1002/anie.201901409
[58]
Wang L, Feng X, Ren L, et al. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc, 2015, 137(15), 4920 doi: 10.1021/jacs.5b01613
[59]
Guo S, Zhu Y, Yan Y, et al. (Metal-organic framework)-polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor. J Power Sources, 2016, 316, 176 doi: 10.1016/j.jpowsour.2016.03.040
[60]
Jiao Y, Chen G, Chen D, et al. Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. J Mater Chem A, 2017, 5(45), 23744 doi: 10.1039/C7TA07464F
[61]
Xu X, Tang J, Qian H, et al. Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl Mater Interfaces, 2017, 9(44), 38737 doi: 10.1021/acsami.7b09944
[62]
Wang H N, Zhang M, Zhang A M, et al. Polyoxometalate-based metal-organic frameworks with conductive polypyrrole for supercapacitors. ACS Appl Mater Interfaces, 2018, 10(38), 32265 doi: 10.1021/acsami.8b12194
[63]
Hou R, Miao M, Wang Q, et al. Integrated conductive hybrid architecture of metal-organic framework nanowire array on polypyrrole membrane for all-solid-state flexible supercapacitors. Adv Energy Mater, 2020, 10(1), 1901892 doi: 10.1002/aenm.201901892
[64]
Zhang Y Z, Cheng T, Wang Y, et al. A simple approach to boost capacitance: Flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv Mater, 2016, 28(26), 5242 doi: 10.1002/adma.201600319
[65]
Yue L, Wang X, Sun T, et al. Ni-MOF coating MoS2 structures by hydrothermal intercalation as high-performance electrodes for asymmetric supercapacitors. Chem Eng J, 2019, 375, 121959 doi: 10.1016/j.cej.2019.121959
[66]
Zhang Z, Yoshikawa H, Awaga K. Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: Coexistence of metal and ligand redox activities in a metal-organic framework. J Am Chem Soc, 2014, 136(46), 16112 doi: 10.1021/ja508197w
[67]
Wang P, Shen M, Zhou H, et al. MOF-derived CuS@Cu-BTC composites as high-performance anodes for lithium-ion batteries. Small, 2019, 15(47), 1903522 doi: 10.1002/smll.201903522
[68]
Jin J, Zheng Y, Huang S Z, et al. Directly anchoring 2D NiCo metal-organic frameworks on few-layer black phosphorus for advanced lithium-ion batteries. J Mater Chem A, 2019, 7(2), 783 doi: 10.1039/C8TA09327J
[69]
Baumann A E, Han X, Butala M M, et al. Lithium thiophosphate functionalized zirconium MOFs for Li–S batteries with enhanced rate capabilities. J Am Chem Soc, 2019, 141(44), 17891 doi: 10.1021/jacs.9b09538
[70]
Li Y, Lin S, Wang D, et al. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv Mater, 2020, 32(8), 1906722 doi: 10.1002/adma.201906722
[71]
Bai S, Liu X, Zhu K, et al. Metal-organic framework-based separator for lithium-sulfur batteries. Nat Energy, 2016, 1(7), 16094 doi: 10.1038/nenergy.2016.94
[72]
Hong X J, Song C L, Yang Y, et al. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS Nano, 2019, 13(2), 1923 doi: 10.1021/acsnano.8b08155
[73]
Chen W, Pei J, He C T, et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv Mater, 2018, 30(30), 1800396 doi: 10.1002/adma.201800396
[74]
Wang Q, Luo Y, Hou R, et al. Redox tuning in crystalline and electronic structure of bimetal-organic frameworks derived cobalt/nickel boride/sulfide for boosted faradaic capacitance. Adv Mater, 2019, 31(51), 1905744 doi: 10.1002/adma.201905744
[75]
Wang Z, Shen J, Liu J, et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv Mater, 2019, 31(33), 1902228 doi: 10.1002/adma.201902228
Fig. 1.  (Color online) Design principle of MOF-based composites.

Fig. 1.  (Color online) Typical examples of MOFs with assistance components for catalysis. (a) Schematic illustration of the cationic-dye@MOF. (b) The CODCr changes of RB21 before and after visible-light irradiation in the presence of several composite photocatalysts[21]. Copyright 2018, Royal Society of Chemistry. (c) Schematic illustration of the photocatalytic mechanism of the prepared composites. (d) Degradation profiles of RhB solution of samples activities under the NIR light[22]. Copyright 2017, American Chemical Society. (e) Schematic illustration of synthetic procedure for ZIF@HMCS. (f) The linear scan voltammogram (LSV) curves toward ORR of various samples. (g) LSV curves toward OER of various samples. (h) High frequency range electrochemical impedance spectroscopy (EIS) after fitting of various samples (inset: the corresponding equivalent circuit diagram)[27]. Copyright 2019, Oxford University Press. (i) Schematic illustration of Fe-UiO-66 and activation of stubborn C–H bond under visible light irradiation. (j) Photocurrent signals of UiO-66 and Fe-UiO-66. (k) Conversion/Selectivity-Time plot of toluene oxidation over Fe-UiO-66 under visible light irradiation. (l) Recycling tests of toluene oxidation over Fe-UiO-66 under optimized reaction conditions[28]. Copyright 2019, American Chemical Society.

Fig. 2.  (Color online) Typical examples of MOFs with assistance components for supercapacitor. (a) Schematic diagram of Na-Zn-MOF/rGO. (b) The cyclic voltammograms (CV) collected of Na-Zn-MOF/rGO electrode. (c) A comparison of the GCD curves of a bare GCE, 1-GCE, 2-GCE and 3-GCE. (d) Cycling stability analysis of Na-Zn-MOF/rGO over 4000 cycles(the left and right insets show the first and last 25 cycles)[33]. Copyright 2019, Royal Society of Chemistry. (e) Schematic of synthesis procedure for CNF@MOF hybrid nanofibers. (f) Calculated areal capacitances of the device at different current densities within 0–0.7 V (blue curve) and 0–1.0 V (orange curve). (g) The CV curves at scan rate of 100 mV/s under different folding angles. (h) Cyclic performance and capacitance retention data of the device within 0–0.7 V (blue curve) and 0–1.0 V (orange curve)[36]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA. (i) The schematic illustration of the strategy to synthesize CoNi-MOF/CFP. (j) CV curves of CoNi-MOF at a scan rate of 5, 10, and 25 mV/s. (k) Galvanostatic curves collected at a current density of 2, 4, 8, 16, and 32 A/g. (l) The cyclability of the capacitor over 5000 cycles[37]. Copyright 2019, American Chemical Society.

Fig. 3.  (Color online) Typical examples of MOFs with assistance components for ion battery. (a) Schematic representation of the preparation process of Al-MOF/GO composite. (b) Proposed Li+ ions insertion-extraction process into or from Al-MOF. (c) Cycling performance and coulombic efficiency of Al-MOF and AMG at a current density of 100 mA/g. (d) The rate capability of Al-MOF and AMG[40]. Copyright 2019, Elsevier. (e) Synthesis of MOFs/CNT composite thin films. (f) The rate performances of S@HKUST-1/CNT electrode. (g) The cycling performances of S@HKUST-1/CNT, S@MOF-5/CNT and S@ZIF-8/CNT electrodes, respectively. (h) Nyquist plots of S@HKUST-1/CNT, S@MOF-5/CNT and S@ZIF-8/CNT electrodes, respectively[43]. Copyright 2017, Springer Nature. (i) Schematic illustration for fabricating a flexible MOF@PVDF-HFP membrane. (j) Schematic for Li-S batteries with different separators with a routine separator and MOF@PVDF-HFP separator. (k) The rate performance of Li–S cells with and without MOF@PVDF-HFP separators. (l) Comparison of the cycling performance of Li–S cells with and without MOF@PVDF-HFP separators[46]. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA.

Fig. 4.  (Color online) Typical examples of MOFs with function components for catalysis. (a) Schematic illustration of the synthesis of NH2-UiO-66/TpPa-1-COF hybrid material. (b) The photocatalytic H2 evolution activities. (c) The photocatalytic stability of NH2-UiO-66/TpPa-1-COF (4 : 6). (d) Mechanism schematic of NH2-UiO-66/TpPa-1-COF (4 : 6) hybrid material[48]. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA. (e) Schematic illustrations for the synthesis of MAPbI3@PCN-221. (f) The yields for CO2 reduction to CH4 and CO with PCN-221 and MAPbI3@PCN-221 as photocatalysts in the CO2-saturated ethyl acetate/water solution. (g) Steady-state photoluminescence spectra of various samples. (h) Time-resolved photoluminescence decays of various samples[52]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA. (i) Schematic illustration showing the synthesis of Al-TCPP-Pt for photocatalytic hydrogen production. (j) Photocatalytic hydrogen production rates of various samples (inset: the calculated turnover frequency (TOF) of Al-TCPP-PtNPs and Al-TCPP-0.1Pt). (k) Recycling performance comparison for Al-TCPP-PtNPs and Al-TCPP-0.1Pt. (l) Calculated free energy diagram for photocatalytic H2 production[53]. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA. (m) Schematic illustration of the synthesis process of Ti3C2Tx-CoBDC hybrid for oxygen evolution reaction. (n) OER polarization curves of various electrodes. (o) Nyquist plots of the electrodes modified by IrO2, Ti3C2Tx, CoBDC, and Ti3C2Tx-CoBDC measured at a potential of 1.64 V vs RHE (Inset: Equivalent circuit used to fit the Nyquist plots). (p) Stability test of Ti3C2Tx-CoBDC-based electrode in comparison with the standard IrO2-based electrode, working at a constant potential of 1.64 V vs RHE for 10 000 s[56]. Copyright 2017, American Chemical Society.

Fig. 5.  (Color online) Typical examples of MOFs with function components for catalysis. (a) Schematic illustration of PANI-ZIF-67. (b) Nyquist electrochemical impedance spectra of ZIF-67-CC and PANI-ZIF-67-CC. (c) Cyclic voltammograms collected of PANI-ZIF-67-CC electrode at different scan rate in 3 M KCl. (d) Cycling performance of the solid-state SC device measured at 0.1 mA/cm2 for 2000 cycles[58]. Copyright 2019, American Chemical Society. (e) Preparation illustration of Cu-CAT-NWAs/PPy. (f) Nyquist electrochemical impedance spectra of pristine PPy and various time-dependent Cu-CAT-NWAs/PPy based electrodes. (g) The galvanostatic charge-discharge curves at different current densities of Cu-CAT-NWAs/PPy electrode. (h) Cyclic stability over 5000 cycles under a scan rate of 100 mV/s for Cu-CAT-NWAs/PPy electrode[63]. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA. (i) Photographs of the solidstate SC device (inset: SEM image of MnOx-MHCF). (j) Cyclic voltammogram curves of MnOx-MHCF electrode at different scan rates in the range of 5–50 mV/s. (k) The galvanostatic charge-discharge curves of MnOx-MHCF electrode at current densities of 1.3–10.0 A/g. (l) Specific capacitances of MnOx-MHCF nanocube electrodes derived from the discharging curves at the current density of 1.3–10.0 A/g. (m) Cycling performance of the MnOx-MHCF nanocube electrode measured at the current density of 10.0 A/g for 10 000 cycles[64]. Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA.

Fig. 6.  (Color online) Typical examples of MOFs with function components for catalysis. (a) Schematic illustration of the synthetic process of CuS (x wt%)@Cu-BTC composites. (b) Cycling performance of Cu-BTC and the composites. (c) Rate capabilities and (d) impedance spectrum of CuS (70 wt%)@Cu-BTC[67]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA. (e) Schematic illustration of LPS-UiO-66. (f) Cycling performance of LPS-UiO-66-containing cells. (g) Maximum capacity and (h) capacity after 100 cycles for various MOF composite cells[69]. Copyright 2019, American Chemical Society. (i) Scheme of MOFs/CNT composites with catalysis of the conversion of polysulfides as the separator coating materials for Li–S battery. (j) Impedance spectrum of symmetrical cells using different coating materials of CNT, Ce-MOF-1/CNT, and Ce-MOF-2/CNT. (k) Rate performance at various C-rates for the different separators. (l) Cyclic performance of cells with different separators at 1 C for 800 cycles[72]. Copyright 2019, American Chemical Society.

Table 1.   MOF-based compositions for catalysis.

MaterialMOFAssistant speciesInfluenceRef.
1UiO-66/Erythrosin BUiO-66Erythrosin BEnhance photon utilization[15]
2cationic-dye@MOFIn-MOFcationic dyeEnhance photon utilization[21]
3NaYF4:Yb,Tm/NH2-MIL-53(Fe)NH2-MIL-53(Fe)NaYF4:Yb,TmEnhance photon utilization[22]
4MIL-88A(Fe)/GOMIL-88A(Fe)GOFacilitate carrier separation[23]
5CD@NH2-UiO-66NH2-UiO-66CDFacilitate carrier separation[24]
6G-dye/Fe-MOFFe-MOFG-dyeFacilitate electron mobility[25]
7Co-MOF@CNTsCo-MOFCNTsFacilitate electron mobility[26]
8ZIF-67@HMCSZIF-67HMCSFacilitate electron mobility[27]
9Fe-UiO-66UiO-66FeOxAccelerate surface reaction[28]
9CoFeOx/Co-MOFCo-MOFCoFeOxAccelerate surface reaction[29]
10MOF-525-CoMOF-525CoAccelerate surface reaction[30]
DownLoad: CSV

Table 2.   MOF-based compositions for supercapacitor.

MaterialMOFAssistant speciesInfluenceRef.
1Na-Zn-MOF/rGONa/Zn-MOFrGOBoost charge transfer[33]
2Ni-MOF@GONi-MOFGOBoost charge transfer[34]
3Ni-MOF/CNTNi-MOFCNTBoost charge transfer[35]
4CoNi-MOF/CFPCoNi-MOFCFPIncreasing stability[36]
5CNF@Ni-MOFNi-MOFCNFImproving flexibility[37]
6PPNF@MOFMOFPPNFIncreasing stability[38]
DownLoad: CSV

Table 3.   The MOF-based compositions for ion battery.

MaterialMOFAssistant speciesInfluenceApplicationRef.
1Al-MOF/GOAl-MOFGOEnhance ions migrationAnode[40]
2POMOF/rGOPOMOFrGOEnhance ions migrationAnode[41]
3MOF-74/super PMOF-74Super PEnhance ions migrationCathode[16]
4MIL-100/rGOMIL-100rGOEnhance ions migrationCathode[42]
5MOF@CNTMOFCNTEnhance ions migrationCathode[43]
6PPy-PCN-224PCN-224PPyEnhance ions migrationCathode[39]
7ZIF-8@CNTZIF-8CNTEnhance ions migrationCathode[44]
8Ni3(HITP)2/PPNi3(HITP)2PPImprove processability and stabilitySeparator[45]
9HKUST-1@PVDF-HFPHKUST-1PVDF-HFPImprove processability and stabilitySeparator[46]
10UiO-66/PVAUiO-66PVAImprove processability and stabilitySeparator[47]
DownLoad: CSV

Table 4.   The component of the MOF-based compositions for catalysis.

MaterialMOFFunction speciesRef.
1NH2-MIL-68@TPA-COFNH2-MIL-68TPA-COF[5]
2NH2-UiO-66/TpPa-1-COFNH2-UiO-66TpPa-1-COF[48]
3CdS/Ni-MOFNi-MOFCdS[49]
4UiO-66/CNNSUiO-6CNNS[50]
5CsPbBr3@ZIFZIFCsPbBr3[51]
6MAPbI3@PCN-221PCN-221MAPbI3[52]
7Pt/PCN-224PCN-224Pt[17]
8Pt/Al-TCPPAl-TCPPPt[53]
9Pt@2D MOFs2D MOFsPt[54]
10Ni-MOF@PtNi-MOFPt[55]
11Ti3C2Tx-CoBDCCoBDCTi3C2Tx[56]
12CoP/Co-MOFCo-MOFCoP[57]
DownLoad: CSV

Table 5.   The component of the MOF-based compositions for supercapacitor.

MaterialMOFFunction speciesRef.
1PANI-ZIF-67ZIF-67PANI[58]
2Zn-MOF/PANIZn-MOFPANI[59]
3Zn/Ni-MOF@PPyZn/Ni-MOFPPy[60]
4ZIF@PPyZIFPPy[61]
5NENU-5/PPyNENU-5PPy[62]
6Cu-MOF@PPyCu-MOFPPy[63]
7MnOx-MHCFMHCF(Mn)MnOx[64]
8MoS2@Ni-MOFNi-MOFMoS2[65]
DownLoad: CSV

Table 6.   The component of the MOF-based compositions for battery.

MaterialMOFFunction speciesApplicationRef.
1CuFe-PBA@
NiFe-PBA
CuFe-PBANiFe-PBACathode[18]
2CuS@Cu-BTCCu-BTCCuSAnode[67]
3BP/NiCo-MOFNiCo-MOFBPAnode[68]
4Li3PS4-Zr-MOFZr-MOFLi3PS4Cathode[69]
5HKUST-1@GOHKUST-1GOSeparator[71]
6Ce-MOF/CNTCe-MOFCNTSeparator[72]
DownLoad: CSV
[1]
Dhakshinamoorthy A, Asiri A M, García H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew Chem Int Ed, 2016, 55(18), 5414 doi: 10.1002/anie.201505581
[2]
Zheng S, Li X, Yan B, et al. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater, 2017, 7(18), 1602733 doi: 10.1002/aenm.201602733
[3]
Liang Z, Qu C, Guo W, et al. Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv Mater, 2018, 30(37), 1702891 doi: 10.1002/adma.201702891
[4]
Dong R, Han P, Arora H, et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat Mater, 2018, 17(11), 1027 doi: 10.1038/s41563-018-0189-z
[5]
Song Y, Li Z, Zhu Y, et al. Titanium hydroxide secondary building units in metal-organic frameworks catalyze hydrogen evolution under visible light. J Am Chem Soc, 2019, 141(31), 12219 doi: 10.1021/jacs.9b05964
[6]
Sheberla D, Bachman J C, Elias J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater, 2017, 16(2), 220 doi: 10.1038/nmat4766
[7]
Lee J H, Ali G, Kim D H, et al. Metal-organic framework cathodes based on a vanadium hexacyanoferrate prussian blue analogue for high-performance aqueous rechargeable batteries. Adv Energy Mater, 2017, 7(2), 1601491 doi: 10.1002/aenm.201601491
[8]
Wilmer C E, Leaf M, Lee C Y, et al. Large-scale screening of hypothetical metal-organic frameworks. Nat Chem, 2012, 4(2), 83 doi: 10.1038/nchem.1192
[9]
Falcaro P, Okada K, Hara T, et al. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat Mater, 2017, 16(3), 342 doi: 10.1038/nmat4815
[10]
Zhu Y, Ciston J, Zheng B, et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat Mater, 2017, 16(5), 532 doi: 10.1038/nmat4852
[11]
Liu G, Chernikova V, Liu Y, et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat Mater, 2018, 17(3), 283 doi: 10.1038/s41563-017-0013-1
[12]
Van Wyk A, Smith T, Park J, et al. Charge-transfer within Zr-based metal-organic framework: The role of polar node. J Am Chem Soc, 2018, 140(8), 2756 doi: 10.1021/jacs.7b13211
[13]
Feng D, Lei T, Lukatskaya M R, et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat Energy, 2018, 3(1), 30 doi: 10.1038/s41560-017-0044-5
[14]
Jiang Q, Xiong P, Liu J, et al. A redox-active 2D metal-organic framework for efficient lithium storage with extraordinary high capacity. Angew Chem Int Ed, 2020, 59(13), 5273 doi: 10.1002/anie.201914395
[15]
Yuan Y P, Yin L S, Cao S W, et al. Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization. Appl Catal B, 2015, 168/169, 572 doi: 10.1016/j.apcatb.2014.11.007
[16]
Wu D, Guo Z, Yin X, et al. Metal-organic frameworks as cathode materials for Li-O2 batteries. Adv Mater, 2014, 26(20), 3258 doi: 10.1002/adma.201305492
[17]
Chen Y Z, Wang Z U, Wang H, et al. Singlet oxygen-engaged selective photo-oxidation over pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and pt electronic state. J Am Chem Soc, 2017, 139(5), 2035 doi: 10.1021/jacs.6b12074
[18]
Asakura D, Li C H, Mizuno Y, et al. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. J Am Chem Soc, 2013, 135(7), 2793 doi: 10.1021/ja312160v
[19]
Zhong H, Ghorbani-Asl M, Ly K H, et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat Commun, 2020, 11(1), 1409 doi: 10.1038/s41467-020-15141-y
[20]
Zhu Y P, Yin J, Abou-Hamad E, et al. Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv Mater, 2020, 32(16), 1906368 doi: 10.1002/adma.201906368
[21]
Li Q, Fan Z L, Xue D X, et al. A multi-dye@MOF composite boosts highly efficient photodegradation of an ultra-stubborn dye reactive blue 21 under visible-light irradiation. J Mater Chem A, 2018, 6(5), 2148 doi: 10.1039/C7TA10184H
[22]
Li M, Zheng Z, Zheng Y, et al. Controlled growth of metal-organic framework on upconversion nanocrystals for NIR-enhanced photocatalysis. ACS Appl Mater Interfaces, 2017, 9(3), 2899 doi: 10.1021/acsami.6b15792
[23]
Liu N, Huang W, Zhang X, et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl Catal B, 2018, 221, 119 doi: 10.1016/j.apcatb.2017.09.020
[24]
Li S, Ji K, Zhang M, et al. Boosting photocatalytic CO2 reduction of metal-organic frameworks by encapsulating carbon dots. Nanoscale, 2020, 12(17), 9533 doi: 10.1039/D0NR01696A
[25]
Jahan M, Bao Q, Loh K P. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J Am Chem Soc, 2012, 134(15), 6707 doi: 10.1021/ja211433h
[26]
Fang Y, Li X, Li F, et al. Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst. J Power Sources, 2016, 326, 50 doi: 10.1016/j.jpowsour.2016.06.114
[27]
Xiong W, Li H, You H, et al. Encapsulating metal organic framework into hollow mesoporous carbon sphere as efficient oxygen bifunctional electrocatalyst. Natl Sci Rev, 2019, 7(3), 609 doi: 10.1093/nsr/nwz166
[28]
Xu C, Pan Y, Wan G, et al. Turning on visible-light photocatalytic C-H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J Am Chem Soc, 2019, 141(48), 19110 doi: 10.1021/jacs.9b09954
[29]
Zhang W, Wang Y, Zheng H, et al. Embedding ultrafine metal oxide nanoparticles in monolayered metal-organic framework nanosheets enables efficient electrocatalytic oxygen evolution. ACS Nano, 2020, 14(2), 1971 doi: 10.1021/acsnano.9b08458
[30]
Zhang H, Wei J, Dong J, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew Chem Int Ed, 2016, 55(46), 14310 doi: 10.1002/anie.201608597
[31]
Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat Mater, 2020, 19(5), 552 doi: 10.1038/s41563-019-0598-7
[32]
Skorupskii G, Trump B A, Kasel T W, et al. Efficient and tunable one-dimensional charge transport in layered lanthanide metal-organic frameworks. Nat Chem, 2020, 12(2), 131 doi: 10.1038/s41557-019-0372-0
[33]
Rajak R, Saraf M, Mobin S M. Robust heterostructures of a bimetallic sodium-zinc metal-organic framework and reduced graphene oxide for high-performance supercapacitors. J Mater Chem A, 2019, 7(4), 1725 doi: 10.1039/C8TA09528K
[34]
Zhou Y, Mao Z, Wang W, et al. In-situ fabrication of graphene oxide hybrid ni-based metal-organic framework (Ni-MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials. ACS Appl Mater Interfaces, 2016, 8(42), 28904 doi: 10.1021/acsami.6b10640
[35]
Wen P, Gong P, Sun J, et al. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J Mater Chem A, 2015, 3(26), 13874 doi: 10.1039/C5TA02461G
[36]
Deng T, Lu Y, Zhang W, et al. Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv Energy Mater, 2018, 8(7), 1702294 doi: 10.1002/aenm.201702294
[37]
Zhou S, Kong X, Zheng B, et al. Cellulose nanofiber @ conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano, 2019, 13(8), 9578 doi: 10.1021/acsnano.9b04670
[38]
Tian D, Song N, Zhong M, et al. Bimetallic MOF nanosheets decorated on electrospun nanofibers for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces, 2020, 12(1), 1280 doi: 10.1021/acsami.9b16420
[39]
Jiang H, Liu X C, Wu Y, et al. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew Chem Int Ed, 2018, 57(15), 3916 doi: 10.1002/anie.201712872
[40]
Gao C, Wang P, Wang Z, et al. The disordering-enhanced performances of the Al-MOF/graphene composite anodes for lithium ion batteries. Nano Energy, 2019, 65, 104032 doi: 10.1016/j.nanoen.2019.104032
[41]
Wei T, Zhang M, Wu P, et al. POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage. Nano Energy, 2017, 34, 205 doi: 10.1016/j.nanoen.2017.02.028
[42]
Hou Y, Mao H, Xu L. MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res, 2017, 10(1), 344 doi: 10.1007/s12274-016-1326-0
[43]
Mao Y, Li G, Guo Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat Commun, 2017, 8(1), 14628 doi: 10.1038/ncomms14628
[44]
Zhang H, Zhao W, Zou M, et al. 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv Energy Mater, 2018, 8(19), 1800013 doi: 10.1002/aenm.201800013
[45]
Zang Y, Pei F, Huang J, et al. Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries. Adv Energy Mater, 2018, 8(31), 1802052 doi: 10.1002/aenm.201802052
[46]
He Y, Chang Z, Wu S, et al. simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li –S batteries. Adv Energy Mater, 2018, 8(34), 1802130 doi: 10.1002/aenm.201802130
[47]
Zhang C, Shen L, Shen J, et al. Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv Mater, 2019, 31(21), 1808338 doi: 10.1002/adma.201808338
[48]
Zhang F M, Sheng J L, Yang Z D, et al. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew Chem Int Ed, 2018, 57(37), 12106 doi: 10.1002/anie.201806862
[49]
Ran J, Qu J, Zhang H, et al. 2D metal organic framework nanosheet: A universal platform promoting highly efficient visible-light-induced hydrogen production. Adv Energy Mater, 2019, 9(11), 1803402 doi: 10.1002/aenm.201803402
[50]
Shi L, Wang T, Zhang H, et al. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv Funct Mater, 2015, 25(33), 5360 doi: 10.1002/adfm.201502253
[51]
Kong Z C, Liao J F, Dong Y J, et al. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett, 2018, 3(11), 2656 doi: 10.1021/acsenergylett.8b01658
[52]
Wu L Y, Mu Y F, Guo X X, et al. encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew Chem Int Ed, 2019, 58(28), 9491 doi: 10.1002/anie.201904537
[53]
Fang X, Shang Q, Wang Y, et al. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv Mater, 2018, 30(7), 1705112 doi: 10.1002/adma.201705112
[54]
Xia Z, Fang J, Zhang X, et al. Pt nanoparticles embedded metal-organic framework nanosheets: A synergistic strategy towards bifunctional oxygen electrocatalysis. Appl Catal B, 2019, 245, 389 doi: 10.1016/j.apcatb.2018.12.073
[55]
Rui K, Zhao G, Lao M, et al. Direct hybridization of noble metal nanostructures on 2D metal-organic framework nanosheets to catalyze hydrogen evolution. Nano Lett, 2019, 19(12), 8447 doi: 10.1021/acs.nanolett.9b02729
[56]
Zhao L, Dong B, Li S, et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano, 2017, 11(6), 5800 doi: 10.1021/acsnano.7b01409
[57]
Liu T, Li P, Yao N, et al. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew Chem Int Ed, 2019, 58(14), 4679 doi: 10.1002/anie.201901409
[58]
Wang L, Feng X, Ren L, et al. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc, 2015, 137(15), 4920 doi: 10.1021/jacs.5b01613
[59]
Guo S, Zhu Y, Yan Y, et al. (Metal-organic framework)-polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor. J Power Sources, 2016, 316, 176 doi: 10.1016/j.jpowsour.2016.03.040
[60]
Jiao Y, Chen G, Chen D, et al. Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. J Mater Chem A, 2017, 5(45), 23744 doi: 10.1039/C7TA07464F
[61]
Xu X, Tang J, Qian H, et al. Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl Mater Interfaces, 2017, 9(44), 38737 doi: 10.1021/acsami.7b09944
[62]
Wang H N, Zhang M, Zhang A M, et al. Polyoxometalate-based metal-organic frameworks with conductive polypyrrole for supercapacitors. ACS Appl Mater Interfaces, 2018, 10(38), 32265 doi: 10.1021/acsami.8b12194
[63]
Hou R, Miao M, Wang Q, et al. Integrated conductive hybrid architecture of metal-organic framework nanowire array on polypyrrole membrane for all-solid-state flexible supercapacitors. Adv Energy Mater, 2020, 10(1), 1901892 doi: 10.1002/aenm.201901892
[64]
Zhang Y Z, Cheng T, Wang Y, et al. A simple approach to boost capacitance: Flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv Mater, 2016, 28(26), 5242 doi: 10.1002/adma.201600319
[65]
Yue L, Wang X, Sun T, et al. Ni-MOF coating MoS2 structures by hydrothermal intercalation as high-performance electrodes for asymmetric supercapacitors. Chem Eng J, 2019, 375, 121959 doi: 10.1016/j.cej.2019.121959
[66]
Zhang Z, Yoshikawa H, Awaga K. Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: Coexistence of metal and ligand redox activities in a metal-organic framework. J Am Chem Soc, 2014, 136(46), 16112 doi: 10.1021/ja508197w
[67]
Wang P, Shen M, Zhou H, et al. MOF-derived CuS@Cu-BTC composites as high-performance anodes for lithium-ion batteries. Small, 2019, 15(47), 1903522 doi: 10.1002/smll.201903522
[68]
Jin J, Zheng Y, Huang S Z, et al. Directly anchoring 2D NiCo metal-organic frameworks on few-layer black phosphorus for advanced lithium-ion batteries. J Mater Chem A, 2019, 7(2), 783 doi: 10.1039/C8TA09327J
[69]
Baumann A E, Han X, Butala M M, et al. Lithium thiophosphate functionalized zirconium MOFs for Li–S batteries with enhanced rate capabilities. J Am Chem Soc, 2019, 141(44), 17891 doi: 10.1021/jacs.9b09538
[70]
Li Y, Lin S, Wang D, et al. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv Mater, 2020, 32(8), 1906722 doi: 10.1002/adma.201906722
[71]
Bai S, Liu X, Zhu K, et al. Metal-organic framework-based separator for lithium-sulfur batteries. Nat Energy, 2016, 1(7), 16094 doi: 10.1038/nenergy.2016.94
[72]
Hong X J, Song C L, Yang Y, et al. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS Nano, 2019, 13(2), 1923 doi: 10.1021/acsnano.8b08155
[73]
Chen W, Pei J, He C T, et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv Mater, 2018, 30(30), 1800396 doi: 10.1002/adma.201800396
[74]
Wang Q, Luo Y, Hou R, et al. Redox tuning in crystalline and electronic structure of bimetal-organic frameworks derived cobalt/nickel boride/sulfide for boosted faradaic capacitance. Adv Mater, 2019, 31(51), 1905744 doi: 10.1002/adma.201905744
[75]
Wang Z, Shen J, Liu J, et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv Mater, 2019, 31(33), 1902228 doi: 10.1002/adma.201902228
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3869 Times PDF downloads: 92 Times Cited by: 0 Times

    History

    Received: 07 July 2020 Revised: 03 August 2020 Online: Accepted Manuscript: 14 August 2020Uncorrected proof: 18 August 2020Published: 04 September 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hang Wang, Na Zhang, Shumin Li, Qinfei Ke, Zhengquan Li, Min Zhou. Metal-organic framework composites for energy conversion and storage[J]. Journal of Semiconductors, 2020, 41(9): 091707. doi: 10.1088/1674-4926/41/9/091707 H Wang, N Zhang, S M Li, Q F Ke, Z Q Li, M Zhou, Metal-organic framework composites for energy conversion and storage[J]. J. Semicond., 2020, 41(9): 091707. doi: 10.1088/1674-4926/41/9/091707.Export: BibTex EndNote
      Citation:
      Hang Wang, Na Zhang, Shumin Li, Qinfei Ke, Zhengquan Li, Min Zhou. Metal-organic framework composites for energy conversion and storage[J]. Journal of Semiconductors, 2020, 41(9): 091707. doi: 10.1088/1674-4926/41/9/091707

      H Wang, N Zhang, S M Li, Q F Ke, Z Q Li, M Zhou, Metal-organic framework composites for energy conversion and storage[J]. J. Semicond., 2020, 41(9): 091707. doi: 10.1088/1674-4926/41/9/091707.
      Export: BibTex EndNote

      Metal-organic framework composites for energy conversion and storage

      doi: 10.1088/1674-4926/41/9/091707
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return