J. Semicond. > Volume 37 > Issue 5 > Article Number: 054008

Novel trench gate field stop IGBT with trench shorted anode

Xudong Chen 1, , , Jianbing Cheng 1, 2, , Guobing Teng 1, and Houdong Guo 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A novel trench field stop (FS) insulated gate bipolar transistor (IGBT) with a trench shorted anode (TSA) is proposed. By introducing a trench shorted anode, the TSA-FS-IGBT can obviously improve the breakdown voltage. As the simulation results show, the breakdown voltage is improved by a factor of 19.5% with a lower leakage current compared with the conventional FS-IGBT. The turn off time of the proposed structure is 50% lower than the conventional one with less than 9% voltage drop increased at a current density of 150 A/cm2. Additionally, there is no snapback observed. As a result, the TSA-FS-IGBT has a better trade-off relationship between the turn off loss and forward drop.

Key words: FS-IGBTtrench shorted anodebreakdown voltageturn off losstradeoff

Abstract: A novel trench field stop (FS) insulated gate bipolar transistor (IGBT) with a trench shorted anode (TSA) is proposed. By introducing a trench shorted anode, the TSA-FS-IGBT can obviously improve the breakdown voltage. As the simulation results show, the breakdown voltage is improved by a factor of 19.5% with a lower leakage current compared with the conventional FS-IGBT. The turn off time of the proposed structure is 50% lower than the conventional one with less than 9% voltage drop increased at a current density of 150 A/cm2. Additionally, there is no snapback observed. As a result, the TSA-FS-IGBT has a better trade-off relationship between the turn off loss and forward drop.

Key words: FS-IGBTtrench shorted anodebreakdown voltageturn off losstradeoff



References:

[1]

Miyaoku Y, Matsuura K, Saito A. Compact modeling and analysis of the partially-narrow-mesa IGBT featuring low on-resistance and low switching loss[J]. IEEE ISPSD, 2015: 101.

[2]

Sumitomo M, Sakane H, Arakawa K. Injection control technique for high speed switching with a double gate PNM-IGBT[J]. IEEE ISPSD, 2013: 33.

[3]

Laska T, Münzer M, Pfirsch F. The field stop IGBT a new power device concept with a great improvement potential[J]. IEEE ISPSD, 2000: 355.

[4]

Chang H R, Baliga B J, Kretchmer J W. Insulated gate bipolar transistor with a trench gate structure[J]. IEEE IEDM Tech Dig, 1987: 674.

[5]

Chen Weizhong, Zhang Bo, Li Zehong. A new short-anoded IGBT with high emission efficiency[J]. Journal of Semiconductors, 2012, 33(11): 114003.

[6]

Yeon J E, Park M Y, Cho K M. A new high voltage shorted-anode IGBT with intrinsic body diode improves performance of single-ended induction cooker[J]. IEEE EPE, 2013: 1.

[7]

Luther-King N, Sweet M, Spulber O. Striped anode engineering: a concept for fast switching power devices[J]. Solid-State Electron, 2002, 46(6): 903.

[8]

Mao Kun, Qiao Ming, Zhang Bo. A 800 V dual conduction paths segmented anode LIGBT with low specific on-resistance and small shift voltage[J]. Journal of Semiconductors, 2014, 35(5): 054004.

[9]

Huang S, Amaratunga G A J, Udrea F. The injection efficiency controlled IGBT[J]. IEEE Electron Device Lett, 2002, 23(2): 88.

[10]

Huang S, Sheng K, Udrea F. A dynamic n-buffer insulated gate bipolar transistor[J]. Solid-State Electron, 2001, 45(1): 173.

[11]

Zhu Liheng, Chen Xingbi. An investigation of a novel snapback-free reverse-conducting IGBT and with dual Gates[J]. IEEE Trans Electron Devices, 2012, 59(11): 3048.

[12]

Nakagawa A. Numerical experiment for 2500 V double gate bipolar mode MOSFETs (DGIGBT) and analysis for large safe operating area (SOA)[J]. IEEE PESC, 1988: 84.

[13]

Chen Wensuo, Xie Gang, Zhang Bo. Novel lateral IGBT with n-region controlled anode on SOI substrate[J]. Journal of Semiconductors, 2009, 30(11): 114005.

[14]

Dai Weinan, Zhu Jing, Sun Weifeng. An improved trench gate super-junction IGBT with double emitter[J]. Journal of Semiconductors, 2015, 36(1): 014009.

[15]

Wang Bo, Tan Jingfei, Zhang Wenliang. A simulation study on a novel trench SJ IGBT[J]. Journal of Semiconductors, 2012, 33(11): 114002.

[16]

Yang Wentao, Li Zehong, Jia Yaoyao. A bidirectional electric field enhanced field stop reverse blocking IGBT[J]. IEEE ISPSD, 2014: 15.

[1]

Miyaoku Y, Matsuura K, Saito A. Compact modeling and analysis of the partially-narrow-mesa IGBT featuring low on-resistance and low switching loss[J]. IEEE ISPSD, 2015: 101.

[2]

Sumitomo M, Sakane H, Arakawa K. Injection control technique for high speed switching with a double gate PNM-IGBT[J]. IEEE ISPSD, 2013: 33.

[3]

Laska T, Münzer M, Pfirsch F. The field stop IGBT a new power device concept with a great improvement potential[J]. IEEE ISPSD, 2000: 355.

[4]

Chang H R, Baliga B J, Kretchmer J W. Insulated gate bipolar transistor with a trench gate structure[J]. IEEE IEDM Tech Dig, 1987: 674.

[5]

Chen Weizhong, Zhang Bo, Li Zehong. A new short-anoded IGBT with high emission efficiency[J]. Journal of Semiconductors, 2012, 33(11): 114003.

[6]

Yeon J E, Park M Y, Cho K M. A new high voltage shorted-anode IGBT with intrinsic body diode improves performance of single-ended induction cooker[J]. IEEE EPE, 2013: 1.

[7]

Luther-King N, Sweet M, Spulber O. Striped anode engineering: a concept for fast switching power devices[J]. Solid-State Electron, 2002, 46(6): 903.

[8]

Mao Kun, Qiao Ming, Zhang Bo. A 800 V dual conduction paths segmented anode LIGBT with low specific on-resistance and small shift voltage[J]. Journal of Semiconductors, 2014, 35(5): 054004.

[9]

Huang S, Amaratunga G A J, Udrea F. The injection efficiency controlled IGBT[J]. IEEE Electron Device Lett, 2002, 23(2): 88.

[10]

Huang S, Sheng K, Udrea F. A dynamic n-buffer insulated gate bipolar transistor[J]. Solid-State Electron, 2001, 45(1): 173.

[11]

Zhu Liheng, Chen Xingbi. An investigation of a novel snapback-free reverse-conducting IGBT and with dual Gates[J]. IEEE Trans Electron Devices, 2012, 59(11): 3048.

[12]

Nakagawa A. Numerical experiment for 2500 V double gate bipolar mode MOSFETs (DGIGBT) and analysis for large safe operating area (SOA)[J]. IEEE PESC, 1988: 84.

[13]

Chen Wensuo, Xie Gang, Zhang Bo. Novel lateral IGBT with n-region controlled anode on SOI substrate[J]. Journal of Semiconductors, 2009, 30(11): 114005.

[14]

Dai Weinan, Zhu Jing, Sun Weifeng. An improved trench gate super-junction IGBT with double emitter[J]. Journal of Semiconductors, 2015, 36(1): 014009.

[15]

Wang Bo, Tan Jingfei, Zhang Wenliang. A simulation study on a novel trench SJ IGBT[J]. Journal of Semiconductors, 2012, 33(11): 114002.

[16]

Yang Wentao, Li Zehong, Jia Yaoyao. A bidirectional electric field enhanced field stop reverse blocking IGBT[J]. IEEE ISPSD, 2014: 15.

[1]

Chen Weizhong, Zhang Bo, Li Zehong, Ren Min, Li Zhaoji. A new short-anoded IGBT with high emission efficiency. J. Semicond., 2012, 33(11): 114003. doi: 10.1088/1674-4926/33/11/114003

[2]

Luo Xiaorong, Li Zhaoji, Zhang Bo, Guo Yufeng, Tang Xinwei. A Novel Structure and Its Breakdown Mechanism of a SOI High Voltage Device with a Shielding Trench. J. Semicond., 2005, 26(11): 2154.

[3]

Hu Xiarong, Zhang Bo, Luo Xiaorong, Li Zhaoji. Universal trench design method for a high-voltage SOI trench LDMOS. J. Semicond., 2012, 33(7): 074006. doi: 10.1088/1674-4926/33/7/074006

[4]

Luo Xiaorong, Zhang Bo, Li Zhaoji, Tang Xinwei. A Novel SOI High Voltage Device Structure with a Partial Locating Charge Trench. J. Semicond., 2006, 27(1): 115.

[5]

Qing Xu, Xiaorong Luo, Kun Zhou, Ruichao Tian, Jie Wei, Yuanhang Fan, Bo Zhang. Ultralow specific on-resistance high voltage trench SOI LDMOS with enhanced RESURF effect. J. Semicond., 2015, 36(2): 024010. doi: 10.1088/1674-4926/36/2/024010

[6]

Qiao Ming, Zhou Xianda, Duan Mingwei, Fang Jian, Zhang Bo, Li Zhaoji. Breakdown Characteristic of Multiregion Double RESURF LDMOS with High Voltage Interconnection. J. Semicond., 2007, 28(9): 1428.

[7]

Duan Baoxing, Zhang Bo, Li Zhaoji. Breakdown Voltage Analysis for a Double Step Buried Oxide SOI Structure. J. Semicond., 2006, 27(5): 886.

[8]

Li Qi, Zhu Jinluan, Wang Weidong, Yue Hongwei, Jin Liangnian. A novel high-voltage device structure with an N+ ring in substrate and the breakdown voltage model. J. Semicond., 2011, 32(12): 124005. doi: 10.1088/1674-4926/32/12/124005

[9]

Yang Liu, Changchun Chai, Chunlei Shi, Qingyang Fan, Yuqian Liu. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor. J. Semicond., 2016, 37(12): 124002. doi: 10.1088/1674-4926/37/12/124002

[10]

Chen Wanjun, Zhang Bo, Li Zhaoji. Realizing High Breakdown Voltage SJ-LDMOS on Bulk Silicon Using a Partial n-Buried Layer. J. Semicond., 2007, 28(3): 355.

[11]

Zhang Wenmin, Zhang Wei, Fu Jun, Wang Yudong. An analytical model for the drain-source breakdown voltage of RF LDMOS power transistors with a Faraday shield. J. Semicond., 2012, 33(4): 044001. doi: 10.1088/1674-4926/33/4/044001

[12]

Lu Shengli, Sun Zhilin, Sun Weifeng, Shi Longxing. A High Breakdown Voltage Thin SOI Device with a Vertically Linearly Graded Concentration Drift Region. J. Semicond., 2005, 26(12): 2286.

[13]

Futong Chu, Chao Chen, Xingzhao Liu. Breakdown voltage enhancement of AlGaN/GaN high electron mobility transistors by polyimide/chromium composite thin film passivation. J. Semicond., 2014, 35(3): 034007. doi: 10.1088/1674-4926/35/3/034007

[14]

Yuanjie Lü, Xubo Song, Zezhao He, Yuangang Wang, Xin Tan, Shixiong Liang, Cui Wei, Xingye Zhou, Zhihong Feng. Source-field-plated Ga2O3 MOSFET with a breakdown voltage of 550 V. J. Semicond., 2019, 40(1): 012803. doi: 10.1088/1674-4926/40/1/012803

[15]

Xiaorong Luo, Xiaowei Wang, Gangyi Hu, Yuanhang Fan, Kun Zhou, Yinchun Luo, Ye Fan, Zhengyuan Zhang, Yong Mei, Bo Zhang. Experimental and theoretical study of an improved breakdown voltage SOI LDMOS with a reduced cell pitch. J. Semicond., 2014, 35(2): 024007. doi: 10.1088/1674-4926/35/2/024007

[16]

Chong Wang, Chong Chen, Yunlong He, Xuefeng Zheng, Xiaohua Ma, Jincheng Zhang, Wei Mao, Yue Hao. Breakdown voltage and current collapse of F-plasma treated AlGaN/GaN HEMTs. J. Semicond., 2014, 35(1): 014008. doi: 10.1088/1674-4926/35/1/014008

[17]

Chi Yaqing, Hao Yue, Feng Hui, Fang Liang. Optimization of Breakdown Voltage and On-Resistance Based on the Analysisof the Boundary Curvature of the Drain Region in RF RESURF LDMOS. J. Semicond., 2006, 27(10): 1818.

[18]

Ma Juncai, Zhang Jincheng, Xue Junshuai, Lin Zhiyu, Liu Ziyang, Xue Xiaoyong, Ma Xiaohua, Hao Yue. Characteristics of AlGaN/GaN/AlGaN double heterojunction HEMTs with an improved breakdown voltage. J. Semicond., 2012, 33(1): 014002. doi: 10.1088/1674-4926/33/1/014002

[19]

Duan Baoxing, Yang Yintang, Zhang Bo, Li Zhaoji. An Ultra-Low Specific On-Resistance VDMOS with a Step Oxide-Bypassed Trench Structure. J. Semicond., 2008, 29(4): 677.

[20]

Huan Li, Haimeng Huang, Xingbi Chen. An improved SOI trench LDMOST with double vertical high-k insulator pillars. J. Semicond., 2018, 39(9): 094009. doi: 10.1088/1674-4926/39/9/094009

Search

Advanced Search >>

GET CITATION

X D Chen, J B Cheng, G B Teng, H D Guo. Novel trench gate field stop IGBT with trench shorted anode[J]. J. Semicond., 2016, 37(5): 054008. doi: 10.1088/1674-4926/37/5/054008.

Export: BibTex EndNote

Article Metrics

Article views: 719 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 15 August 2015 Manuscript revised: Online: Published: 01 May 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误