J. Semicond. > Volume 37 > Issue 11 > Article Number: 111001

GaN-based green laser diodes

Lingrong Jiang 1, 2, , Jianping Liu 1, 2, , , Aiqin Tian 1, 2, , Yang Cheng 1, 2, , Zengcheng Li 1, 2, , Liqun Zhang 1, 2, , Shuming Zhang 1, 2, , Deyao Li 1, 2, , M. Ikeda 1, 2, and Hui Yang 1, 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Recently, many groups have focused on the development of GaN-based green LDs to meet the demand for laser display. Great progresses have been achieved in the past few years even that many challenges exist. In this article, we analysis the challenges to develop GaN-based green LDs, and then the approaches to improve the green LD structure in the aspect of crystalline quality, electrical properties, and epitaxial layer structure are reviewed, especially the work we have done.

Key words: green LDsInGaNQCSEIn-rich

Abstract: Recently, many groups have focused on the development of GaN-based green LDs to meet the demand for laser display. Great progresses have been achieved in the past few years even that many challenges exist. In this article, we analysis the challenges to develop GaN-based green LDs, and then the approaches to improve the green LD structure in the aspect of crystalline quality, electrical properties, and epitaxial layer structure are reviewed, especially the work we have done.

Key words: green LDsInGaNQCSEIn-rich



References:

[1]

Queren D, Schillgalies M, Avramescu A. Quality and thermal stability of thin InGaN films[J]. J Cryst Growth, 2009, 311: 2933. doi: 10.1016/j.jcrysgro.2009.01.066

[2]

Schwarz U T, Scheibenzuber W G. The green laser diode:completing the rainbow[J]. Optics & Photonics News, 2011, 22(9): 38.

[3]

Jansen M, Carey G P, Carico R. Visible laser and laser array sources for projection display[J]. Proceedings of SPIE, 2006, 6135: 198.

[4]

Belyanin A A, Lutgen S, Smowton P M. Progress of blue and green InGaN laser diodes[J]. Proceedings of SPIE, 2010, 7616: 76160G. doi: 10.1117/12.842131

[5]

Sizov D, Bhat R, Zah C E. Gallium indium nitride-based green lasers[J]. J Lightw Technol, 2012, 30: 679. doi: 10.1109/JLT.2011.2176918

[6]

Ambacher O. Growth and applications of group Ⅲ nitrides[J]. J Phys D, 1998, 31: 2653. doi: 10.1088/0022-3727/31/20/001

[7]

Amano H. Development of GaN-based blue LEDs and metalorganic vapor phase epitaxy of GaN and related materials[J]. Prog Cryst Growth Charact Mater, 2016, 62: 126. doi: 10.1016/j.pcrysgrow.2016.04.006

[8]

Kozaki T, Matsumura H, Sugimoto Y. High-power and wide wavelength range GaN-based laser diodes[J]. Proceedings of SPIE, 2006, 6133: 16.

[9]

Nagahama S, Yanamoto T, Sano M. Wavelength dependence of InGaN laser diode characteristics[J]. Jpn J Appl Phys, 2001, 40: 3075. doi: 10.1143/JJAP.40.3075

[10]

Khan A. Laser diodes go green[J]. Nature Photonics, 2009, 3: 432. doi: 10.1038/nphoton.2009.124

[11]

Nakamura S, Senoh M, Iwasa N. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures[J]. Jpn J Appl Phys, 1995, 34: L797. doi: 10.1143/JJAP.34.L797

[12]

Oliver R A, Kappers M J, Humphreys C J. Growth modes in heteroepitaxy of InGaN on GaN[J]. J Appl Phys, 2005, 97: 8.

[13]

Kojima K, Schwarz U T, Funato M. Optical gain spectra for near UV to aquamarine (Al, In)GaN laser diodes[J]. Optics Express, 2007, 15: 7730. doi: 10.1364/OE.15.007730

[14]

Yang J, Zhao D G, Jiang D S. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes[J]. Optics Express, 2016, 24: 13824. doi: 10.1364/OE.24.013824

[15]

Follstaedt D M, Lee S R, Allerman A A. Strain relaxation in AlGaN multilayer structures by inclined dislocations[J]. J Appl Phys, 2009, 105: 083507. doi: 10.1063/1.3087515

[16]

Cho Y H, Gainer G H, Fischer A J. "S-shaped" temperaturedependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells[J]. Appl Phys Lett, 1998, 73: 1370. doi: 10.1063/1.122164

[17]

Bai J Z, Wang T, Sakai S. Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures[J]. J Appl Phys, 2000, 88: 4729. doi: 10.1063/1.1311831

[18]

Im J S, Off J, Sohmer A. Reduction of oscillator strength due to piezoelectric fields in GaN/AlxGa1-xN quantum wells[J]. Phys Rev B, 1998, 57: R9435. doi: 10.1103/PhysRevB.57.R9435

[19]

Peng L H, Chuang C, Lou L H. Piezoelectric effects in the optical properties of strained InGaN quantum wells[J]. Appl Phys Lett, 1999, 74: 795. doi: 10.1063/1.123370

[20]

Sala F D, Carlo A D, Lugli P. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures[J]. Appl Phys Lett, 1999, 74: 2002. doi: 10.1063/1.123727

[21]

Wang T, Bai J, Sakai S. Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes[J]. Appl Phys Lett, 2001, 78: 2617. doi: 10.1063/1.1368374

[22]

Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants of Ⅲ-V nitrides[J]. Phys Rev B, 1997, 56: R10024. doi: 10.1103/PhysRevB.56.R10024

[23]

Bernardini F, Fiorentini V. Polarization fields in nitride nanostructures:10 points to think about[J]. Appl Surf Sci, 2000, 166: 23. doi: 10.1016/S0169-4332(00)00434-7

[24]

Zhang M, Moore J, Mi Z. Polarization effects in selforganized InGaN/GaN quantum dots grown by RF-plasmaassisted molecular beam epitaxy[J]. J Cryst Growth, 2009, 311: 2069. doi: 10.1016/j.jcrysgro.2008.10.042

[25]

Della Sala F, Di Carlo A, Lugli P. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures[J]. Appl Phys Lett, 1999, 74: 2002. doi: 10.1063/1.123727

[26]

Huang C Y, Lin Y D, Tyagi A. Optical waveguide simulations for the optimization of InGaN-based green laser diodes[J]. J Appl Phys, 2010, 107: 7.

[27]

Masahiro A, Yusuke Y, Yohei E. Low threshold current density InGaN based 520-530 nm green laser diodes on semi-polar {2021} free-standing GaN substrates[J]. Appl Phys Express, 2010, 3: 121001. doi: 10.1143/APEX.3.121001

[28]

Yanashima K, Nakajima H, Tasai K. Long-lifetime true green laser diodes with output power over 50 mW above 525 nm grown on semipolar {2021} GaN substrates[J]. Appl Phys Express, 2012, 5: 82103. doi: 10.1143/APEX.5.082103

[29]

Hardy M T, Wu F, Hsu P S. True green semipolar InGaNbased laser diodes beyond critical thickness limits using limited area epitaxy[J]. J Appl Phys, 2013, 114: 183101. doi: 10.1063/1.4829699

[30]

Lin Y D, Yamamoto S, Huang C Y. High quality InGaN/AlGaN multiple quantum wells for semipolar InGaN green laser diodes[J]. Appl Phys Express, 2010, 3: 082001. doi: 10.1143/APEX.3.082001

[31]

Wu F, Lin Y D, Chakraborty A. Stacking fault formation in the long wavelength InGaN/GaN multiple quantum wells grown on m-plane GaN[J]. Appl Phys Lett, 2010, 96: 231912. doi: 10.1063/1.3447940

[32]

Lermer T, Schillgalies M, Breidenassel A. Waveguide design of green InGaN laser diodes[J]. Physica Status Solidi (a), 2010, 207: 1328. doi: 10.1002/pssa.200983410

[33]

Zhang L Q, Jiang D S, Zhu J J. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green[J]. J Appl Phys, 2009, 105: 023104. doi: 10.1063/1.3068182

[34]

Grzanka S, Franssen G, Targowski G. Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes[J]. Appl Phys Lett, 2007, 90: 103507. doi: 10.1063/1.2711765

[35]

Zhang S, Xie E, Yan T. Hole transport assisted by the piezoelectric field in In0:4Ga0:6N/GaN quantum wells under electrical injection[J]. J Appl Phys, 2015, 118: 125709. doi: 10.1063/1.4931575

[36]

Cheng Y, Liu J, Tian A. Hole transport in c-plane InGaNbased green laser diodes[J]. Appl Phys Lett, 2016, 109: 092104. doi: 10.1063/1.4961377

[37]

Sizov D, Zakharian A, Song K. Carrier transport in InGaN MQWs of aquamarine-and green-laser diodes[J]. IEEE J Sel Topics Quantum Electron, 2011, 17: 1390. doi: 10.1109/JSTQE.2011.2116770

[38]

Liu J P, Li Z C, Zhang L Q. Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region[J]. Appl Phys Express, 2014, 7: 111001. doi: 10.7567/APEX.7.111001

[39]

Yamamoto S, Zhao Y, Pan C. High-efficiency singlequantum-well green and yellow-green light-emitting diodes on semipolar (2021) GaN substrates[J]. Appl Phys Express, 2010, 3: 122102. doi: 10.1143/APEX.3.122102

[40]

Chung R B, Lin Y, Koslow I. Electroluminescence characterization of (2021) InGaN/GaN light emitting diodes with various wavelengths[J]. Jpn J Appl Phys, 2010, 49: 70203. doi: 10.1143/JJAP.49.070203

[41]

Adachi M. InGaN based green laser diodes on semipolar GaN substrate[J]. Jpn J Appl Phys, 2014, 53: 100207. doi: 10.7567/JJAP.53.100207

[42]

Queren D, Avramescu A, Schillgalies M. Epitaxial design of 475 nm InGaN laser diodes with reduced wavelength shift[J]. Physica Status Solidi (c), 2009, 6(S2): S826. doi: 10.1002/pssc.v6.5s2

[43]

Funato M, Kim Y S, Hira T. Remarkably suppressed luminescence inhomogeneity in a (0001) InGaN green laser structure[J]. Appl Phys Express, 2013, 6: 111002. doi: 10.7567/APEX.6.111002

[44]

Ho I H, Stringfellow G B. Solid phase immiscibility in GaInN[J]. Appl Phys Lett, 1996, 69: 2701. doi: 10.1063/1.117683

[45]

Van Daele B, Van Tendeloo G, Jacobs K. Formation of metallic In in InGaN/GaN multiquantum wells[J]. Appl Phys Lett, 2004, 85: 4379. doi: 10.1063/1.1815054

[46]

Moon Y T, Kim D J, Song K M. Effects of thermal and hydrogen treatment on indium segregation in InGaN/GaN multiple quantum wells[J]. J Appl Phys, 2001, 89: 6514. doi: 10.1063/1.1370368

[47]

Suihkonen S, Svensk O, Lang T. The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency[J]. J Cryst Growth, 2007, 298: 740. doi: 10.1016/j.jcrysgro.2006.10.131

[48]

Li Z, Liu J, Feng M. Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth[J]. Appl Phys Lett, 2013, 103: 152109. doi: 10.1063/1.4824850

[49]

Yang J, Zhao D G, Jiang D S. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films[J]. J Appl Phys, 2014, 115: 163704. doi: 10.1063/1.4873957

[50]

Koleske D D, Wickenden A E, Henry R L. Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN[J]. J Cryst Growth, 2002, 242: 55. doi: 10.1016/S0022-0248(02)01348-9

[51]

Parish G, Keller S, Denbaars S P. SIMS investigations into the effect of growth conditions on residual impurity and silicon incorporation in GaN and AlxGa1-xN[J]. J Electron Mater, 2000, 29: 15. doi: 10.1007/s11664-000-0087-3

[52]

Chen J, Forsberg U, Janzen E. Impact of residual carbon on twodimensional electron gas properties in AlxGa1-xN/GaN heterostructure[J]. Appl Phys Lett, 2013, 102: 193506. doi: 10.1063/1.4804600

[53]

Tian A, Liu J, Ikeda M. Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN:Mg cladding layer[J]. Physica Status Solidi (c), 2015, 13: 245.

[54]

Tian A, Liu J, Ikeda M. Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity[J]. Appl Phys Express, 2015, 8: 051001. doi: 10.7567/APEX.8.051001

[55]

Suzuki M, Uenoyama T, Yanase A. First-principles calculations of effective-mass parameters of AlN and GaN[J]. Phys Rev B, 1995, 52: 8132. doi: 10.1103/PhysRevB.52.8132

[56]

Mnatsakanov T T, Levinshtein M E, Pomortseva L I. Carrier mobility model for GaN[J]. Solid-State Electron, 2003, 47: 111. doi: 10.1016/S0038-1101(02)00256-3

[57]

Tanaka T, Watanabe A, Amano H. p-type conduction in Mg-doped GaN and Al0:08Ga0:92N grown by metalorganic vapor phase epitaxy[J]. Appl Phys Lett, 1994, 65: 593. doi: 10.1063/1.112309

[58]

Liu J P, Ryou J H, Dupuis R D. Barrier effect on hole transport and carrier distribution in InGaN=GaN multiple quantum well visible light-emitting diodes[J]. Appl Phys Lett, 2008, 93: 021102. doi: 10.1063/1.2957667

[59]

David A, Grundmann M J, Kaeding J K. Carrier distribution in (0001) InGaN=GaN multiple quantum well light-emitting diodes[J]. Appl Phys Lett, 2008, 92: 053502. doi: 10.1063/1.2839305

[60]

Jung E, Hwang G, Chung J. Investigating the origin of efficiency droop by profiling the temperature across the multiquantum well of an operating light-emitting diode[J]. Appl Phys Lett, 2015, 106: 041114. doi: 10.1063/1.4907177

[61]

Meyaard D S, Shan Q, Dai Q. On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes[J]. Appl Phys Lett, 2011, 99: 041112. doi: 10.1063/1.3618673

[62]

Meyaard D S, Lin G B, Shan Q. Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes[J]. Appl Phys Lett, 2011, 99: 251115. doi: 10.1063/1.3671395

[63]

Wang J, Wang L, Zhao W. Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization[J]. Appl Phys Lett, 2010, 97: 201112. doi: 10.1063/1.3520139

[64]

Vampola K J, Iza M, Keller S. Measurement of electron overflow in 450 nm InGaN light-emitting diode structures[J]. Appl Phys Lett, 2009, 94: 061116. doi: 10.1063/1.3081059

[65]

Kim M H, Schubert M F, Dai Q. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Appl Phys Lett, 2007, 91: 183507. doi: 10.1063/1.2800290

[66]

Le L, Zhao D, Jiang D. Utilization of polarization-inverted AlInGaN or relatively thinner AlGaN electron blocking layer in InGaN-based blue-violet laser diodes[J]. J Vac Sci Technol B, 2015, 33: 011209. doi: 10.1116/1.4905430

[67]

Le L, Zhao D, Jiang D. Suppression of electron leakage by inserting a thin undoped InGaN layer prior to electron blocking layer in InGaN-based blue-violet laser diodes[J]. Opt Express, 2014, 22: 11392. doi: 10.1364/OE.22.011392

[68]

Yang W, Li D, Liu N. Improvement of hole injection and electron overflow by a tapered AlGaN electron blocking layer in InGaN-based blue laser diodes[J]. Appl Phys Lett, 2012, 100: 031105. doi: 10.1063/1.3678197

[69]

Zhang D, Liu Z C, Hu X D. An improved multi-layer stopper in a GaN-based laser diode[J]. Semicond Sci Technol, 2009, 24: 045003. doi: 10.1088/0268-1242/24/4/045003

[70]

Lee S N, Cho S, Ryu H. High-power GaN-based blue-violet laser diodes with AlGaN/GaN multiquantum barriers[J]. Appl Phys Lett, 2006, 88: 1101.

[71]

Kuo Y K, Chang Y A. Effects of electronic current overflow and inhomogeneous carrier distribution on InGaN quantum-well laser performance[J]. IEEE J Quantum Electron, 2004, 40: 437. doi: 10.1109/JQE.2004.826437

[72]

Sizov D S, Bhat R, Zakharian A. Carrier transport in InGaN MQWs of aquamarine-and green-laser diodes[J]. IEEE J Sele Topics Quantum Electron, 2011, 17: 1390. doi: 10.1109/JSTQE.2011.2116770

[73]

Sizov D S, Bhat R, Zakharian A. Impact of carrier transport on aquamarine-green laser performance[J]. Appl Phys Express, 2010, 3: 122101. doi: 10.1143/APEX.3.122101

[74]

Hager T, Binder M, Brüderl G. Carrier transport in green AlInGaN based structures on c-plane substrates[J]. Appl Phys Lett, 2013, 102: 231102. doi: 10.1063/1.4809833

[75]

Hager T, Brüderl G, Lermer T. Current dependence of electro-optical parameters in green and blue (AlIn)GaN laser diodes[J]. Appl Phys Lett, 2012, 101: 171109. doi: 10.1063/1.4764067

[76]

Wen P Y, Zhang S M, Li D Y. Identification of degradation mechanisms of blue InGaN/GaN laser diodes[J]. J Phys D, 2011, 48: 415101.

[77]

Miyoshi T, Masui S, Okada T. 510-515 nm InGaN-based green laser diodes on c-plane GaN substrate[J]. Appl Phys Express, 2009, 2: 062201. doi: 10.1143/APEX.2.062201

[78]

Miyoshi T, Masui S, Okada T. InGaN-based 518 and 488 nm laser diodes on c-plane GaN substrate[J]. Physica Status Solidi (a), 2010, 207: 1389. doi: 10.1002/pssa.200983446

[79]

Nagahama S, Miyoshi T, Kasahara D, et al. Watt-class AlInGaN blue and green laser diodes. The 2nd Display Conference (LDC' 13), Yokohama, Japan, 2013

[80]

Queren D, Avramescu A, Breidenassel A. 500 nm electrically driven InGaN based laser diodes[J]. Appl Phys Lett, 2009, 94: 81119. doi: 10.1063/1.3089573

[81]

Lutgen S, Avramescu A, Lermer T. True green InGaN laser diodes[J]. Physica Status Solidi (a), 2010, 207: 1318. doi: 10.1002/pssa.200983620

[82]

Avramescu A, Lermer T, Muller J. True green laser diodes at 524 nm with 50 mW continuous wave output power on c-plane GaN[J]. Appl Phys Express, 2010, 3: 61003. doi: 10.1143/APEX.3.061003

[83]

Vierheilig C, Eichler C, Tautz S. Beyond blue pico laser:development of high power blue and low power direct green[J]. Proceedings of SPIE, 2012, 8277: 13.

[84]

Hager T, Strauß U, Eichler C. Power blue and green laser diodes and their applications[J]. Proceedings of SPIE, 2013, 8640: 86400G. doi: 10.1117/12.2006220

[85]

Zhang M, Bhattacharya P, Guo W. InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop[J]. Appl Phys Lett, 2010, 97: 011103. doi: 10.1063/1.3460921

[86]

Frost T, Banerjee A, Sun K. InGaN/GaN quantum dot red (λ=630 nm) laser[J]. J Quantum Electron, 2013, 49: 923. doi: 10.1109/JQE.2013.2281062

[87]

Tian A Q, Liu J P, Zhang L Q, et al. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region. Appl Phys Lett, submitted, 2016

[88]

Yusuke Y, Masahiro A, Yohei E. Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar {2021} GaN substrates[J]. Appl Phys Express, 2009, 2: 092101. doi: 10.1143/APEX.2.092101

[89]

Anurag T, Robert M F, Kathryn M K. AlGaN-cladding free green semipolar GaN based laser diode with a lasing wavelength of 506.4 nm[J]. Appl Phys Express, 2010, 3: 0110002.

[90]

James W R, Mathew C S, Christiane P. High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates[J]. Appl Phys Express, 2010, 3: 112101. doi: 10.1143/APEX.3.112101

[91]

Schmidt M C, Poblenz C, Chang Y C. High-performance blue and green laser diodes based on nonpolar/semipolar GaN substrates[J]. Proceedings of SPIE, 2011, 8039: 80390D. doi: 10.1117/12.884458

[92]

Sizov D, Heberle A P, Visovsky N J. True-green (1122) plane optically pumped laser with cleaved m-plane facets[J]. Appl Phys Lett, 2011, 99: 41117. doi: 10.1063/1.3614436

[93]

Okamoto K, Kashiwagi J, Tanaka T. Nonpolar m-plane InGaN multiple quantum well laser diodes with a lasing wavelength of 499.8 nm[J]. Appl Phys Lett, 2009, 94: 71105. doi: 10.1063/1.3078818

[1]

Queren D, Schillgalies M, Avramescu A. Quality and thermal stability of thin InGaN films[J]. J Cryst Growth, 2009, 311: 2933. doi: 10.1016/j.jcrysgro.2009.01.066

[2]

Schwarz U T, Scheibenzuber W G. The green laser diode:completing the rainbow[J]. Optics & Photonics News, 2011, 22(9): 38.

[3]

Jansen M, Carey G P, Carico R. Visible laser and laser array sources for projection display[J]. Proceedings of SPIE, 2006, 6135: 198.

[4]

Belyanin A A, Lutgen S, Smowton P M. Progress of blue and green InGaN laser diodes[J]. Proceedings of SPIE, 2010, 7616: 76160G. doi: 10.1117/12.842131

[5]

Sizov D, Bhat R, Zah C E. Gallium indium nitride-based green lasers[J]. J Lightw Technol, 2012, 30: 679. doi: 10.1109/JLT.2011.2176918

[6]

Ambacher O. Growth and applications of group Ⅲ nitrides[J]. J Phys D, 1998, 31: 2653. doi: 10.1088/0022-3727/31/20/001

[7]

Amano H. Development of GaN-based blue LEDs and metalorganic vapor phase epitaxy of GaN and related materials[J]. Prog Cryst Growth Charact Mater, 2016, 62: 126. doi: 10.1016/j.pcrysgrow.2016.04.006

[8]

Kozaki T, Matsumura H, Sugimoto Y. High-power and wide wavelength range GaN-based laser diodes[J]. Proceedings of SPIE, 2006, 6133: 16.

[9]

Nagahama S, Yanamoto T, Sano M. Wavelength dependence of InGaN laser diode characteristics[J]. Jpn J Appl Phys, 2001, 40: 3075. doi: 10.1143/JJAP.40.3075

[10]

Khan A. Laser diodes go green[J]. Nature Photonics, 2009, 3: 432. doi: 10.1038/nphoton.2009.124

[11]

Nakamura S, Senoh M, Iwasa N. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures[J]. Jpn J Appl Phys, 1995, 34: L797. doi: 10.1143/JJAP.34.L797

[12]

Oliver R A, Kappers M J, Humphreys C J. Growth modes in heteroepitaxy of InGaN on GaN[J]. J Appl Phys, 2005, 97: 8.

[13]

Kojima K, Schwarz U T, Funato M. Optical gain spectra for near UV to aquamarine (Al, In)GaN laser diodes[J]. Optics Express, 2007, 15: 7730. doi: 10.1364/OE.15.007730

[14]

Yang J, Zhao D G, Jiang D S. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes[J]. Optics Express, 2016, 24: 13824. doi: 10.1364/OE.24.013824

[15]

Follstaedt D M, Lee S R, Allerman A A. Strain relaxation in AlGaN multilayer structures by inclined dislocations[J]. J Appl Phys, 2009, 105: 083507. doi: 10.1063/1.3087515

[16]

Cho Y H, Gainer G H, Fischer A J. "S-shaped" temperaturedependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells[J]. Appl Phys Lett, 1998, 73: 1370. doi: 10.1063/1.122164

[17]

Bai J Z, Wang T, Sakai S. Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures[J]. J Appl Phys, 2000, 88: 4729. doi: 10.1063/1.1311831

[18]

Im J S, Off J, Sohmer A. Reduction of oscillator strength due to piezoelectric fields in GaN/AlxGa1-xN quantum wells[J]. Phys Rev B, 1998, 57: R9435. doi: 10.1103/PhysRevB.57.R9435

[19]

Peng L H, Chuang C, Lou L H. Piezoelectric effects in the optical properties of strained InGaN quantum wells[J]. Appl Phys Lett, 1999, 74: 795. doi: 10.1063/1.123370

[20]

Sala F D, Carlo A D, Lugli P. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures[J]. Appl Phys Lett, 1999, 74: 2002. doi: 10.1063/1.123727

[21]

Wang T, Bai J, Sakai S. Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes[J]. Appl Phys Lett, 2001, 78: 2617. doi: 10.1063/1.1368374

[22]

Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants of Ⅲ-V nitrides[J]. Phys Rev B, 1997, 56: R10024. doi: 10.1103/PhysRevB.56.R10024

[23]

Bernardini F, Fiorentini V. Polarization fields in nitride nanostructures:10 points to think about[J]. Appl Surf Sci, 2000, 166: 23. doi: 10.1016/S0169-4332(00)00434-7

[24]

Zhang M, Moore J, Mi Z. Polarization effects in selforganized InGaN/GaN quantum dots grown by RF-plasmaassisted molecular beam epitaxy[J]. J Cryst Growth, 2009, 311: 2069. doi: 10.1016/j.jcrysgro.2008.10.042

[25]

Della Sala F, Di Carlo A, Lugli P. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures[J]. Appl Phys Lett, 1999, 74: 2002. doi: 10.1063/1.123727

[26]

Huang C Y, Lin Y D, Tyagi A. Optical waveguide simulations for the optimization of InGaN-based green laser diodes[J]. J Appl Phys, 2010, 107: 7.

[27]

Masahiro A, Yusuke Y, Yohei E. Low threshold current density InGaN based 520-530 nm green laser diodes on semi-polar {2021} free-standing GaN substrates[J]. Appl Phys Express, 2010, 3: 121001. doi: 10.1143/APEX.3.121001

[28]

Yanashima K, Nakajima H, Tasai K. Long-lifetime true green laser diodes with output power over 50 mW above 525 nm grown on semipolar {2021} GaN substrates[J]. Appl Phys Express, 2012, 5: 82103. doi: 10.1143/APEX.5.082103

[29]

Hardy M T, Wu F, Hsu P S. True green semipolar InGaNbased laser diodes beyond critical thickness limits using limited area epitaxy[J]. J Appl Phys, 2013, 114: 183101. doi: 10.1063/1.4829699

[30]

Lin Y D, Yamamoto S, Huang C Y. High quality InGaN/AlGaN multiple quantum wells for semipolar InGaN green laser diodes[J]. Appl Phys Express, 2010, 3: 082001. doi: 10.1143/APEX.3.082001

[31]

Wu F, Lin Y D, Chakraborty A. Stacking fault formation in the long wavelength InGaN/GaN multiple quantum wells grown on m-plane GaN[J]. Appl Phys Lett, 2010, 96: 231912. doi: 10.1063/1.3447940

[32]

Lermer T, Schillgalies M, Breidenassel A. Waveguide design of green InGaN laser diodes[J]. Physica Status Solidi (a), 2010, 207: 1328. doi: 10.1002/pssa.200983410

[33]

Zhang L Q, Jiang D S, Zhu J J. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green[J]. J Appl Phys, 2009, 105: 023104. doi: 10.1063/1.3068182

[34]

Grzanka S, Franssen G, Targowski G. Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes[J]. Appl Phys Lett, 2007, 90: 103507. doi: 10.1063/1.2711765

[35]

Zhang S, Xie E, Yan T. Hole transport assisted by the piezoelectric field in In0:4Ga0:6N/GaN quantum wells under electrical injection[J]. J Appl Phys, 2015, 118: 125709. doi: 10.1063/1.4931575

[36]

Cheng Y, Liu J, Tian A. Hole transport in c-plane InGaNbased green laser diodes[J]. Appl Phys Lett, 2016, 109: 092104. doi: 10.1063/1.4961377

[37]

Sizov D, Zakharian A, Song K. Carrier transport in InGaN MQWs of aquamarine-and green-laser diodes[J]. IEEE J Sel Topics Quantum Electron, 2011, 17: 1390. doi: 10.1109/JSTQE.2011.2116770

[38]

Liu J P, Li Z C, Zhang L Q. Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region[J]. Appl Phys Express, 2014, 7: 111001. doi: 10.7567/APEX.7.111001

[39]

Yamamoto S, Zhao Y, Pan C. High-efficiency singlequantum-well green and yellow-green light-emitting diodes on semipolar (2021) GaN substrates[J]. Appl Phys Express, 2010, 3: 122102. doi: 10.1143/APEX.3.122102

[40]

Chung R B, Lin Y, Koslow I. Electroluminescence characterization of (2021) InGaN/GaN light emitting diodes with various wavelengths[J]. Jpn J Appl Phys, 2010, 49: 70203. doi: 10.1143/JJAP.49.070203

[41]

Adachi M. InGaN based green laser diodes on semipolar GaN substrate[J]. Jpn J Appl Phys, 2014, 53: 100207. doi: 10.7567/JJAP.53.100207

[42]

Queren D, Avramescu A, Schillgalies M. Epitaxial design of 475 nm InGaN laser diodes with reduced wavelength shift[J]. Physica Status Solidi (c), 2009, 6(S2): S826. doi: 10.1002/pssc.v6.5s2

[43]

Funato M, Kim Y S, Hira T. Remarkably suppressed luminescence inhomogeneity in a (0001) InGaN green laser structure[J]. Appl Phys Express, 2013, 6: 111002. doi: 10.7567/APEX.6.111002

[44]

Ho I H, Stringfellow G B. Solid phase immiscibility in GaInN[J]. Appl Phys Lett, 1996, 69: 2701. doi: 10.1063/1.117683

[45]

Van Daele B, Van Tendeloo G, Jacobs K. Formation of metallic In in InGaN/GaN multiquantum wells[J]. Appl Phys Lett, 2004, 85: 4379. doi: 10.1063/1.1815054

[46]

Moon Y T, Kim D J, Song K M. Effects of thermal and hydrogen treatment on indium segregation in InGaN/GaN multiple quantum wells[J]. J Appl Phys, 2001, 89: 6514. doi: 10.1063/1.1370368

[47]

Suihkonen S, Svensk O, Lang T. The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency[J]. J Cryst Growth, 2007, 298: 740. doi: 10.1016/j.jcrysgro.2006.10.131

[48]

Li Z, Liu J, Feng M. Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth[J]. Appl Phys Lett, 2013, 103: 152109. doi: 10.1063/1.4824850

[49]

Yang J, Zhao D G, Jiang D S. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films[J]. J Appl Phys, 2014, 115: 163704. doi: 10.1063/1.4873957

[50]

Koleske D D, Wickenden A E, Henry R L. Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN[J]. J Cryst Growth, 2002, 242: 55. doi: 10.1016/S0022-0248(02)01348-9

[51]

Parish G, Keller S, Denbaars S P. SIMS investigations into the effect of growth conditions on residual impurity and silicon incorporation in GaN and AlxGa1-xN[J]. J Electron Mater, 2000, 29: 15. doi: 10.1007/s11664-000-0087-3

[52]

Chen J, Forsberg U, Janzen E. Impact of residual carbon on twodimensional electron gas properties in AlxGa1-xN/GaN heterostructure[J]. Appl Phys Lett, 2013, 102: 193506. doi: 10.1063/1.4804600

[53]

Tian A, Liu J, Ikeda M. Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN:Mg cladding layer[J]. Physica Status Solidi (c), 2015, 13: 245.

[54]

Tian A, Liu J, Ikeda M. Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity[J]. Appl Phys Express, 2015, 8: 051001. doi: 10.7567/APEX.8.051001

[55]

Suzuki M, Uenoyama T, Yanase A. First-principles calculations of effective-mass parameters of AlN and GaN[J]. Phys Rev B, 1995, 52: 8132. doi: 10.1103/PhysRevB.52.8132

[56]

Mnatsakanov T T, Levinshtein M E, Pomortseva L I. Carrier mobility model for GaN[J]. Solid-State Electron, 2003, 47: 111. doi: 10.1016/S0038-1101(02)00256-3

[57]

Tanaka T, Watanabe A, Amano H. p-type conduction in Mg-doped GaN and Al0:08Ga0:92N grown by metalorganic vapor phase epitaxy[J]. Appl Phys Lett, 1994, 65: 593. doi: 10.1063/1.112309

[58]

Liu J P, Ryou J H, Dupuis R D. Barrier effect on hole transport and carrier distribution in InGaN=GaN multiple quantum well visible light-emitting diodes[J]. Appl Phys Lett, 2008, 93: 021102. doi: 10.1063/1.2957667

[59]

David A, Grundmann M J, Kaeding J K. Carrier distribution in (0001) InGaN=GaN multiple quantum well light-emitting diodes[J]. Appl Phys Lett, 2008, 92: 053502. doi: 10.1063/1.2839305

[60]

Jung E, Hwang G, Chung J. Investigating the origin of efficiency droop by profiling the temperature across the multiquantum well of an operating light-emitting diode[J]. Appl Phys Lett, 2015, 106: 041114. doi: 10.1063/1.4907177

[61]

Meyaard D S, Shan Q, Dai Q. On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes[J]. Appl Phys Lett, 2011, 99: 041112. doi: 10.1063/1.3618673

[62]

Meyaard D S, Lin G B, Shan Q. Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes[J]. Appl Phys Lett, 2011, 99: 251115. doi: 10.1063/1.3671395

[63]

Wang J, Wang L, Zhao W. Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization[J]. Appl Phys Lett, 2010, 97: 201112. doi: 10.1063/1.3520139

[64]

Vampola K J, Iza M, Keller S. Measurement of electron overflow in 450 nm InGaN light-emitting diode structures[J]. Appl Phys Lett, 2009, 94: 061116. doi: 10.1063/1.3081059

[65]

Kim M H, Schubert M F, Dai Q. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Appl Phys Lett, 2007, 91: 183507. doi: 10.1063/1.2800290

[66]

Le L, Zhao D, Jiang D. Utilization of polarization-inverted AlInGaN or relatively thinner AlGaN electron blocking layer in InGaN-based blue-violet laser diodes[J]. J Vac Sci Technol B, 2015, 33: 011209. doi: 10.1116/1.4905430

[67]

Le L, Zhao D, Jiang D. Suppression of electron leakage by inserting a thin undoped InGaN layer prior to electron blocking layer in InGaN-based blue-violet laser diodes[J]. Opt Express, 2014, 22: 11392. doi: 10.1364/OE.22.011392

[68]

Yang W, Li D, Liu N. Improvement of hole injection and electron overflow by a tapered AlGaN electron blocking layer in InGaN-based blue laser diodes[J]. Appl Phys Lett, 2012, 100: 031105. doi: 10.1063/1.3678197

[69]

Zhang D, Liu Z C, Hu X D. An improved multi-layer stopper in a GaN-based laser diode[J]. Semicond Sci Technol, 2009, 24: 045003. doi: 10.1088/0268-1242/24/4/045003

[70]

Lee S N, Cho S, Ryu H. High-power GaN-based blue-violet laser diodes with AlGaN/GaN multiquantum barriers[J]. Appl Phys Lett, 2006, 88: 1101.

[71]

Kuo Y K, Chang Y A. Effects of electronic current overflow and inhomogeneous carrier distribution on InGaN quantum-well laser performance[J]. IEEE J Quantum Electron, 2004, 40: 437. doi: 10.1109/JQE.2004.826437

[72]

Sizov D S, Bhat R, Zakharian A. Carrier transport in InGaN MQWs of aquamarine-and green-laser diodes[J]. IEEE J Sele Topics Quantum Electron, 2011, 17: 1390. doi: 10.1109/JSTQE.2011.2116770

[73]

Sizov D S, Bhat R, Zakharian A. Impact of carrier transport on aquamarine-green laser performance[J]. Appl Phys Express, 2010, 3: 122101. doi: 10.1143/APEX.3.122101

[74]

Hager T, Binder M, Brüderl G. Carrier transport in green AlInGaN based structures on c-plane substrates[J]. Appl Phys Lett, 2013, 102: 231102. doi: 10.1063/1.4809833

[75]

Hager T, Brüderl G, Lermer T. Current dependence of electro-optical parameters in green and blue (AlIn)GaN laser diodes[J]. Appl Phys Lett, 2012, 101: 171109. doi: 10.1063/1.4764067

[76]

Wen P Y, Zhang S M, Li D Y. Identification of degradation mechanisms of blue InGaN/GaN laser diodes[J]. J Phys D, 2011, 48: 415101.

[77]

Miyoshi T, Masui S, Okada T. 510-515 nm InGaN-based green laser diodes on c-plane GaN substrate[J]. Appl Phys Express, 2009, 2: 062201. doi: 10.1143/APEX.2.062201

[78]

Miyoshi T, Masui S, Okada T. InGaN-based 518 and 488 nm laser diodes on c-plane GaN substrate[J]. Physica Status Solidi (a), 2010, 207: 1389. doi: 10.1002/pssa.200983446

[79]

Nagahama S, Miyoshi T, Kasahara D, et al. Watt-class AlInGaN blue and green laser diodes. The 2nd Display Conference (LDC' 13), Yokohama, Japan, 2013

[80]

Queren D, Avramescu A, Breidenassel A. 500 nm electrically driven InGaN based laser diodes[J]. Appl Phys Lett, 2009, 94: 81119. doi: 10.1063/1.3089573

[81]

Lutgen S, Avramescu A, Lermer T. True green InGaN laser diodes[J]. Physica Status Solidi (a), 2010, 207: 1318. doi: 10.1002/pssa.200983620

[82]

Avramescu A, Lermer T, Muller J. True green laser diodes at 524 nm with 50 mW continuous wave output power on c-plane GaN[J]. Appl Phys Express, 2010, 3: 61003. doi: 10.1143/APEX.3.061003

[83]

Vierheilig C, Eichler C, Tautz S. Beyond blue pico laser:development of high power blue and low power direct green[J]. Proceedings of SPIE, 2012, 8277: 13.

[84]

Hager T, Strauß U, Eichler C. Power blue and green laser diodes and their applications[J]. Proceedings of SPIE, 2013, 8640: 86400G. doi: 10.1117/12.2006220

[85]

Zhang M, Bhattacharya P, Guo W. InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop[J]. Appl Phys Lett, 2010, 97: 011103. doi: 10.1063/1.3460921

[86]

Frost T, Banerjee A, Sun K. InGaN/GaN quantum dot red (λ=630 nm) laser[J]. J Quantum Electron, 2013, 49: 923. doi: 10.1109/JQE.2013.2281062

[87]

Tian A Q, Liu J P, Zhang L Q, et al. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region. Appl Phys Lett, submitted, 2016

[88]

Yusuke Y, Masahiro A, Yohei E. Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar {2021} GaN substrates[J]. Appl Phys Express, 2009, 2: 092101. doi: 10.1143/APEX.2.092101

[89]

Anurag T, Robert M F, Kathryn M K. AlGaN-cladding free green semipolar GaN based laser diode with a lasing wavelength of 506.4 nm[J]. Appl Phys Express, 2010, 3: 0110002.

[90]

James W R, Mathew C S, Christiane P. High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates[J]. Appl Phys Express, 2010, 3: 112101. doi: 10.1143/APEX.3.112101

[91]

Schmidt M C, Poblenz C, Chang Y C. High-performance blue and green laser diodes based on nonpolar/semipolar GaN substrates[J]. Proceedings of SPIE, 2011, 8039: 80390D. doi: 10.1117/12.884458

[92]

Sizov D, Heberle A P, Visovsky N J. True-green (1122) plane optically pumped laser with cleaved m-plane facets[J]. Appl Phys Lett, 2011, 99: 41117. doi: 10.1063/1.3614436

[93]

Okamoto K, Kashiwagi J, Tanaka T. Nonpolar m-plane InGaN multiple quantum well laser diodes with a lasing wavelength of 499.8 nm[J]. Appl Phys Lett, 2009, 94: 71105. doi: 10.1063/1.3078818

[1]

Wen Bo, Zhou Jianjun, Jiang Ruolian, Xie Zili, Chen Dunjun, Ji Xiaoli, Han Ping, Zhang Rong, Zheng Youdou. Theoretical Calculation of Conversion Efficiency of InGaN Solar Cells. J. Semicond., 2007, 28(9): 1392.

[2]

Wang Lili, Wang Hui, Sun Xian, Wang Hai, Zhu Jianjun, Yang Hui, Liang Junwu. Influence of Temperature on MOCVD Growth of InGaN. J. Semicond., 2007, 28(S1): 257.

[3]

Wen Bo, Jiang Ruolian, Liu Chengxiang, Xie Zili, Zhou Jianjun, Han Ping, Zhang Rong, Zheng Youdou. Influence of Thermal Annealing on Properties of InGaN Films. J. Semicond., 2006, 27(S1): 92.

[4]

Yu Tongjun, Kang Xiangning, Qin Zhixin, Chen Zhizhong, Yang Zhijian, Hu Xiaodong, Zhang Guoyi. Strain Effect on Photoluminescence from InGaN/GaN and InGaN/AlGaN MQWs. J. Semicond., 2006, 27(S1): 20.

[5]

T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT. J. Semicond., 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003

[6]

Xiaojia Wan, Xiaoliang Wang, Hongling Xiao, Chun Feng, Lijuan Jiang, Shenqi Qu, Zhanguo Wang, Xun Hou. Investigation of the current collapse induced in InGaN back barrier AlGaN/GaN high electron mobility transistors. J. Semicond., 2013, 34(10): 104002. doi: 10.1088/1674-4926/34/10/104002

[7]

Ji Xiaoli, Yang Fuhua, Wang Junxi, Duan Ruifei, Ding Kai, Zeng Yiping, Wang Guohong, Li Jinmin. Luminescence distribution and hole transport in asymmetric InGaN multiple-quantum well light-emitting diodes. J. Semicond., 2010, 31(9): 094009. doi: 10.1088/1674-4926/31/9/094009

[8]

Liang Jing, Hongling Xiao, Xiaoliang Wang, Cuimei Wang, Qingwen Deng, Zhidong Li, Jieqin Ding, Zhanguo Wang, Xun Hou. Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate. J. Semicond., 2013, 34(12): 124004. doi: 10.1088/1674-4926/34/12/124004

[9]

Zhang Dongyan, Zheng Xinhe, Li Xuefei, Wu Yuanyuan, Wang Jianfeng, Yang Hui. Effects of growth temperature on high-quality In0.2Ga0.8N layers by plasma-assisted molecular beam epitaxy. J. Semicond., 2012, 33(10): 103001. doi: 10.1088/1674-4926/33/10/103001

[10]

Chen Xu, Changda Zheng, Xiaoming Wu, Shuan Pan, Xingan Jiang, Junlin Liu, Fengyi Jiang. Effects of V-pits covering layer position on the optoelectronic performance of InGaN green LEDs. J. Semicond., 2019, 40(5): 052801. doi: 10.1088/1674-4926/40/5/052801

[11]

, . . J. Semicond., 2000, 21(2): 105.

[12]

Shi Linyu, Zhang Jincheng, Wang Hao, Xue Junshuai, Ou Xinxiu, Fu Xiaofan, Chen Ke, Hao Yue. Growth of InGaN and double heterojunction structure with InGaN back barrier. J. Semicond., 2010, 31(12): 123001. doi: 10.1088/1674-4926/31/12/123001

[13]

Wang Xiaohua, Zhan Wang, Liu Guojun. Growth and Optical Characteristics of 408nm InGaN/GaN MQW LED. J. Semicond., 2007, 28(1): 104.

[14]

Ji Panfeng, Liu Naixin, Wei Xuecheng, Liu Zhe, Lu Hongxi, Wang Junxi, Li Jinmin. Influence of growth conditions on the V-defects in InGaN/GaN MQWs. J. Semicond., 2011, 32(10): 103001. doi: 10.1088/1674-4926/32/10/103001

[15]

Tao Tao, Zhang Zhao, Liu Lian, Su Hui, Xie Zili, Zhang Rong, Liu Bin, Xiu Xiangqian, Li Yi, Han Ping, Shi Yi, Zheng Youdou. Surface morphology and composition studies in InGaN/GaN film grown by MOCVD. J. Semicond., 2011, 32(8): 083002. doi: 10.1088/1674-4926/32/8/083002

[16]

Li Cuiyun, Zhu Hua, Mo Chunlan, Jiang Fengyi. Microstructure of an InGaN/GaN Multiple Quantum Well LED on Si (111) Substrate. J. Semicond., 2006, 27(11): 1950.

[17]

Haipeng Zhang, Qiang Zhang, Mi Lin, Weifeng Lü, Zhonghai Zhang, Jianling Bai, Jian He, Bin Wang, Dejun Wang. A GaN/InGaN/AlGaN MQW RTD for versatile MVL applications with improved logic stability. J. Semicond., 2018, 39(7): 074004. doi: 10.1088/1674-4926/39/7/074004

[18]

S.R. Routray, T.R. Lenka. Effect of metal-fingers/doped-ZnO transparent electrode on performance of GaN/InGaN solar cell. J. Semicond., 2017, 38(9): 092001. doi: 10.1088/1674-4926/38/9/092001

[19]

Chen Zhizhong, Xu Ke, Qin Zhixin, Yu Tongjun, Tong Yuzhen, Song Jinde, Lin Liang, Liu Peng, Qi Shengli, Zhang Guoyi. Origins of Double Emission Peaks in Electroluminescence Spectrum from InGaN/GaN MQW LED. J. Semicond., 2007, 28(7): 1121.

[20]

Jian Tang, Xiaoliang Wang, Hongling Xiao. Growth and characterization of InGaN back barrier HEMTs structure with a compositionally step-graded AlGaN layer. J. Semicond., 2014, 35(11): 113006. doi: 10.1088/1674-4926/35/11/113006

Search

Advanced Search >>

GET CITATION

L R Jiang, J P Liu, A Q Tian, Y Cheng, Z C Li, L Q Zhang, S M Zhang, D Y Li,M. Ikeda, H Yang. GaN-based green laser diodes[J]. J. Semicond., 2016, 37(11): 111001. doi: 10.1088/1674-4926/37/11/111001.

Export: BibTex EndNote

Article Metrics

Article views: 2373 Times PDF downloads: 76 Times Cited by: 0 Times

History

Manuscript received: 10 October 2016 Manuscript revised: Online: Published: 01 November 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误