ARTICLES

High-operating-temperature MWIR photodetector based on a InAs/GaSb superlattice grown by MOCVD

Xiujun Hao1, 2, Yan Teng1, He Zhu1, Jiafeng Liu1, Hong Zhu1, Yunlong Huai1, Meng Li1, 2, Baile Chen3, Yong Huang1, and Hui Yang1, 2

+ Author Affiliations

 Corresponding author: Yong Huang, yhuang2014@sinano.ac.cn

PDF

Turn off MathJax

Abstract: We demonstrate a high-operating-temperature (HOT) mid-wavelength InAs/GaSb superlattice heterojunction infrared photodetector grown by metal–organic chemical vapor deposition. High crystalline quality and the near-zero lattice mismatch of a InAs/GaSb superlattice on an InAs substrate were evidenced by high-resolution X-ray diffraction. At a bias voltage of –0.1 V and an operating temperature of 200 K, the device exhibited a 50% cutoff wavelength of ~ 4.9 μm, a dark current density of 0.012 A/cm2, and a peak specific detectivity of 2.3 × 109 cm·Hz1/2 /W.

Key words: HOTMWIRInAs/GaSb superlatticealuminum-freeMOCVD



[1]
Martyniuk P, Rogalski A. HOT infrared photodetectors. Opto Electron Rev, 2013, 21, 239 doi: 10.2478/s11772−013−0090−x
[2]
Markovitz T, Pivnik I, Calahorra Z, et al. Digital 640x512/15μm InSb detector for high frame rate, high sensitivity, and low power applications. Infrared Technology and Applications XXXVII, 2011, 8012, 80122Y doi: 10.1117/12.883345
[3]
Klipstein P, Aronov D, Ezra M B, et al. Recent progress in InSb based quantum detectors in Israel. Infrared Phys Technol, 2013, 59, 172 doi: 10.1016/j.infrared.2012.12.035
[4]
Jóźwikowski K, Kopytko M, Piotrowski J, et al. Near-room temperature MWIR HgCdTe photodiodes limited by vacancies and dislocations related to Shockley-Read-Hall centres. Solid State Electron, 2011, 63, 8 doi: 10.1016/j.sse.2011.05.030
[5]
Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors. J Appl Phys, 1987, 62, 2545 doi: 10.1063/1.339468
[6]
Grein C H, Young P M, Flatté M E, et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes. J Appl Phys, 1995, 78, 7143 doi: 10.1063/1.360422
[7]
Nguyen B M, Chen G X, Hoang M A, et al. Growth and characterization of long-wavelength infrared type-II superlattice photodiodes on a 3-in GaSb wafer. IEEE J Quantum Electron, 2011, 47, 686 doi: 10.1109/JQE.2010.2103049
[8]
Razeghi M, Abdollahi Pour S, Huang E K, et al. Type-II InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures. Opto Electron Rev, 2011, 19, 261 doi: 10.2478/s11772-011-0028-0
[9]
Höglund L, Asplund C, Marcks von Würtemberg R, et al. Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging. Infrared Phys Technol, 2017, 84, 28 doi: 10.1016/j.infrared.2017.03.002
[10]
Sun Y Y, Wang G W, Han X, et al. 320 × 256 high operating temperature mid-infrared focal plane arrays based on type-II InAs/GaSb superlattice. Superlattices Microstruct, 2017, 111, 783 doi: 10.1016/j.spmi.2017.07.037
[11]
Gautam N, Myers S, Barve A V, et al. Band engineered HOT midwave infrared detectors based on type-II InAs/GaSb strained layer superlattices. Infrared Phys Technol, 2013, 59, 72 doi: 10.1016/j.infrared.2012.12.017
[12]
Teng Y, Zhao Y, Wu Q H, et al. High-performance long-wavelength InAs/GaSb superlattice detectors grown by MOCVD. IEEE Photonics Technol Lett, 2019, 31, 185 doi: 10.1109/LPT.2018.2889575
[13]
Zhao Y, Teng Y, Hao X J, et al. Optimization of long-wavelength InAs/GaSb superlattice photodiodes with Al-free barriers. IEEE Photonics Technol Lett, 2020, 32, 19 doi: 10.1109/LPT.2019.2955562
[14]
Ting D Z Y, Soibel A, Höglund L, et al. Type-II superlattice infrared detectors. In: Advances in Infrared Photodetectors. Amsterdam: Elsevier, 2011
[15]
Li X, Zhao Y, Wu Q H, et al. Exploring the optimum growth conditions for InAs/GaSb and GaAs/GaSb superlattices on InAs substrates by metalorganic chemical vapor deposition. J Cryst Growth, 2018, 502, 71 doi: 10.1016/j.jcrysgro.2018.09.003
[16]
Soibel A, Keo S A, Fisher A, et al. High operating temperature nBn detector with monolithically integrated microlens. Appl Phys Lett, 2018, 112, 041105 doi: 10.1063/1.5011348
[17]
Ting D Z Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector. Appl Phys Lett, 2009, 95, 023508 doi: 10.1063/1.3177333
Fig. 1.  (Color online) (a) Energy-band diagram of the PNn device at 77 K. (b) Cross-section of the PNn detector, where 4/8 and 9/8 stand for 4 monolayer InAs/8 monolayer GaSb and 9 monolayer InAs/8 monolayer GaSb, respectively.

Fig. 2.  (Color online) HR-XRD of the PNn structure device and the corresponding simulation curve.

Fig. 3.  (Color online) (a) Jd versus voltage at different temperatures. (b) RA versus voltage at different temperatures.

Fig. 4.  (Color online) Jd as a function of temperature at a bias voltage of –0.1 V.

Fig. 5.  (Color online) Spectral responsivity (Rλ) of PNn device at different temperatures.

Fig. 6.  (Color online) Specific detectivity (D*) of the PNn device at different temperatures.

Table 1.   50% cutoff wavelengths at 78, 150, and 200 K.

Temperature (K) 78 150 200
λ50% cutoff (μm) 4.5 4.7 4.9
DownLoad: CSV
[1]
Martyniuk P, Rogalski A. HOT infrared photodetectors. Opto Electron Rev, 2013, 21, 239 doi: 10.2478/s11772−013−0090−x
[2]
Markovitz T, Pivnik I, Calahorra Z, et al. Digital 640x512/15μm InSb detector for high frame rate, high sensitivity, and low power applications. Infrared Technology and Applications XXXVII, 2011, 8012, 80122Y doi: 10.1117/12.883345
[3]
Klipstein P, Aronov D, Ezra M B, et al. Recent progress in InSb based quantum detectors in Israel. Infrared Phys Technol, 2013, 59, 172 doi: 10.1016/j.infrared.2012.12.035
[4]
Jóźwikowski K, Kopytko M, Piotrowski J, et al. Near-room temperature MWIR HgCdTe photodiodes limited by vacancies and dislocations related to Shockley-Read-Hall centres. Solid State Electron, 2011, 63, 8 doi: 10.1016/j.sse.2011.05.030
[5]
Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors. J Appl Phys, 1987, 62, 2545 doi: 10.1063/1.339468
[6]
Grein C H, Young P M, Flatté M E, et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes. J Appl Phys, 1995, 78, 7143 doi: 10.1063/1.360422
[7]
Nguyen B M, Chen G X, Hoang M A, et al. Growth and characterization of long-wavelength infrared type-II superlattice photodiodes on a 3-in GaSb wafer. IEEE J Quantum Electron, 2011, 47, 686 doi: 10.1109/JQE.2010.2103049
[8]
Razeghi M, Abdollahi Pour S, Huang E K, et al. Type-II InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures. Opto Electron Rev, 2011, 19, 261 doi: 10.2478/s11772-011-0028-0
[9]
Höglund L, Asplund C, Marcks von Würtemberg R, et al. Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging. Infrared Phys Technol, 2017, 84, 28 doi: 10.1016/j.infrared.2017.03.002
[10]
Sun Y Y, Wang G W, Han X, et al. 320 × 256 high operating temperature mid-infrared focal plane arrays based on type-II InAs/GaSb superlattice. Superlattices Microstruct, 2017, 111, 783 doi: 10.1016/j.spmi.2017.07.037
[11]
Gautam N, Myers S, Barve A V, et al. Band engineered HOT midwave infrared detectors based on type-II InAs/GaSb strained layer superlattices. Infrared Phys Technol, 2013, 59, 72 doi: 10.1016/j.infrared.2012.12.017
[12]
Teng Y, Zhao Y, Wu Q H, et al. High-performance long-wavelength InAs/GaSb superlattice detectors grown by MOCVD. IEEE Photonics Technol Lett, 2019, 31, 185 doi: 10.1109/LPT.2018.2889575
[13]
Zhao Y, Teng Y, Hao X J, et al. Optimization of long-wavelength InAs/GaSb superlattice photodiodes with Al-free barriers. IEEE Photonics Technol Lett, 2020, 32, 19 doi: 10.1109/LPT.2019.2955562
[14]
Ting D Z Y, Soibel A, Höglund L, et al. Type-II superlattice infrared detectors. In: Advances in Infrared Photodetectors. Amsterdam: Elsevier, 2011
[15]
Li X, Zhao Y, Wu Q H, et al. Exploring the optimum growth conditions for InAs/GaSb and GaAs/GaSb superlattices on InAs substrates by metalorganic chemical vapor deposition. J Cryst Growth, 2018, 502, 71 doi: 10.1016/j.jcrysgro.2018.09.003
[16]
Soibel A, Keo S A, Fisher A, et al. High operating temperature nBn detector with monolithically integrated microlens. Appl Phys Lett, 2018, 112, 041105 doi: 10.1063/1.5011348
[17]
Ting D Z Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector. Appl Phys Lett, 2009, 95, 023508 doi: 10.1063/1.3177333
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2046 Times PDF downloads: 89 Times Cited by: 0 Times

    History

    Received: 31 May 2021 Revised: 19 June 2021 Online: Accepted Manuscript: 04 August 2021Uncorrected proof: 16 August 2021Published: 04 January 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiujun Hao, Yan Teng, He Zhu, Jiafeng Liu, Hong Zhu, Yunlong Huai, Meng Li, Baile Chen, Yong Huang, Hui Yang. High-operating-temperature MWIR photodetector based on a InAs/GaSb superlattice grown by MOCVD[J]. Journal of Semiconductors, 2022, 43(1): 012303. doi: 10.1088/1674-4926/43/1/012303 X J Hao, Y Teng, H Zhu, J F Liu, H Zhu, Y L Huai, M Li, B L Chen, Y Huang, H Yang, High-operating-temperature MWIR photodetector based on a InAs/GaSb superlattice grown by MOCVD[J]. J. Semicond., 2022, 43(1): 012303. doi: 10.1088/1674-4926/43/1/012303.Export: BibTex EndNote
      Citation:
      Xiujun Hao, Yan Teng, He Zhu, Jiafeng Liu, Hong Zhu, Yunlong Huai, Meng Li, Baile Chen, Yong Huang, Hui Yang. High-operating-temperature MWIR photodetector based on a InAs/GaSb superlattice grown by MOCVD[J]. Journal of Semiconductors, 2022, 43(1): 012303. doi: 10.1088/1674-4926/43/1/012303

      X J Hao, Y Teng, H Zhu, J F Liu, H Zhu, Y L Huai, M Li, B L Chen, Y Huang, H Yang, High-operating-temperature MWIR photodetector based on a InAs/GaSb superlattice grown by MOCVD[J]. J. Semicond., 2022, 43(1): 012303. doi: 10.1088/1674-4926/43/1/012303.
      Export: BibTex EndNote

      High-operating-temperature MWIR photodetector based on a InAs/GaSb superlattice grown by MOCVD

      doi: 10.1088/1674-4926/43/1/012303
      More Information
      • Author Bio:

        Xiujun Hao was born in Hebei, China. He received a BS degree from Suzhou University of Science and Technology in 2014. He is currently studying as a doctoral student in School of Physical Science and Technology, ShanghaiTech University, China. His major is Materials Science and Engineering and research interests are devices and nanostructures based on III–V compound semiconductors

        Yong Huang was born in Chongqing, China. He received a BS degree in Materials Science and Engineering from Tsinghua University in 2002 and a MS degree in Electronics and Optoelectronics from the Institute of Semiconductors, Chinese Academy of Sciences, in 2005 in Beijing, China. He earned a PhD degree in Electrical and Computer Engineering at Georgia Institute of Technology at Atlanta in 2010. He worked at IQE Inc. as a Senior Process Engineer from 2011 to 2014 at Taunton MA. He is currently a Professor at Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences. His research interests are photonic and electronic materials, devices, and nanostructures based on III-V compound semiconductors

      • Corresponding author: yhuang2014@sinano.ac.cn
      • Received Date: 2021-05-31
      • Revised Date: 2021-06-19
      • Published Date: 2022-01-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return