SEMICONDUCTOR DEVICES

The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors

Jiaming Luo1, 2, Min Guan1, , Yang Zhang1, 2, Liqiang Chen3 and Yiping Zeng1, 2

+ Author Affiliations

 Corresponding author: Min Guan, guanmin@semi.ac.cn

PDF

Turn off MathJax

Abstract: High electron mobility transistors (HEMT) have the potential to be used as high-sensitivity and real-time biosensors. HEMT biosensors have great market prospects. For the application of HEMT biosensors, the electric properties consistency of the inter-chip performance have an important influence on the stability and repeatability of the detection. In this research, we fabricated GaAs/AlGaAs HEMT biosensors of different epitaxial structures and device structures to study the electric properties consistency. We study the relationship between channel size and consistency. We investigated the distribution of device current with location on 2 inch GaAs wafer. Based on the studies, the optimal device of a GaAs HEMT biosensor is an A-type epitaxial structure, and a U-type device structure, L = 40 μm, W = 200 μm.

Key words: GaAs HEMTbiosensorelectrical properties



[1]
Li J D, Cheng J J, Miao B, et al. Label free electrical detection of prostate specific antigen with millimeter grade biomolecule-gated AlGaN/GaN high electron mobility transistors. Microsyst Technol, 2015, 21(7): 1489 doi: 10.1007/s00542-014-2303-8
[2]
Li J D, Cheng J J, Miao B, et al. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors. Acta Physica Sinica, 2014, 63(7): 070204
[3]
Espinosa N, Schwarz S U, Cimalla V, et al. Impedance characterization of DNA-functionalization layers on AlGaN/GaN high electron mobility transistors. Eurosensors, 2015, 120: 912
[4]
Zeggai O, Ould-Abbas A, Bouchaour M, et al. Biological detection by high electron mobility transistor (HEMT) based AlGaN/GaN. Phys Status Solidi C, 2014, 11: 274 doi: 10.1002/pssc.v11.2
[5]
Alur S, Gnanaprakasa T, Wang Y Q, et al. AlGaN/GaN HEMT based biosensor. ECS Trans, 2010, 52: 61
[6]
Halfaya Y, Bishop C, Soltani A, et al. Investigation of the performance of HEMT-based NO, NO2 and NH3 exhaust gas sensors for automotive antipollution systems. Sensors, 2016, 16(3): 273 doi: 10.3390/s16030273
[7]
Kang B S, Wang H T, Ren F, et al. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. J Appl Phys, 2008, 104(3): 031101 doi: 10.1063/1.2959429
[8]
Lee C M, Wong K M, Chen P, et al. GaN-based Lamb-wave mass-sensors on silicon substrates. IEEE Sensors, 2010: 2008
[9]
Alvarado S F, Riechert H, Christensen N E. Spontaneous spin polarization of photoelectrons from GaAs. Phys Rev Lett, 1985, 55(24): 2716 doi: 10.1103/PhysRevLett.55.2716
[10]
Pearton S J, Kang B S, Kim S K, et al. GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J Phys: Condes Matter, 2004, 16(29): R961 doi: 10.1088/0953-8984/16/29/R02
[11]
Lalinsky T, Drzik M, Vanko G, et al. Piezoelectric response of AlGaN/GaN-based circular-HEMT structures. Microelectron Eng, 2011, 88(8): 2424 doi: 10.1016/j.mee.2010.12.013
[12]
Le Boulbar E D, Edwards M J, Vittoz S, et al. Effect of bias conditions on pressure sensors based on AlGaN/GaN high electron mobility transistor. Sens Actuator A, 2013, 194: 247 doi: 10.1016/j.sna.2013.02.017
[13]
Myers M, Khir F L M, Podolska A, et al. Nitrate ion detection using AlGaN/GaN heterostructure-based devices without a reference electrode. Sens Actuators B, 2013, 181: 301 doi: 10.1016/j.snb.2013.02.006
[14]
Ma S W, Zhang X H, Liao Q L, et al. Enzymatic lactic acid sensing by In-doped ZnO nanowires functionalized AlGaAs/GaAs high electron mobility transistor. Sens Actuators B, 2015, 212: 41 doi: 10.1016/j.snb.2015.01.120
[15]
Wlodarski W B, Shanks R A. Application of GaAs, GaSb and InSb for pressure sensor design. Amsterdam: Elsevier, 1991
[16]
Schalwig J, Muller G, Eickhoff M, et al. Gas sensitive GaN/AlGaN-heterostructures. Sens Actuators B, 2002, 87(3): 425 doi: 10.1016/S0925-4005(02)00292-7
[17]
Bishop C, Halfaya Y, Soltani A, et al. Experimental study and device design of NO, NO2, and NH3 gas detection for a wide dynamic and large temperature range using Pt/AlGaN/GaN HEMT. IEEE Sensors J, 2016, 16(18): 6828 doi: 10.1109/JSEN.2016.2593050
[18]
Lee H H, Bae M, Jo S H, et al. Differential-mode HEMT-based biosensor for real-time and label-free detection of C-reactive protein. Sens Actuators B, 2016, 234: 316 doi: 10.1016/j.snb.2016.04.117
[19]
Lee H H, Bae M, Jo S H, et al. AlGaN/GaN high electron mobility transistor-based biosensor for the detection of C-reactive protein. Sensors, 2015, 15(8): 18416 doi: 10.3390/s150818416
[20]
Sarangadharan I, Regmi A, Chen Y W, et al. High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high electron mobility transistor (HEMT) biosensors. Biosens Bioelectron, 2018, 100: 282 doi: 10.1016/j.bios.2017.09.018
Fig. 1.  (Color online) The microscope image of device structure and details of channel size.

Fig. 2.  (Color online) (a) The comparison of ratio (δ/μ) of U-type and H-type device structure when the channel size is the same. (b) The comparison of ratio (δ/μ) of channel length when the device structure and channel width are the same. (c). The comparison of ratio (δ/μ) of channel width when the device structure and channel length are the same.

Fig. 3.  (Color online) The normalized current of A epitaxial structure, U-type device structure, L = 40 μm, W = 200 μm HEMT device distribution with location on 2-inch GaAs substrate.

Table 1.   The statistical results of the source–drain current ISD (mA) of each device when the source–drain voltage is 1 V, and source–gate voltage is 0 V (VSD = 1 V; VSG = 0 V).

ISD (mA) A (100 s) B (80 s) C (double-δ)
U-type L = 40 μm; W = 50 μm 0.82 ± 0.05 0.27 ± 0.03 0.09 ± 0.01
L = 20 μm; W = 50 μm 1.80 ± 0.12 0.60 ± 0.08 0.21 ± 0.02
L = 40 μm; W = 200 μm 3.26 ± 0.31 1.16 ± 0.14 0.41 ± 0.02
L = 20 μm; W = 200 μm 6.85 ± 0.72 2.45 ± 0.25 0.91 ± 0.09
H-type L = 40 μm; W = 50 μm 0.55 ± 0.07 0.09 ± 0.01 0.08 ± 0.01
L = 20 μm; W = 50 μm 1.04 ± 0.10 0.19 ± 0.03 0.17 ± 0.03
L = 40 μm; W = 200 μm 2.81 ± 0.41 0.56 ± 0.14 0.39 ± 0.03
L = 20 μm; W = 200 μm 4.55 ± 0.71 0.86 ± 0.14 0.80 ± 0.07
DownLoad: CSV
[1]
Li J D, Cheng J J, Miao B, et al. Label free electrical detection of prostate specific antigen with millimeter grade biomolecule-gated AlGaN/GaN high electron mobility transistors. Microsyst Technol, 2015, 21(7): 1489 doi: 10.1007/s00542-014-2303-8
[2]
Li J D, Cheng J J, Miao B, et al. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors. Acta Physica Sinica, 2014, 63(7): 070204
[3]
Espinosa N, Schwarz S U, Cimalla V, et al. Impedance characterization of DNA-functionalization layers on AlGaN/GaN high electron mobility transistors. Eurosensors, 2015, 120: 912
[4]
Zeggai O, Ould-Abbas A, Bouchaour M, et al. Biological detection by high electron mobility transistor (HEMT) based AlGaN/GaN. Phys Status Solidi C, 2014, 11: 274 doi: 10.1002/pssc.v11.2
[5]
Alur S, Gnanaprakasa T, Wang Y Q, et al. AlGaN/GaN HEMT based biosensor. ECS Trans, 2010, 52: 61
[6]
Halfaya Y, Bishop C, Soltani A, et al. Investigation of the performance of HEMT-based NO, NO2 and NH3 exhaust gas sensors for automotive antipollution systems. Sensors, 2016, 16(3): 273 doi: 10.3390/s16030273
[7]
Kang B S, Wang H T, Ren F, et al. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. J Appl Phys, 2008, 104(3): 031101 doi: 10.1063/1.2959429
[8]
Lee C M, Wong K M, Chen P, et al. GaN-based Lamb-wave mass-sensors on silicon substrates. IEEE Sensors, 2010: 2008
[9]
Alvarado S F, Riechert H, Christensen N E. Spontaneous spin polarization of photoelectrons from GaAs. Phys Rev Lett, 1985, 55(24): 2716 doi: 10.1103/PhysRevLett.55.2716
[10]
Pearton S J, Kang B S, Kim S K, et al. GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J Phys: Condes Matter, 2004, 16(29): R961 doi: 10.1088/0953-8984/16/29/R02
[11]
Lalinsky T, Drzik M, Vanko G, et al. Piezoelectric response of AlGaN/GaN-based circular-HEMT structures. Microelectron Eng, 2011, 88(8): 2424 doi: 10.1016/j.mee.2010.12.013
[12]
Le Boulbar E D, Edwards M J, Vittoz S, et al. Effect of bias conditions on pressure sensors based on AlGaN/GaN high electron mobility transistor. Sens Actuator A, 2013, 194: 247 doi: 10.1016/j.sna.2013.02.017
[13]
Myers M, Khir F L M, Podolska A, et al. Nitrate ion detection using AlGaN/GaN heterostructure-based devices without a reference electrode. Sens Actuators B, 2013, 181: 301 doi: 10.1016/j.snb.2013.02.006
[14]
Ma S W, Zhang X H, Liao Q L, et al. Enzymatic lactic acid sensing by In-doped ZnO nanowires functionalized AlGaAs/GaAs high electron mobility transistor. Sens Actuators B, 2015, 212: 41 doi: 10.1016/j.snb.2015.01.120
[15]
Wlodarski W B, Shanks R A. Application of GaAs, GaSb and InSb for pressure sensor design. Amsterdam: Elsevier, 1991
[16]
Schalwig J, Muller G, Eickhoff M, et al. Gas sensitive GaN/AlGaN-heterostructures. Sens Actuators B, 2002, 87(3): 425 doi: 10.1016/S0925-4005(02)00292-7
[17]
Bishop C, Halfaya Y, Soltani A, et al. Experimental study and device design of NO, NO2, and NH3 gas detection for a wide dynamic and large temperature range using Pt/AlGaN/GaN HEMT. IEEE Sensors J, 2016, 16(18): 6828 doi: 10.1109/JSEN.2016.2593050
[18]
Lee H H, Bae M, Jo S H, et al. Differential-mode HEMT-based biosensor for real-time and label-free detection of C-reactive protein. Sens Actuators B, 2016, 234: 316 doi: 10.1016/j.snb.2016.04.117
[19]
Lee H H, Bae M, Jo S H, et al. AlGaN/GaN high electron mobility transistor-based biosensor for the detection of C-reactive protein. Sensors, 2015, 15(8): 18416 doi: 10.3390/s150818416
[20]
Sarangadharan I, Regmi A, Chen Y W, et al. High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high electron mobility transistor (HEMT) biosensors. Biosens Bioelectron, 2018, 100: 282 doi: 10.1016/j.bios.2017.09.018
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3776 Times PDF downloads: 45 Times Cited by: 0 Times

    History

    Received: 02 April 2018 Revised: 04 May 2018 Online: Uncorrected proof: 29 June 2018Corrected proof: 01 November 2018Published: 13 December 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiaming Luo, Min Guan, Yang Zhang, Liqiang Chen, Yiping Zeng. The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors[J]. Journal of Semiconductors, 2018, 39(12): 124007. doi: 10.1088/1674-4926/39/12/124007 J M Luo, M Guan, Y Zhang, L Q Chen, Y P Zeng, The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors[J]. J. Semicond., 2018, 39(12): 124007. doi: 10.1088/1674-4926/39/12/124007.Export: BibTex EndNote
      Citation:
      Jiaming Luo, Min Guan, Yang Zhang, Liqiang Chen, Yiping Zeng. The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors[J]. Journal of Semiconductors, 2018, 39(12): 124007. doi: 10.1088/1674-4926/39/12/124007

      J M Luo, M Guan, Y Zhang, L Q Chen, Y P Zeng, The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors[J]. J. Semicond., 2018, 39(12): 124007. doi: 10.1088/1674-4926/39/12/124007.
      Export: BibTex EndNote

      The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors

      doi: 10.1088/1674-4926/39/12/124007
      Funds:

      Project supported by the National Key Research and Development Program of China (No. 2017YFB0405400), the Open Research Fund Program of the State Key Laboratory of Virology of China (No. 2017IOV002), the National Natural Science Foundation of China (Nos. 61274049, 61404130, 61574140), and the Shenzhen Science and Technology Innovation Commission (No. JSGG20160608100922614).

      More Information
      • Corresponding author: guanmin@semi.ac.cn
      • Received Date: 2018-04-02
      • Revised Date: 2018-05-04
      • Published Date: 2018-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return