J. Semicond. > Volume 36 > Issue 12 > Article Number: 123007

Metal-catalyzed growth of In2O3 nanotowers using thermal evaporation and oxidation method

Jian Liu , Shihua Huang , and Lü He

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Large-scale In2O3 nanotowers with different cross sections were synthesized by a thermal evaporation and oxidation technique using metal as the catalyst. The morphologies and structural characterizations of In2O3 nanotowers are dependent on growth processes, such as different metal(Au, Ag or Sn) catalysts, the relative position of the substrate and evaporation source, growth temperature, gas flow rate, and growth time. In2O3 nanotowers cannot be observed using Sn as the catalyst, which indicates that metal liquid droplets play an important role in the initial stages of the growth of In2O3 nanotowers. The formation of an In2O3 nanotower is attributed to the competitive growth model between a lateral growth controlled by vapor-solid mechanism and an axial vapor-liquid-solid growth mechanism mediated by metal liquid nanodroplets. The synthesized In2O3 nanostructures with novel tower-shaped morphology may have potential applications in optoelectronic devices and gas sensors.

Key words: In2O3 nanotowermetal-catalyzed growththermal evaporation and oxidationVLS growth mechanism

Abstract: Large-scale In2O3 nanotowers with different cross sections were synthesized by a thermal evaporation and oxidation technique using metal as the catalyst. The morphologies and structural characterizations of In2O3 nanotowers are dependent on growth processes, such as different metal(Au, Ag or Sn) catalysts, the relative position of the substrate and evaporation source, growth temperature, gas flow rate, and growth time. In2O3 nanotowers cannot be observed using Sn as the catalyst, which indicates that metal liquid droplets play an important role in the initial stages of the growth of In2O3 nanotowers. The formation of an In2O3 nanotower is attributed to the competitive growth model between a lateral growth controlled by vapor-solid mechanism and an axial vapor-liquid-solid growth mechanism mediated by metal liquid nanodroplets. The synthesized In2O3 nanostructures with novel tower-shaped morphology may have potential applications in optoelectronic devices and gas sensors.

Key words: In2O3 nanotowermetal-catalyzed growththermal evaporation and oxidationVLS growth mechanism



References:

[1]

Li Y, Ye C H, Yang L. Synthesis and growth of the faceted-tipped In2O3 nanowires[J]. Chem Lett, 2007, 36: 442.

[2]

Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291: 1947.

[3]

Jeong J S, Lee J Y, Lee C J. Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature[J]. Chem Phys Lett, 2004, 384: 246.

[4]

Vomiero A, Bianchi S, Comini E. Controlled growth and sensing properties of In2O3 nanowires[J]. Cryst Growth Design, 2007, 7: 2500.

[5]

Yan Y G, Zhang Y, Zeng H B. Tunable synthesis of In2O3 nanowires, nanoarrows and nanorods[J]. Nanotechnology, 2007, 18: 175601.

[6]

Singh N, Zhang T, Lee P S. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods[J]. Nanotechnology, 2009, 20: 195605.

[7]

Xie Zili, Zhang Rong, Gao Chao. Fabrication and characteristics of In2O3 nanowires[J]. Journal of Semiconductors, 2012, 27: 536.

[8]

Yan Y G, Zhou L X. Competitive growth of In2O3 nanorods with rectangular cross sections[J]. Appl Phys A, 2008, 92: 401.

[9]

Shi M R, Xu F, Yu K. Controllable synthesis of In2O3 nanocubes, truncated nanocubes, and symmetric multipods[J]. J Phys Chem C, 2007, 111: 16267.

[10]

Chi Xiao, Liu Changbai, Zhang Jinbao. Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning[J]. Journal of Semiconductors, 2014, 35: 064005.

[11]

Jean S T, He Y C. Growth mechanism and photoluminescence properties of In2O3 nanotowers[J]. Cryst Growth Des, 2010, 10: 2104.

[12]

Yan Y G, Zhang Y, Zeng H B. In2O3 nanotowers:controlled synthesis and mechanism analysis[J]. Cryst Growth Des, 2007, 7: 940.

[13]

Li S Q, Liang Y X, Wang T H. Electric-field-aligned vertical growth and field emission properties of In2O3 nanowires[J]. Appl Phys Lett, 2005, 87: 143104.

[14]

Zhang D H, Li C, Liu X L. Doping dependent NH3 sensing of indium oxide nanowires[J]. Appl Phys Lett, 2003, 83: 1845.

[15]

Jia H B, Zhang Y, Chen X H. Efficient field emission from single crystalline indium oxide pyramids[J]. Appl Phys Lett, 2003, 82: 4146.

[16]

Berengue O M, Rodrigues A D, Dalmaschio C J. Structural characterization of indium oxide nanostructures:a Raman analysis[J]. J Phys D, 2010, 43: 045401.

[17]

Wang C Y, Dai Y, Pezoldt J. Phase stabilization and phonon properties of single crystalline rhombohedral indium oxide[J]. Cryst Growth Des, 2008, 8: 1257.

[18]

Chong S K, Azizan S N A, Chan K W. Structure deformation of indium oxide from nanoparticles into nanostructured polycrystalline films by in situ thermal radiation treatment[J]. Nanoscale Res Lett, 2013, 8: 428.

[19]

Yin W Y, Doty M, Ni C Y. Vertically well-aligned In2O3 cone-like nanowire arrays grown on indium substrates[J]. Eur J Inorg Chem, 2011, 2011: 1570.

[20]

Wang C Q, Chen D R, Jiao X L. Flower-like In2O3 nanostructures derived from novel precursor:synthesis, characterization, and formation mechanism[J]. J Phys Chem C, 2009, 113: 7714.

[21]

Dai L, Chen X L, Jian J K. Fabrication and characterization of In2O3 nanowires[J]. Appl Phys A, 2002, 75: 687.

[22]

Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies[J]. J Phys Chem B, 2000, 104: 1153.

[23]

Hao Y F, Meng G W, Ye C H. Controlled synthesis of In2O3 octahedrons and nanowires[J]. Cryst Growth Design, 2005, 5: 1617.

[24]

Huang Y J, Yu K, Xu Z. Novel In2O3 nanostructures fabricated by controlling the kinetics factor for field emission display[J]. Phys E, 2011, 43: 1502.

[1]

Li Y, Ye C H, Yang L. Synthesis and growth of the faceted-tipped In2O3 nanowires[J]. Chem Lett, 2007, 36: 442.

[2]

Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291: 1947.

[3]

Jeong J S, Lee J Y, Lee C J. Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature[J]. Chem Phys Lett, 2004, 384: 246.

[4]

Vomiero A, Bianchi S, Comini E. Controlled growth and sensing properties of In2O3 nanowires[J]. Cryst Growth Design, 2007, 7: 2500.

[5]

Yan Y G, Zhang Y, Zeng H B. Tunable synthesis of In2O3 nanowires, nanoarrows and nanorods[J]. Nanotechnology, 2007, 18: 175601.

[6]

Singh N, Zhang T, Lee P S. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods[J]. Nanotechnology, 2009, 20: 195605.

[7]

Xie Zili, Zhang Rong, Gao Chao. Fabrication and characteristics of In2O3 nanowires[J]. Journal of Semiconductors, 2012, 27: 536.

[8]

Yan Y G, Zhou L X. Competitive growth of In2O3 nanorods with rectangular cross sections[J]. Appl Phys A, 2008, 92: 401.

[9]

Shi M R, Xu F, Yu K. Controllable synthesis of In2O3 nanocubes, truncated nanocubes, and symmetric multipods[J]. J Phys Chem C, 2007, 111: 16267.

[10]

Chi Xiao, Liu Changbai, Zhang Jinbao. Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning[J]. Journal of Semiconductors, 2014, 35: 064005.

[11]

Jean S T, He Y C. Growth mechanism and photoluminescence properties of In2O3 nanotowers[J]. Cryst Growth Des, 2010, 10: 2104.

[12]

Yan Y G, Zhang Y, Zeng H B. In2O3 nanotowers:controlled synthesis and mechanism analysis[J]. Cryst Growth Des, 2007, 7: 940.

[13]

Li S Q, Liang Y X, Wang T H. Electric-field-aligned vertical growth and field emission properties of In2O3 nanowires[J]. Appl Phys Lett, 2005, 87: 143104.

[14]

Zhang D H, Li C, Liu X L. Doping dependent NH3 sensing of indium oxide nanowires[J]. Appl Phys Lett, 2003, 83: 1845.

[15]

Jia H B, Zhang Y, Chen X H. Efficient field emission from single crystalline indium oxide pyramids[J]. Appl Phys Lett, 2003, 82: 4146.

[16]

Berengue O M, Rodrigues A D, Dalmaschio C J. Structural characterization of indium oxide nanostructures:a Raman analysis[J]. J Phys D, 2010, 43: 045401.

[17]

Wang C Y, Dai Y, Pezoldt J. Phase stabilization and phonon properties of single crystalline rhombohedral indium oxide[J]. Cryst Growth Des, 2008, 8: 1257.

[18]

Chong S K, Azizan S N A, Chan K W. Structure deformation of indium oxide from nanoparticles into nanostructured polycrystalline films by in situ thermal radiation treatment[J]. Nanoscale Res Lett, 2013, 8: 428.

[19]

Yin W Y, Doty M, Ni C Y. Vertically well-aligned In2O3 cone-like nanowire arrays grown on indium substrates[J]. Eur J Inorg Chem, 2011, 2011: 1570.

[20]

Wang C Q, Chen D R, Jiao X L. Flower-like In2O3 nanostructures derived from novel precursor:synthesis, characterization, and formation mechanism[J]. J Phys Chem C, 2009, 113: 7714.

[21]

Dai L, Chen X L, Jian J K. Fabrication and characterization of In2O3 nanowires[J]. Appl Phys A, 2002, 75: 687.

[22]

Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies[J]. J Phys Chem B, 2000, 104: 1153.

[23]

Hao Y F, Meng G W, Ye C H. Controlled synthesis of In2O3 octahedrons and nanowires[J]. Cryst Growth Design, 2005, 5: 1617.

[24]

Huang Y J, Yu K, Xu Z. Novel In2O3 nanostructures fabricated by controlling the kinetics factor for field emission display[J]. Phys E, 2011, 43: 1502.

[1]

Zhao Yongmei, Sun Guosheng, Liu Xingfang, Li Jiaye, Zhao Wanshun, Wang Lei, Luo Muchang, Li Jinmin. Mechanism of Thermal Oxidation of 3C.SiC Grown on Si. J. Semicond., 2007, 28(S1): 4.

[2]

H. F. Mohamed, Changtai Xia, Qinglin Sai, Huiyuan Cui, Mingyan Pan, Hongji Qi. Growth and fundamentals of bulk β-Ga2O3 single crystals. J. Semicond., 2019, 40(1): 011801. doi: 10.1088/1674-4926/40/1/011801

[3]

Tongchuan Ma, Xuanhu Chen, Fangfang Ren, Shunming Zhu, Shulin Gu, Rong Zhang, Youdou Zheng, Jiandong Ye. Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique. J. Semicond., 2019, 40(1): 012804. doi: 10.1088/1674-4926/40/1/012804

[4]

Zhu Yanyan, Xu Run, Chen Sheng, Fang Zebo, Xue Fei, Fan Yongliang, Jiang Zuimin. Epitaxial Growth of Er2O3 Films and Its Band Offsets on Si. J. Semicond., 2006, 27(S1): 411.

[5]

Xiangqian Xiu, Liying Zhang, Yuewen Li, Zening Xiong, Rong Zhang, Youdou Zheng. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3. J. Semicond., 2019, 40(1): 011805. doi: 10.1088/1674-4926/40/1/011805

[6]

Liu Zhe, Wang Junxi, Li Jinmin, Liu Hongxin, Wang Qiyuan, Wang Jun, Zhang Nanhong, Xiao Hongling, Wang Xiaoliang, Zeng Yiping. Growth of GaN on γ-Al2O3/Si(001) Composite Substrates. J. Semicond., 2005, 26(12): 2378.

[7]

Jie Su, Tong Liu, Jingming Liu, Jun Yang, Guiying Shen, Yongbiao Bai, Zhiyuan Dong, Youwen Zhao. Carbon agent chemical vapor transport growth of Ga2O3 crystal. J. Semicond., 2016, 37(10): 103004. doi: 10.1088/1674-4926/37/10/103004

[8]

Xie Zili, Zhang Rong, Gao Chao, Liu Bin, Li Liang, Xiu Xiangqian, Zhu Shunming, Gu Shulin, Han Ping, Jiang Ruolian, Shi Yi, Zheng Youdou. Fabrication and Characteristics of In2O3 Nanowires. J. Semicond., 2006, 27(3): 536.

[9]

Shengnan Zhang, Xiaozheng Lian, Yanchao Ma, Weidan Liu, Yingwu Zhang, Yongkuan Xu, Hongjuan Cheng. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. J. Semicond., 2018, 39(8): 083003. doi: 10.1088/1674-4926/39/8/083003

[10]

Mohammad Orvatinia, Atefeh Chahkoutahi. MOS structure fabrication by thermal oxidation of multilayer metal thin films. J. Semicond., 2011, 32(3): 036001. doi: 10.1088/1674-4926/32/3/036001

[11]

Lei Li, Zhao Gaoyang, Xu Hui, Zhao Juanjuan. Growth orientation and superconducting properties of YBa2Cu3O7 - δ films prepared by the low-fluorine sol–gel process. J. Semicond., 2010, 31(8): 083004. doi: 10.1088/1674-4926/31/8/083004

[12]

Wu Xinkun, Liu Wei, Cheng Shuying, Lai Yunfeng, Jia Hongjie. Photoelectric properties of Cu2ZnSnS4 thin films deposited by thermal evaporation. J. Semicond., 2012, 33(2): 022002. doi: 10.1088/1674-4926/33/2/022002

[13]

Zi Wei, Zhou Yuqin, Liu Fengzhen, Zhu Meifang. Growth Mechanism of Microcrystalline Silicon Films by Scaling Theory and Monte Carlo Simulation. J. Semicond., 2008, 29(8): 1465.

[14]

Xiao Chi, Changbai Liu, Jinbao Zhang, Li Liu, Haiying Li, Yue He, Xiaoqing Bo, Lili Liu. Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning. J. Semicond., 2014, 35(6): 064005. doi: 10.1088/1674-4926/35/6/064005

[15]

Bo Fu, Zhitai Jia, Wenxiang Mu, Yanru Yin, Jian Zhang, Xutang Tao. A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism. J. Semicond., 2019, 40(1): 011804. doi: 10.1088/1674-4926/40/1/011804

[16]

A. Bouhdjer, A. Attaf, H. Saidi, H. Bendjedidi, Y. Benkhetta, I. Bouhaf. Correlation between the structural, morphological, optical, and electrical properties of In2O3 thin films obtained by an ultrasonic spray CVD process. J. Semicond., 2015, 36(8): 082002. doi: 10.1088/1674-4926/36/8/082002

[17]

Jianjun Shi, Xiaochuan Xia, Qasim Abbas, Jun Liu, Heqiu Zhang, Yang Liu, Hongwei Liang. Current transport mechanism of Mg/Au ohmic contacts to lightly doped n-type β-Ga2O3. J. Semicond., 2019, 40(1): 012805. doi: 10.1088/1674-4926/40/1/012805

[18]

Naili Yue, Joshua Myers, Liqin Su, Wentao Wang, Fude Liu, Raphael Tsu, Yan Zhuang, Yong Zhang. Growth of oxidation-resistive silicene-like thin flakes and Si nanostructures on graphene. J. Semicond., 2019, 40(6): 062001. doi: 10.1088/1674-4926/40/6/062001

[19]

Yuanyuan Jin, Huimin Li, Song Liu. Growth of large-scale two-dimensional insulator Na2Ta4O11 through chemical vapor deposition. J. Semicond., 2020, 41(7): 072901. doi: 10.1088/1674-4926/41/7/072901

[20]

Huoxi Xu, Jingping Xu. Electrical properties of Ge metal-oxide-semiconductor capacitors with high-k La2O3 gate dielectric incorporated by N or/and Ti. J. Semicond., 2016, 37(6): 064006. doi: 10.1088/1674-4926/37/6/064006

Search

Advanced Search >>

GET CITATION

J Liu, S H Huang, L He. Metal-catalyzed growth of In2O3 nanotowers using thermal evaporation and oxidation method[J]. J. Semicond., 2015, 36(12): 123007. doi: 10.1088/1674-4926/36/12/123007.

Export: BibTex EndNote

Article Metrics

Article views: 1208 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 28 May 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误