SEMICONDUCTOR DEVICES

Simulation study of a 4H-SiC lateral BJT for monolithic power integration

Shiwei Liang, Jun Wang, Fang Fang and Linfeng Deng

+ Author Affiliations

 Corresponding author: Jun Wang, Email: junwang@hnu.edu.cn

PDF

Turn off MathJax

Abstract: Power integration based on 4H-SiC is a very promising technology for high-frequency and high-temperature power electronics applications. However, the fabrication processes used in Si BiCMOS technology is not applicable in 4H-SiC at present, and few studies on the monolithic power integration of the SiC signal devices and power devices have been reported. In this paper, we propose a novel lateral BJT structure, which is suitable for monolithically integrating with the vertical power BJT on the same epitaxial wafer at the cost of one additional mask. The signal BJT’s static and dynamic characteristics are comprehensively investigated by TCAD simulation. Simulation results show that the common-emitter current gains of the 4H-SiC signal BJT are 133 and 52 at room temperature and 300 °C, respectively. Its implementation in an inverter shows that its switching time is about 200 ns.

Key words: SiC BJTintegrated circuitcurrent gainpower integration



[1]
Neudeck P G, Okojie R S, Chen L Y. High-temperature electronics – a role for wide bandgap semiconductors. Proc IEEE, 2002: 1065
[2]
Hedayati R, Lanni L, Malm B G, et al. A 500 °C 8-b digital-to-analog converter in silicon carbide bipolar technology. IEEE Trans Electron Devices, 2016, 63(9): 3445 doi: 10.1109/TED.2016.2588418
[3]
Tian Y, Lanni L, Rusu A, et al. Silicon carbide fully differential amplifier characterized up to 500 °C. IEEE Trans Electron Devices, 2016, 63(6): 2242 doi: 10.1109/TED.2016.2549062
[4]
Hedayati R, Lanni L, Rodriguez S, et al. A monolithic, 500 °C operational amplifier in 4H-SiC bipolar technology. IEEE Electron Device Lett, 2014, 35(7): 693 doi: 10.1109/LED.2014.2322335
[5]
Lanni L, Malm B G, Östling M, et al. 500 °C bipolar integrated OR/NOR gate in 4H-SiC. IEEE Electron Device Lett, 2013, 34(9): 1091 doi: 10.1109/LED.2013.2272649
[6]
Kargarrazi S, Lanni L, Saggini S, et al. 500 °C bipolar SiC linear voltage regulator. IEEE Trans Electron Devices, 2015, 62(6): 1953 doi: 10.1109/TED.2015.2417097
[7]
Siddiqui A, Elgabra H, Singh S. Design considerations for 4H-SiC lateral BJTs for high temperature logic applications. IEEE J Electron Devices Soc, 2018, 6: 126 doi: 10.1109/JEDS.2017.2785327
[8]
Neudeck P G, Spry D J, Chen L, et al. Demonstration of 4H-SiC digital integrated circuits above 800 °C. IEEE Electron Device Lett, 2017, 38(8): 1082 doi: 10.1109/LED.2017.2719280
[9]
Spry D J, Neudeck P G, Chen L, et al. Prolonged 500 °C demonstration of 4H-SiC JFET ICs with two-level interconnect. IEEE Electron Device Lett, 2016, 37(5): 625 doi: 10.1109/LED.2016.2544700
[10]
Neudeck P G, Spry D J, Chen L, et al. Experimentally observed electrical durability of 4H-SiC JFET ICs operating from 500 °C to 700 °C. 2016 European Conference on Silicon Carbide & Related Materials, 2016: 1
[11]
Zhang Y X, Sheng K, Su M , et al. Development of 4H-SiC LJFET-based power IC. IEEE Trans Electron Devices, 2008, 55(8): 1934 doi: 10.1109/TED.2008.926676
[12]
Zhang Y M, Wang C, Zhang Y M, et al. Semi-insulating SiC formed by Vanadium ion implantation. IEEE International Conference on Electron Devices and Solid-State Circuits, 2008: 1
[13]
Kimoto T, Nakajima T, Matsunami H, et al. Formation of semi-insulating 6H-SiC layers by vanadium ion implantations. Appl Phys Lett, 1996, 69: 1113 doi: 10.1063/1.117075
[14]
Mitchel W C, Mitchell W D. Vanadium donor and acceptor levels in semi-insulating 4H- and 6H-SiC. J Appl Phys, 2007, 101: 013707 doi: 10.1063/1.2407263
[15]
Berthou M, Godignon P, Millán J. Monolithically integrated temperature sensor in silicon carbide power MOSFETs. IEEE Trans Power Electron, 2014, 29(9): 4970 doi: 10.1109/TPEL.2013.2289013
[16]
Alexandru M, Banu V, Montserrat J, et al. Monolithic integration of high temperature silicon carbide integrated circuits. ECS Trans, 2013, 58(4): 375 doi: 10.1149/05804.0375ecst
[17]
Elgabra H, Siddiqui A, Singh S. Simulation of conventional bipolar logic technologies in 4H-SiC for harsh environment applications. Jpn J Appl Phys, 2016, 55(4S): 1
[18]
Singh S. High-performance TTL bipolar integrated circuits in 4H-SiC. PhD Dissertation, Purdue University, 2010
[19]
Morisette D. Development of robust power Schottky barrier diodes in silicon carbide. PhD Dissertation, Purdue University, 2001
[20]
NSM Archive—Silicon Carbide (SiC)—Recombination Parameters. [Online]. Available: http://www.ioffe.ru/SVA/NSM/Semicond/SiC/recombination.html. 2017
Fig. 1.  Cross-sectional view of (a) traditional lateral BJT and (b) proposed power integration concept.

Fig. 2.  (Color online) Comparison of I–V between (a) the traditional lateral BJT and (b) the novel lateral BJT structure.

Fig. 3.  (a) Current gain varying with the collector current and (b) temperature-dependent current gain.

Fig. 4.  (a) Breakdown characteristic of the lateral NPN BJT and (b) electric field along the orthogonal direction of the collector junction.

Fig. 6.  The simulated waveforms of the inverter.

Fig. 5.  Circuit configuration of the inverter basic logic gate.

Table 1.   Key parameters used in the simulations.

Parameter Proposed lateral BJT Conventional lateral BJT
Base doping (1017 cm−3) 1 1
Emitter doping (1019 cm−3) 2 2
Collector doping (cm−3) 2 × 1019 4.8 × 1015
Collector width (μm) 4 4
Emitter width (μm) 5 5
Base width (μm) 5 5
Distance between C and B 2 2
Distance between C and E 1.5 /
Lifetime (τn = 2τp, μs) 0.6 0.6
DownLoad: CSV
[1]
Neudeck P G, Okojie R S, Chen L Y. High-temperature electronics – a role for wide bandgap semiconductors. Proc IEEE, 2002: 1065
[2]
Hedayati R, Lanni L, Malm B G, et al. A 500 °C 8-b digital-to-analog converter in silicon carbide bipolar technology. IEEE Trans Electron Devices, 2016, 63(9): 3445 doi: 10.1109/TED.2016.2588418
[3]
Tian Y, Lanni L, Rusu A, et al. Silicon carbide fully differential amplifier characterized up to 500 °C. IEEE Trans Electron Devices, 2016, 63(6): 2242 doi: 10.1109/TED.2016.2549062
[4]
Hedayati R, Lanni L, Rodriguez S, et al. A monolithic, 500 °C operational amplifier in 4H-SiC bipolar technology. IEEE Electron Device Lett, 2014, 35(7): 693 doi: 10.1109/LED.2014.2322335
[5]
Lanni L, Malm B G, Östling M, et al. 500 °C bipolar integrated OR/NOR gate in 4H-SiC. IEEE Electron Device Lett, 2013, 34(9): 1091 doi: 10.1109/LED.2013.2272649
[6]
Kargarrazi S, Lanni L, Saggini S, et al. 500 °C bipolar SiC linear voltage regulator. IEEE Trans Electron Devices, 2015, 62(6): 1953 doi: 10.1109/TED.2015.2417097
[7]
Siddiqui A, Elgabra H, Singh S. Design considerations for 4H-SiC lateral BJTs for high temperature logic applications. IEEE J Electron Devices Soc, 2018, 6: 126 doi: 10.1109/JEDS.2017.2785327
[8]
Neudeck P G, Spry D J, Chen L, et al. Demonstration of 4H-SiC digital integrated circuits above 800 °C. IEEE Electron Device Lett, 2017, 38(8): 1082 doi: 10.1109/LED.2017.2719280
[9]
Spry D J, Neudeck P G, Chen L, et al. Prolonged 500 °C demonstration of 4H-SiC JFET ICs with two-level interconnect. IEEE Electron Device Lett, 2016, 37(5): 625 doi: 10.1109/LED.2016.2544700
[10]
Neudeck P G, Spry D J, Chen L, et al. Experimentally observed electrical durability of 4H-SiC JFET ICs operating from 500 °C to 700 °C. 2016 European Conference on Silicon Carbide & Related Materials, 2016: 1
[11]
Zhang Y X, Sheng K, Su M , et al. Development of 4H-SiC LJFET-based power IC. IEEE Trans Electron Devices, 2008, 55(8): 1934 doi: 10.1109/TED.2008.926676
[12]
Zhang Y M, Wang C, Zhang Y M, et al. Semi-insulating SiC formed by Vanadium ion implantation. IEEE International Conference on Electron Devices and Solid-State Circuits, 2008: 1
[13]
Kimoto T, Nakajima T, Matsunami H, et al. Formation of semi-insulating 6H-SiC layers by vanadium ion implantations. Appl Phys Lett, 1996, 69: 1113 doi: 10.1063/1.117075
[14]
Mitchel W C, Mitchell W D. Vanadium donor and acceptor levels in semi-insulating 4H- and 6H-SiC. J Appl Phys, 2007, 101: 013707 doi: 10.1063/1.2407263
[15]
Berthou M, Godignon P, Millán J. Monolithically integrated temperature sensor in silicon carbide power MOSFETs. IEEE Trans Power Electron, 2014, 29(9): 4970 doi: 10.1109/TPEL.2013.2289013
[16]
Alexandru M, Banu V, Montserrat J, et al. Monolithic integration of high temperature silicon carbide integrated circuits. ECS Trans, 2013, 58(4): 375 doi: 10.1149/05804.0375ecst
[17]
Elgabra H, Siddiqui A, Singh S. Simulation of conventional bipolar logic technologies in 4H-SiC for harsh environment applications. Jpn J Appl Phys, 2016, 55(4S): 1
[18]
Singh S. High-performance TTL bipolar integrated circuits in 4H-SiC. PhD Dissertation, Purdue University, 2010
[19]
Morisette D. Development of robust power Schottky barrier diodes in silicon carbide. PhD Dissertation, Purdue University, 2001
[20]
NSM Archive—Silicon Carbide (SiC)—Recombination Parameters. [Online]. Available: http://www.ioffe.ru/SVA/NSM/Semicond/SiC/recombination.html. 2017
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4813 Times PDF downloads: 121 Times Cited by: 0 Times

    History

    Received: 26 April 2018 Revised: 05 June 2018 Online: Uncorrected proof: 25 July 2018Accepted Manuscript: 03 August 2018Corrected proof: 01 November 2018Published: 13 December 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shiwei Liang, Jun Wang, Fang Fang, Linfeng Deng. Simulation study of a 4H-SiC lateral BJT for monolithic power integration[J]. Journal of Semiconductors, 2018, 39(12): 124004. doi: 10.1088/1674-4926/39/12/124004 S W Liang, J Wang, F Fang, L F Deng, Simulation study of a 4H-SiC lateral BJT for monolithic power integration[J]. J. Semicond., 2018, 39(12): 124004. doi: 10.1088/1674-4926/39/12/124004.Export: BibTex EndNote
      Citation:
      Shiwei Liang, Jun Wang, Fang Fang, Linfeng Deng. Simulation study of a 4H-SiC lateral BJT for monolithic power integration[J]. Journal of Semiconductors, 2018, 39(12): 124004. doi: 10.1088/1674-4926/39/12/124004

      S W Liang, J Wang, F Fang, L F Deng, Simulation study of a 4H-SiC lateral BJT for monolithic power integration[J]. J. Semicond., 2018, 39(12): 124004. doi: 10.1088/1674-4926/39/12/124004.
      Export: BibTex EndNote

      Simulation study of a 4H-SiC lateral BJT for monolithic power integration

      doi: 10.1088/1674-4926/39/12/124004
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 51577054).

      More Information
      • Corresponding author: Email: junwang@hnu.edu.cn
      • Received Date: 2018-04-26
      • Revised Date: 2018-06-05
      • Published Date: 2018-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return