ARTICLES

Regulation of the order–disorder phase transition in a Cs2NaFeCl6 double perovskite towards reversible thermochromic application

Wenzhe Li, Naveed Ur Rahman, Yeming Xian, Hang Yin, Yunkai Bao, Yi Long, Songyang Yuan, Yangyi Zhang, Yaxuan Yuan and Jiandong Fan

+ Author Affiliations

 Corresponding author: Wenzhe Li, li_wz16@jnu.edu.cn; Jiandong Fan, jdfan@jnu.edu.cn

PDF

Turn off MathJax

Abstract: Multifunctional lead-free double perovskites demonstrate remarkable potential towards applications in various fields. Herein, an environmentally-friendly, low-cost, high-throughput Cs2NaFeCl6 single crystal with exceedingly high thermal stability is designed and grown. It obtains a cubic lattice system in the temperature range of 80–500 K, accompanied by a completely reversible chromatic variation ranging from yellow to black. Importantly, the intriguing thermochromism is proved to own extremely high reproducibility (over 1000 cycles) without a hysteretic effect, originating from its structural flexibility that including (i) the noteworthy distortion/deformation of [NaCl6]5− and [FeCl6]3− octahedra; (ii) order–disorder arrangement transition of [NaCl6]5− and [FeCl6]3− octahedra as the function of temperature. This study paves the way towards a new class of smart windows and camouflage coatings with an unprecedented colour range based on a Cs2NaFeCl6 perovskite.

Key words: lead-free perovskiteCs2NaFeCl6 single crystalthermochromismcrystallographic structureorder-disorder phase transition



[1]
Tsai H, Asadpour R, Blancon J C, et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science, 2018, 360, 67 doi: 10.1126/science.aap8671
[2]
Hu M Y, Chen M, Guo P J, et al. Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability. Nat Commun, 2020, 11, 151 doi: 10.1038/s41467-019-13908-6
[3]
Shi E, Yuan B, Shiring S B, et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 2020, 580, 614 doi: 10.1038/s41586-020-2219-7
[4]
Park N G, Grätzel M, Miyasaka T, et al. Towards stable and commercially available perovskite solar cells. Nat Energy, 2016, 1, 16152 doi: 10.1038/nenergy.2016.152
[5]
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206 doi: 10.1126/science.aah5557
[6]
Correa-Baena J P, Abate A, Saliba M, et al. The rapid evolution of highly efficient perovskite solar cells. Energy Environ Sci, 2017, 10, 710 doi: 10.1039/C6EE03397K
[7]
Lin J, Lai M L, Dou L T, et al. Thermochromic halide perovskite solar cells. Nat Mater, 2018, 17, 261 doi: 10.1038/s41563-017-0006-0
[8]
Pan W C, Wu H D, Luo J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photonics, 2017, 11, 726 doi: 10.1038/s41566-017-0012-4
[9]
Luo J J, Wang X M, Li S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563, 541 doi: 10.1038/s41586-018-0691-0
[10]
Zhang Y, Tso C Y, Iñigo J S, et al. Perovskite thermochromic smart window: Advanced optical properties and low transition temperature. Appl Energy, 2019, 254, 113690 doi: 10.1016/j.apenergy.2019.113690
[11]
Ning W H, Zhao X G, Klarbring J, et al. Thermochromic lead-free halide double perovskites. Adv Funct Mater, 2019, 29, 1807375 doi: 10.1002/adfm.201807375
[12]
Halder A, Choudhury D, Ghosh S, et al. Exploring thermochromic behavior of hydrated hybrid perovskites in solar cells. J Phys Chem Lett, 2015, 6, 3180 doi: 10.1021/acs.jpclett.5b01426
[13]
Yuan W N, Niu G D, Xian Y M, et al. In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector. Adv Funct Mater, 2019, 29, 1900234 doi: 10.1002/adfm.201900234
[14]
Esser B, Hauser A, Williams R, et al. Quantitative STEM imaging of order-disorder phenomena in double perovskite thin films. Phys Rev Lett, 2016, 117, 176101 doi: 10.1103/PhysRevLett.117.176101
[15]
Yang J X, Zhang P, Wei S H. Band structure engineering of Cs2AgBiBr6 perovskite through order-disordered transition: A first-principle study. J Phys Chem Lett, 2018, 9, 31 doi: 10.1021/acs.jpclett.7b02992
[16]
Sheldrick G. SHELXL-97: crystal structure refinement program. University of Göttingen, Germany Göttingen, 1997
[17]
Sheldrick G. SHELXTL, structure determination software suite. Version 6.14, Bruker AXS, Madison Google Scholar, 2000
[18]
Dolomanov O V, Bourhis L J, Gildea R J, et al. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr, 2009, 42, 339 doi: 10.1107/S0021889808042726
[19]
Osherov A, Hutter E M, Galkowski K, et al. The impact of phase retention on the structural and optoelectronic properties of metal halide perovskites. Adv Mater, 2016, 28, 10757 doi: 10.1002/adma.201604019
[20]
Han Q F, Bae S H, Sun P Y, et al. Single crystal formamidinium lead iodide (FAPbI3): Insight into the structural, optical, and electrical properties. Adv Mater, 2016, 28, 2253 doi: 10.1002/adma.201505002
[21]
Baikie T, Fang Y N, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1, 5628 doi: 10.1039/c3ta10518k
[22]
Fan J D, Zhang H J, Wang J Y, et al. Growth and thermal properties of SrWO4 single crystal. J Appl Phys, 2006, 100, 063513 doi: 10.1063/1.2335510
[23]
Li L N, Sun Z H, Ji C M, et al. Rational design and syntheses of molecular phase transition crystal materials. Cryst Growth Des, 2016, 16, 6685 doi: 10.1021/acs.cgd.6b01378
[24]
Zunger A, Wei S H, Ferreira L G, et al. Special quasirandom structures. Phys Rev Lett, 1990, 65, 353 doi: 10.1103/PhysRevLett.65.353
[25]
Zhang W C, Sun Z H, Zhang J, et al. Thermochromism to tune the optical bandgap of a lead-free perovskite-type hybrid semiconductor for efficiently enhancing photocurrent generation. J Mater Chem C, 2017, 5, 9967 doi: 10.1039/C7TC02721D
[26]
Xiao Z W, Meng W W, Wang J B, et al. Thermodynamic stability and defect chemistry of bismuth-based lead-free double perovskites. ChemSusChem, 2016, 9, 2628 doi: 10.1002/cssc.201600771
[27]
Vineyard G H. Theory of order-disorder kinetics. Phys Rev, 1956, 102, 981 doi: 10.1103/PhysRev.102.981
[28]
Rey G, Redinger A, Sendler J, et al. The band gap of Cu2ZnSnSe4: Effect of order-disorder. Appl Phys Lett, 2014, 105, 112106 doi: 10.1063/1.4896315
[29]
Lim T W, Kim S D, Sung K D, et al. Insights into cationic ordering in Re-based double perovskite oxides. Sci Rep, 2016, 6, 19746 doi: 10.1038/srep19746
[30]
Setter N, Cross L E. The contribution of structural disorder to diffuse phase transitions in ferroelectrics. J Mater Sci, 1980, 15, 2478 doi: 10.1007/BF00550750
[31]
Yin H, Xian Y M, Zhang Y L, et al. Structurally stabilizing and environment friendly triggers: Double-metallic lead-free perovskites. Sol RRL, 2019, 3, 1900148 doi: 10.1002/solr.201900148
[32]
Wei S H, Ferreira L G, Bernard J E, et al. Electronic properties of random alloys: Special quasirandom structures. Phys Rev B, 1990, 42, 9622 doi: 10.1103/PhysRevB.42.9622
Fig. 1.  (Color online) Colour evolution of as-prepared Cs2NaFeCl6 single crystal as the function of temperature in the range of 80–500 K.

Fig. 2.  (Color online) (a) Schematic view of in-situ characterization system of UV–vis spectrum. (b) UV–vis spectra of the Cs2NaFeCl6 single crystal pallet as the function of temperature from 260 to 450 K. (c) The stable and reversible switching of the absorption (562 nm) of the Cs2NaFeCl6 single crystal pellet over 50 cycles. (d) Temperature variation of the perovskite single crystal in the range of 300–400 K during the heating-cooling process (green line), the orange line is the corresponding absorbance intensity of the Cs2NaFeCl6 single crystal pellet at 562 nm as the function of temperature. (e) Absorbance curves of Cs2NaFeCl6 single crystal pellet at 310 and 410 K after 500 and 1000 cycles, respectively. Inset shows the corresponding temperature variation procedure within 5 cycles. (f) Photograph of the prototype device with patterned “JNU” at the cold state (300 K) and hot state (400 K) for perovskite smart displaying.

Fig. 3.  (Color online) Crystal structures of as-prepared Cs2NaFeCl6 single crystal at different temperature. Wyckoff positions of B-site atoms: Fe01 (1,1/2, 1/2, 4a), Na01 (1/2, 1/2, 1/2, 4b).

Fig. 4.  (Color online) (a) Schematic view of the planes in face centred cubic (fcc) crystal and the order-disorder phase transition. (b) Schematic view of in-situ characterization system of diffraction planes. (c–l) Diffraction intensity evolution of Cs2NaFeCl6 single crystal in reciprocal space as the function of temperature.

Fig. 5.  (Color online) CBM and VBM-associated 2D charge density distribution maps, which are displayed on the (001) lattice plane. (a) 200 K-CBM, (b) 300 K-CBM, (c) 400 K-CBM, (d) 200 K-VBM, (e) 300 K-VBM, (f) 400 K-VBM.

Table 1.   Crystallographic parameters of the as-prepared Cs2NaFeCl6 single crystals at different temperatures.

Crystal typeCs2NaFeCl6 (80 K)Cs2NaFeCl6 (90 K)Cs2NaFeCl6 (100 K)Cs2NaFeCl6 (200 K)Cs2NaFeCl6 (300 K)Cs2NaFeCl6 (400 K)
CCDC NO.204164820416472001471200147020014732001472
Formula weight1114.72 g/mol1114.72 g/mol1114.72 g/mol1114.72 g/mol1114.72 g/mol1114.72 g/mol
Crystal systemCubicCubicCubicCubicCubicCubic
Space groupFm-3mFm-3mFm-3mFm-3mFm-3mFm-3m
Unit-celldimensionsa = b = c = 10.2591(2) Å,
α = β = γ = 90°
a = b = c = 10.26506(14) Å,
α = β = γ = 90°
a = b = c = 10.2679(2) Å,
α = β = γ = 90°
a = b = c = 10.3028(5) Å,
α = β = γ = 90°
a = b = c = 10.3270(6) Å,
α = β = γ = 90°
a = b = c = 10.3622(4) Å,
α = β = γ = 90°
Volume1079.76(6) Å31081.64(4) Å31082.54(6) Å31093.62(16) Å31101.35(19) Å31112.64(14) Å3
Z222222
RadiationMokα (λ = 0.71073)Mokα (λ = 0.71073)Mokα (λ = 0.71073)Mokα (λ = 0.71073)Mokα (λ = 0.71073)Mokα (λ = 0.71073)
Reflections collected31153065305316207298
Final R indexes
[all data]
R1 = 0.0113,
wR2 = 0.0281
R1 = 0.0125,
wR2 = 0.0343
R1 = 0.0129,
wR2 = 0.0308
R1 = 0.0179,
wR2 = 0.0424
R1 = 0.0207,
wR2 = 0.0471
R1 = 0.0336,
wR2 = 0.0584
Goodness-of-fit
on F2
1.2771.3021.1861.1271.1210.999
Largest difference map peak/hole0.234/–0.472e Å–30.342/–0.572e Å–30.34/–0.61e Å–30.37/–0.88e Å–30.42/–0.60e Å–30.62/–0.52e Å–3
DownLoad: CSV
[1]
Tsai H, Asadpour R, Blancon J C, et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science, 2018, 360, 67 doi: 10.1126/science.aap8671
[2]
Hu M Y, Chen M, Guo P J, et al. Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability. Nat Commun, 2020, 11, 151 doi: 10.1038/s41467-019-13908-6
[3]
Shi E, Yuan B, Shiring S B, et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 2020, 580, 614 doi: 10.1038/s41586-020-2219-7
[4]
Park N G, Grätzel M, Miyasaka T, et al. Towards stable and commercially available perovskite solar cells. Nat Energy, 2016, 1, 16152 doi: 10.1038/nenergy.2016.152
[5]
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206 doi: 10.1126/science.aah5557
[6]
Correa-Baena J P, Abate A, Saliba M, et al. The rapid evolution of highly efficient perovskite solar cells. Energy Environ Sci, 2017, 10, 710 doi: 10.1039/C6EE03397K
[7]
Lin J, Lai M L, Dou L T, et al. Thermochromic halide perovskite solar cells. Nat Mater, 2018, 17, 261 doi: 10.1038/s41563-017-0006-0
[8]
Pan W C, Wu H D, Luo J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photonics, 2017, 11, 726 doi: 10.1038/s41566-017-0012-4
[9]
Luo J J, Wang X M, Li S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563, 541 doi: 10.1038/s41586-018-0691-0
[10]
Zhang Y, Tso C Y, Iñigo J S, et al. Perovskite thermochromic smart window: Advanced optical properties and low transition temperature. Appl Energy, 2019, 254, 113690 doi: 10.1016/j.apenergy.2019.113690
[11]
Ning W H, Zhao X G, Klarbring J, et al. Thermochromic lead-free halide double perovskites. Adv Funct Mater, 2019, 29, 1807375 doi: 10.1002/adfm.201807375
[12]
Halder A, Choudhury D, Ghosh S, et al. Exploring thermochromic behavior of hydrated hybrid perovskites in solar cells. J Phys Chem Lett, 2015, 6, 3180 doi: 10.1021/acs.jpclett.5b01426
[13]
Yuan W N, Niu G D, Xian Y M, et al. In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector. Adv Funct Mater, 2019, 29, 1900234 doi: 10.1002/adfm.201900234
[14]
Esser B, Hauser A, Williams R, et al. Quantitative STEM imaging of order-disorder phenomena in double perovskite thin films. Phys Rev Lett, 2016, 117, 176101 doi: 10.1103/PhysRevLett.117.176101
[15]
Yang J X, Zhang P, Wei S H. Band structure engineering of Cs2AgBiBr6 perovskite through order-disordered transition: A first-principle study. J Phys Chem Lett, 2018, 9, 31 doi: 10.1021/acs.jpclett.7b02992
[16]
Sheldrick G. SHELXL-97: crystal structure refinement program. University of Göttingen, Germany Göttingen, 1997
[17]
Sheldrick G. SHELXTL, structure determination software suite. Version 6.14, Bruker AXS, Madison Google Scholar, 2000
[18]
Dolomanov O V, Bourhis L J, Gildea R J, et al. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr, 2009, 42, 339 doi: 10.1107/S0021889808042726
[19]
Osherov A, Hutter E M, Galkowski K, et al. The impact of phase retention on the structural and optoelectronic properties of metal halide perovskites. Adv Mater, 2016, 28, 10757 doi: 10.1002/adma.201604019
[20]
Han Q F, Bae S H, Sun P Y, et al. Single crystal formamidinium lead iodide (FAPbI3): Insight into the structural, optical, and electrical properties. Adv Mater, 2016, 28, 2253 doi: 10.1002/adma.201505002
[21]
Baikie T, Fang Y N, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1, 5628 doi: 10.1039/c3ta10518k
[22]
Fan J D, Zhang H J, Wang J Y, et al. Growth and thermal properties of SrWO4 single crystal. J Appl Phys, 2006, 100, 063513 doi: 10.1063/1.2335510
[23]
Li L N, Sun Z H, Ji C M, et al. Rational design and syntheses of molecular phase transition crystal materials. Cryst Growth Des, 2016, 16, 6685 doi: 10.1021/acs.cgd.6b01378
[24]
Zunger A, Wei S H, Ferreira L G, et al. Special quasirandom structures. Phys Rev Lett, 1990, 65, 353 doi: 10.1103/PhysRevLett.65.353
[25]
Zhang W C, Sun Z H, Zhang J, et al. Thermochromism to tune the optical bandgap of a lead-free perovskite-type hybrid semiconductor for efficiently enhancing photocurrent generation. J Mater Chem C, 2017, 5, 9967 doi: 10.1039/C7TC02721D
[26]
Xiao Z W, Meng W W, Wang J B, et al. Thermodynamic stability and defect chemistry of bismuth-based lead-free double perovskites. ChemSusChem, 2016, 9, 2628 doi: 10.1002/cssc.201600771
[27]
Vineyard G H. Theory of order-disorder kinetics. Phys Rev, 1956, 102, 981 doi: 10.1103/PhysRev.102.981
[28]
Rey G, Redinger A, Sendler J, et al. The band gap of Cu2ZnSnSe4: Effect of order-disorder. Appl Phys Lett, 2014, 105, 112106 doi: 10.1063/1.4896315
[29]
Lim T W, Kim S D, Sung K D, et al. Insights into cationic ordering in Re-based double perovskite oxides. Sci Rep, 2016, 6, 19746 doi: 10.1038/srep19746
[30]
Setter N, Cross L E. The contribution of structural disorder to diffuse phase transitions in ferroelectrics. J Mater Sci, 1980, 15, 2478 doi: 10.1007/BF00550750
[31]
Yin H, Xian Y M, Zhang Y L, et al. Structurally stabilizing and environment friendly triggers: Double-metallic lead-free perovskites. Sol RRL, 2019, 3, 1900148 doi: 10.1002/solr.201900148
[32]
Wei S H, Ferreira L G, Bernard J E, et al. Electronic properties of random alloys: Special quasirandom structures. Phys Rev B, 1990, 42, 9622 doi: 10.1103/PhysRevB.42.9622

20120023suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3045 Times PDF downloads: 129 Times Cited by: 0 Times

    History

    Received: 23 December 2020 Revised: 08 January 2021 Online: Uncorrected proof: 06 April 2021Accepted Manuscript: 06 April 2021Published: 05 July 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wenzhe Li, Naveed Ur Rahman, Yeming Xian, Hang Yin, Yunkai Bao, Yi Long, Songyang Yuan, Yangyi Zhang, Yaxuan Yuan, Jiandong Fan. Regulation of the order–disorder phase transition in a Cs2NaFeCl6 double perovskite towards reversible thermochromic application[J]. Journal of Semiconductors, 2021, 42(7): 072202. doi: 10.1088/1674-4926/42/7/072202 W Z Li, N U Rahman, Y M Xian, H Yin, Y K Bao, Y Long, S Y Yuan, Y Y Zhang, Y X Yuan, J D Fan, Regulation of the order–disorder phase transition in a Cs2NaFeCl6 double perovskite towards reversible thermochromic application[J]. J. Semicond., 2021, 42(7): 072202. doi: 10.1088/1674-4926/42/7/072202.Export: BibTex EndNote
      Citation:
      Wenzhe Li, Naveed Ur Rahman, Yeming Xian, Hang Yin, Yunkai Bao, Yi Long, Songyang Yuan, Yangyi Zhang, Yaxuan Yuan, Jiandong Fan. Regulation of the order–disorder phase transition in a Cs2NaFeCl6 double perovskite towards reversible thermochromic application[J]. Journal of Semiconductors, 2021, 42(7): 072202. doi: 10.1088/1674-4926/42/7/072202

      W Z Li, N U Rahman, Y M Xian, H Yin, Y K Bao, Y Long, S Y Yuan, Y Y Zhang, Y X Yuan, J D Fan, Regulation of the order–disorder phase transition in a Cs2NaFeCl6 double perovskite towards reversible thermochromic application[J]. J. Semicond., 2021, 42(7): 072202. doi: 10.1088/1674-4926/42/7/072202.
      Export: BibTex EndNote

      Regulation of the order–disorder phase transition in a Cs2NaFeCl6 double perovskite towards reversible thermochromic application

      doi: 10.1088/1674-4926/42/7/072202
      More Information
      • Author Bio:

        Wenzhe Li received his Ph.D. in the Department of Chemistry, Tsinghua University, in 2017. He joined Henry Snaith Group in Oxford University for joint cultivation in 2014–2015. Currently, he is an associate professor in Institute of New Energy Technology (iNET), College of Information Sciences and Technology at Jinan University. His current research focuses on structural design of novel perovskites, optoelectronic devices, carrier transport dynamics, and device stabilities

        Naveed Ur Rahman received his Ph.D degree in 2019, as a Chinese Government Scholarship student from Sun Yat-sen University. Afterward, he joined as a post-doctoral researcher in New Energy Materials Institute, Jinan University. Presently, he is working on the improvement of the intrinsic and extrinsic stability of perovskite solar cells through structure analysis of perovskite materials

        Yeming Xian received his bachelor’s degree in the Department of Electronic Engineering, Jinan University, in 2020. He joined Jiandong Fan and Wenzhe Li research group in Institute of New Energy Technology (INET), Jinan University in 2017-2020. He will start his graduate research in 2021 and his current research interests lie on First-principles calculations, optoelectronic devices and carrier behaviors in novel perovskites

        Jiandong Fan obtained his Ph.D. from the University of Barcelona in 2013. Afterward, he worked in Swinburne University of Technology and Oxford University as a postdoc. Currently, he is a full professor in Institute of New Energy Technology (iNET), College of Information Sciences and Technology at Jinan University. His research interests include crystallographic characterizations, and thin-film photoelectric and photovoltaic devices

      • Corresponding author: li_wz16@jnu.edu.cnjdfan@jnu.edu.cn
      • Received Date: 2020-12-23
      • Revised Date: 2021-01-08
      • Published Date: 2021-07-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return