ARTICLES

High room-temperature magnetization in Co-doped TiO2 nanoparticles promoted by vacuum annealing for different durations

Wenqiang Huang, Rui Lin, Weijie Chen, Yuzhu Wang and Hong Zhang

+ Author Affiliations

 Corresponding author: Hong Zhang, zhanghong381@fafu.edu.cn

PDF

Turn off MathJax

Abstract: To clarify the contribution of oxygen vacancies to room-temperature ferromagnetism (RTFM) in cobalt doped TiO2 (Co-TiO2), and in order to obtain the high level of magnetization suitable for spintronic devices, in this work, Co-TiO2 nanoparticles are prepared via the sol–gel route, followed by vacuum annealing for different durations, and the influence of vacuum annealing duration on the structure and room-temperature magnetism of the compounds is examined. The results reveal that with an increase in annealing duration, the concentration of oxygen vacancies rises steadily, while the saturation magnetization (Ms) shows an initial gradual increase, followed by a sharp decline, and even disappearance. The maximum Ms is as high as 1.19 emu/g, which is promising with respect to the development of spintronic devices. Further analysis reveals that oxygen vacancies, modulated by annealing duration, play a critical role in tuning room-temperature magnetism. An appropriate concentration of oxygen vacancies is beneficial in terms of promoting RTFM in Co-TiO2. However, excessive oxygen vacancies will result in a negative impact on RTFM, due to antiferromagnetic superexchange interactions originating from nearest-neighbor Co2+ ions.

Key words: Co-doped TiO2 nanoparticlesroom-temperature ferromagnetismdifferent annealing durationoxygen vacancyhigh magnetization



[1]
Yakout S M. Spintronics: Future technology for new data storage and communication devices. J Supercond Nov Magn, 2020, 33, 2557 doi: 10.1007/s10948-020-05545-8
[2]
Chen Z, Zhao Y S, Ma J Q, et al. Detailed XPS analysis and anomalous variation of chemical state for Mn- and V-doped TiO2 coated on magnetic particles. Ceram Int, 2017, 43(18), 16763 doi: 10.1016/j.ceramint.2017.09.071
[3]
Matsumoto Y, Murakami M, Shono T, et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 2001, 291(5505), 854 doi: 10.1126/science.1056186
[4]
Bolokang A S, Cummings F R, Dhonge B P, et al. Characteristics of the mechanical milling on the room temperature ferromagnetism and sensing properties of TiO2 nanoparticles. Appl Surf Sci, 2015, 311, 362 doi: 10.1016/j.apsusc.2015.01.055
[5]
Choudhury B, Verma R, Choudhury A. Oxygen defect assisted paramagnetic to ferromagnetic conversion in Fe doped TiO2 nanoparticles. RSC Adv, 2014, 4(55), 29314 doi: 10.1039/C3RA45286G
[6]
Tian J J, Gao H P, Deng H M, et al. Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon (100) substrates by sol–gel process. J Alloy Compd, 2013, 581(13), 318 doi: 10.1016/j.jallcom.2013.07.105
[7]
Semisalova A S, Mikhailovsky Y O, Smekhova A, et al. Above room temperature ferromagnetism in Co- and V-doped TiO2 — revealing the different contributions of defects and impurities. J Supercond Nov Magn, 2015, 28(3), 805 doi: 10.1007/s10948-014-2776-9
[8]
Tseng L T, Luo X, Li S, et al. Magnetic properties of Sm-doped rutile TiO2 nanorods. J Alloy Compd, 2016, 687, 294 doi: 10.1016/j.jallcom.2016.06.112
[9]
Paul S, Choudhury B, Choudhury A. Magnetic property study of Gd doped TiO2 nanoparticles. J Alloy Compd, 2014, 601, 201 doi: 10.1016/j.jallcom.2014.02.070
[10]
Xu N N, Li G P, Lin Q L, et al. Structural and magnetic study of undoped and Cu-doped rutile TiO2 single crystals. J Supercond Nov Magn, 2017, 30(9), 2591 doi: 10.1007/s10948-017-4078-5
[11]
Zou Z R, Zhou Z P, Wang H Y, et al. Effect of Au clustering on ferromagnetism in Au doped TiO2 films: theory and experiments investigation. J Phys Chem Solids, 2017, 100, 71 doi: 10.1016/j.jpcs.2016.09.011
[12]
Wang J B, Wu K C, Mi J W, et al. Room-temperature ferromagnetism in carbon- and nitrogen-doped rutile TiO2. Appl Phys A, 2015, 118(2), 725 doi: 10.1007/s00339-014-8788-2
[13]
Wei G D, Wei L, Chen Y X, et al. Magnetic coupling and electric transport in Nb, Fe co-doped rutile TiO2 epitaxial films. J Alloy Compd, 2017, 695, 2261 doi: 10.1016/j.jallcom.2016.11.077
[14]
Ahmed S A. Annealing effects on structure and magnetic properties of Mn-doped TiO2. J Magn Magn Mater, 2016, 402, 178 doi: 10.1016/j.jmmm.2015.11.065
[15]
Ahmed S A. Ferromagnetism in Cr-, Fe-, and Ni-doped TiO2 samples. J Magn Magn Mater, 2017, 442, 152 doi: 10.1016/j.jmmm.2017.06.108
[16]
Chanda A, Rout K, Vasundhara M, et al. Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles. RSC Adv, 2018, 8(20), 10939 doi: 10.1039/C8RA00626A
[17]
Stella C, Prabhakar D, Prabhu M, et al. Oxygen vacancies induced room temperature ferromagnetism and gas sensing properties of Co-doped TiO2 nanoparticles. J Mater Sci-Mater Electron, 2016, 27(2), 1636 doi: 10.1007/s10854-015-3935-x
[18]
Lin Y B, Yang Y M, Zhuang B, et al. Ferromagnetism of Co-doped TiO2 films prepared by plasma enhanced chemical vapour deposition (PECVD) method. J Phys D, 2008, 41(19), 195007 doi: 10.1088/0022-3727/41/19/195007
[19]
Cortie D L, Khaydukov Y, Keller T, et al. Enhanced magnetization of cobalt defect clusters embedded in TiO2–δ films. ACS Appl Mater Inter, 2017, 9(10), 8783 doi: 10.1021/acsami.6b15071
[20]
Santara B, Pal B, Giri P K, et al. Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J Appl Phys, 2011, 110(11), 114322 doi: 10.1063/1.3665883
[21]
Griffin R K, Varela M, Rashkeev S, et al. Defect-dediated ferromagnetism in insulating Co-doped anatase TiO2 thin films. Phys Rev B, 2008, 78(1), 014409 doi: 10.1103/PhysRevB.78.014409
[22]
Shinde S R, Ogale S B, Higgins J S, et al. Co-occurrence of superparamagnetism and anomalous Hall effect in highly reduced cobalt-doped rutile TiO2–δ films. Phys Rev Lett, 2004, 92(16), 166601 doi: 10.1103/PhysRevLett.92.166601
[23]
Bryan J D, Santangelo S A, Keveren S C, et al. Activation of high-TC ferromagnetism in Co2+: TiO2 and Cr3+: TiO2 nanorods and nanocrystals by grain boundary defects. J Am Chem Soc, 2005, 127(44), 15568 doi: 10.1021/ja0543447
[24]
Srinivas K, Reddy P V. Synthesis, structural, and magnetic properties of nanocrystalline Ti0.95Co0.05O2-diluted magnetic semiconductors. J Supercond Nov Magn, 2014, 27(11), 2521 doi: 10.1007/s10948-014-2615-z
[25]
Kaushik A, Dalela B, Kumar S, et al. Role of Co doping on structural, optical and magnetic properties of TiO2. J Alloy Compd, 2013, 552, 274 doi: 10.1016/j.jallcom.2012.10.076
[26]
Sharma S, Thakur N, Kotnala R K, et al. Structure and magnetic properties of Ti1 – xCoxO2 nanoparticles prepared by chemical route. J Cryst Growth, 2011, 321(1), 19 doi: 10.1016/j.jcrysgro.2011.02.023
[27]
Kumar S, Park J S, Kim D J, et al. Electronic structure and magnetic properties of Co doped TiO2 thin films using X-ray absorption spectroscopy. Ceram Int, 2015, 41(Supplement 1), S370 doi: 10.1016/j.ceramint.2015.03.209
[28]
Shinde S R, Ogale S B, Sarma S D, et al. Ferromagnetism in laser deposited anatase Ti1– xCoxO2–δ films. Phys Rev B, 2003, 67(11), 115211 doi: 10.1103/PhysRevB.67.115211
[29]
Karthik K, Pandian S K, Kumar K S, et al. Influence of dopant level on structural, optical and magnetic properties of Co-doped anatase TiO2 nanoparticles. Appl Surf Sci, 2010, 256(14), 4757 doi: 10.1016/j.apsusc.2010.02.085
[30]
Tseng L T, Luo X, Tan T T, et al. Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods. Nanoscale Res Lett, 2014, 9, 673 doi: 10.1186/1556-276X-9-673
[31]
Choudhury B, Choudhury A, MaidulIslam A K M, et al. Effect of oxygen vacancy and dopant concentration on the magnetic properties of high spin Co2+ doped TiO2 nanoparticles. J Magn Magn Mater, 2011, 323(5), 440 doi: 10.1016/j.jmmm.2010.09.043
[32]
Zhang H, Chen M X, Wang Y Z, et al. Correlation between oxygen vacancies and room temperature ferromagnetism in Ti0.94Co0.03La0.03O2 nanoparticles influenced by different post annealing treatment. J Sol–gel Sci Techn, 2018, 86(1), 162 doi: 10.1007/s10971-018-4625-y
[33]
Zhang H, Huang W Q, Lin R, et al. Room temperature ferromagnetism in pristine TiO2 nanoparticles triggered by singly ionized surface oxygen vacancy induced via calcining in different air pressure. J Alloy Compd, 2021, 860, 157913 doi: 10.1016/j.jallcom.2020.157913
[34]
Zhang H, Zheng L Q, Ouyang X H, et al. Carbon doping of Ti0.91Co0.03La0.06O2 nanoparticles for enhancing room-temperature ferromagnetism using carboxymethyl cellulose as carbon source. Ceram Int, 2018, 44(13), 15754 doi: 10.1016/j.ceramint.2018.05.250
[35]
Zhang H, Xu Y, Yang W B, et al. Structural and magnetic evolution of Fe-doped TiO2 nanoparticles synthesized by sol–gel method. J Electroceram, 2017, 38(1), 104 doi: 10.1007/s10832-017-0068-z
[36]
Lee H Y, Clark S J, Robertson J. Calculation of point defects in rutile TiO2 by the screened-exchange hybrid functional. Phys Rev B, 2012, 86(7), 075209 doi: 10.1103/PhysRevB.86.075209
[37]
Na-Phattalung S, Smith M F, Kim K, et al. First-principles study of native defects in anatase TiO2. Phys Rev B, 2006, 73(12), 125205 doi: 10.1103/PhysRevB.73.125205
[38]
Santara B, Giri P K, Dhara S, et al. Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J Phys D, 2014, 47(73), 235304 doi: 10.1088/0022-3727/47/23/235304
[39]
Patel S K S, Gajbhiye N S, Date S K. Ferromagnetism of Mn-doped TiO2 nanorods synthesized by hydrothermal method. J Alloy Compd, 2011, 509(S1), S427 doi: 10.1016/j.jallcom.2011.01.086
[40]
Mahmoud M S, Ahmed E, Farghalid A A, et al. Synthesis of Fe/Co-doped titanate nanotube as redox catalyst for photon-induced water splitting. Mater Chem Phys, 2018, 217, 125 doi: 10.1016/j.matchemphys.2018.06.058
[41]
Yadav H M, Kim J S. Sol–gel synthesis of Co2+-doped TiO2 nanoparticles and their photocatalytic activity study. Sci Adv Mater, 2017, 9(12), 1114 doi: 10.1166/sam.2017.2796
[42]
Kumar A, Kashyap M K, Sabharwal N, et al. Structural, optical and weak magnetic properties of Co and Mn codoped TiO2 nanoparticles. Solid State Sci, 2017, 73, 19 doi: 10.1016/j.solidstatesciences.2017.09.002
[43]
Li Z H, Zhong W W, Li X M, et al. Strong room-temperature ferromagnetism of pure ZnO nanostructure arrays via colloidal template. J Mater Chem C, 2013, 1(41), 6807 doi: 10.1039/c3tc31387e
Fig. 1.  (a) XRD patterns for all the samples. (b) Enlarged view of all the (101) diffraction peaks. (c) Average crystallite size, and interplanar spacing as a function of the annealing duration.

Fig. 2.  SEM images for all samples.

Fig. 3.  Raman spectra for all samples. The inset shows an enlarged view of all the Eg(1) Raman peaks.

Fig. 4.  EPR spectra for all samples.

Fig. 5.  Core level XPS spectra of Co 2p for all samples.

Fig. 6.  Core level XPS spectrum of Ti 2p for the TC1 sample.

Fig. 7.  Room-temperature hysteresis loops for all samples: (a) TC1, TC2, TC3, TC4, TC5, TC6, (b) TC7, (c) TC8.

Fig. 8.  Saturation magnetization as a function of annealing duration for all samples.

[1]
Yakout S M. Spintronics: Future technology for new data storage and communication devices. J Supercond Nov Magn, 2020, 33, 2557 doi: 10.1007/s10948-020-05545-8
[2]
Chen Z, Zhao Y S, Ma J Q, et al. Detailed XPS analysis and anomalous variation of chemical state for Mn- and V-doped TiO2 coated on magnetic particles. Ceram Int, 2017, 43(18), 16763 doi: 10.1016/j.ceramint.2017.09.071
[3]
Matsumoto Y, Murakami M, Shono T, et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 2001, 291(5505), 854 doi: 10.1126/science.1056186
[4]
Bolokang A S, Cummings F R, Dhonge B P, et al. Characteristics of the mechanical milling on the room temperature ferromagnetism and sensing properties of TiO2 nanoparticles. Appl Surf Sci, 2015, 311, 362 doi: 10.1016/j.apsusc.2015.01.055
[5]
Choudhury B, Verma R, Choudhury A. Oxygen defect assisted paramagnetic to ferromagnetic conversion in Fe doped TiO2 nanoparticles. RSC Adv, 2014, 4(55), 29314 doi: 10.1039/C3RA45286G
[6]
Tian J J, Gao H P, Deng H M, et al. Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon (100) substrates by sol–gel process. J Alloy Compd, 2013, 581(13), 318 doi: 10.1016/j.jallcom.2013.07.105
[7]
Semisalova A S, Mikhailovsky Y O, Smekhova A, et al. Above room temperature ferromagnetism in Co- and V-doped TiO2 — revealing the different contributions of defects and impurities. J Supercond Nov Magn, 2015, 28(3), 805 doi: 10.1007/s10948-014-2776-9
[8]
Tseng L T, Luo X, Li S, et al. Magnetic properties of Sm-doped rutile TiO2 nanorods. J Alloy Compd, 2016, 687, 294 doi: 10.1016/j.jallcom.2016.06.112
[9]
Paul S, Choudhury B, Choudhury A. Magnetic property study of Gd doped TiO2 nanoparticles. J Alloy Compd, 2014, 601, 201 doi: 10.1016/j.jallcom.2014.02.070
[10]
Xu N N, Li G P, Lin Q L, et al. Structural and magnetic study of undoped and Cu-doped rutile TiO2 single crystals. J Supercond Nov Magn, 2017, 30(9), 2591 doi: 10.1007/s10948-017-4078-5
[11]
Zou Z R, Zhou Z P, Wang H Y, et al. Effect of Au clustering on ferromagnetism in Au doped TiO2 films: theory and experiments investigation. J Phys Chem Solids, 2017, 100, 71 doi: 10.1016/j.jpcs.2016.09.011
[12]
Wang J B, Wu K C, Mi J W, et al. Room-temperature ferromagnetism in carbon- and nitrogen-doped rutile TiO2. Appl Phys A, 2015, 118(2), 725 doi: 10.1007/s00339-014-8788-2
[13]
Wei G D, Wei L, Chen Y X, et al. Magnetic coupling and electric transport in Nb, Fe co-doped rutile TiO2 epitaxial films. J Alloy Compd, 2017, 695, 2261 doi: 10.1016/j.jallcom.2016.11.077
[14]
Ahmed S A. Annealing effects on structure and magnetic properties of Mn-doped TiO2. J Magn Magn Mater, 2016, 402, 178 doi: 10.1016/j.jmmm.2015.11.065
[15]
Ahmed S A. Ferromagnetism in Cr-, Fe-, and Ni-doped TiO2 samples. J Magn Magn Mater, 2017, 442, 152 doi: 10.1016/j.jmmm.2017.06.108
[16]
Chanda A, Rout K, Vasundhara M, et al. Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles. RSC Adv, 2018, 8(20), 10939 doi: 10.1039/C8RA00626A
[17]
Stella C, Prabhakar D, Prabhu M, et al. Oxygen vacancies induced room temperature ferromagnetism and gas sensing properties of Co-doped TiO2 nanoparticles. J Mater Sci-Mater Electron, 2016, 27(2), 1636 doi: 10.1007/s10854-015-3935-x
[18]
Lin Y B, Yang Y M, Zhuang B, et al. Ferromagnetism of Co-doped TiO2 films prepared by plasma enhanced chemical vapour deposition (PECVD) method. J Phys D, 2008, 41(19), 195007 doi: 10.1088/0022-3727/41/19/195007
[19]
Cortie D L, Khaydukov Y, Keller T, et al. Enhanced magnetization of cobalt defect clusters embedded in TiO2–δ films. ACS Appl Mater Inter, 2017, 9(10), 8783 doi: 10.1021/acsami.6b15071
[20]
Santara B, Pal B, Giri P K, et al. Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J Appl Phys, 2011, 110(11), 114322 doi: 10.1063/1.3665883
[21]
Griffin R K, Varela M, Rashkeev S, et al. Defect-dediated ferromagnetism in insulating Co-doped anatase TiO2 thin films. Phys Rev B, 2008, 78(1), 014409 doi: 10.1103/PhysRevB.78.014409
[22]
Shinde S R, Ogale S B, Higgins J S, et al. Co-occurrence of superparamagnetism and anomalous Hall effect in highly reduced cobalt-doped rutile TiO2–δ films. Phys Rev Lett, 2004, 92(16), 166601 doi: 10.1103/PhysRevLett.92.166601
[23]
Bryan J D, Santangelo S A, Keveren S C, et al. Activation of high-TC ferromagnetism in Co2+: TiO2 and Cr3+: TiO2 nanorods and nanocrystals by grain boundary defects. J Am Chem Soc, 2005, 127(44), 15568 doi: 10.1021/ja0543447
[24]
Srinivas K, Reddy P V. Synthesis, structural, and magnetic properties of nanocrystalline Ti0.95Co0.05O2-diluted magnetic semiconductors. J Supercond Nov Magn, 2014, 27(11), 2521 doi: 10.1007/s10948-014-2615-z
[25]
Kaushik A, Dalela B, Kumar S, et al. Role of Co doping on structural, optical and magnetic properties of TiO2. J Alloy Compd, 2013, 552, 274 doi: 10.1016/j.jallcom.2012.10.076
[26]
Sharma S, Thakur N, Kotnala R K, et al. Structure and magnetic properties of Ti1 – xCoxO2 nanoparticles prepared by chemical route. J Cryst Growth, 2011, 321(1), 19 doi: 10.1016/j.jcrysgro.2011.02.023
[27]
Kumar S, Park J S, Kim D J, et al. Electronic structure and magnetic properties of Co doped TiO2 thin films using X-ray absorption spectroscopy. Ceram Int, 2015, 41(Supplement 1), S370 doi: 10.1016/j.ceramint.2015.03.209
[28]
Shinde S R, Ogale S B, Sarma S D, et al. Ferromagnetism in laser deposited anatase Ti1– xCoxO2–δ films. Phys Rev B, 2003, 67(11), 115211 doi: 10.1103/PhysRevB.67.115211
[29]
Karthik K, Pandian S K, Kumar K S, et al. Influence of dopant level on structural, optical and magnetic properties of Co-doped anatase TiO2 nanoparticles. Appl Surf Sci, 2010, 256(14), 4757 doi: 10.1016/j.apsusc.2010.02.085
[30]
Tseng L T, Luo X, Tan T T, et al. Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods. Nanoscale Res Lett, 2014, 9, 673 doi: 10.1186/1556-276X-9-673
[31]
Choudhury B, Choudhury A, MaidulIslam A K M, et al. Effect of oxygen vacancy and dopant concentration on the magnetic properties of high spin Co2+ doped TiO2 nanoparticles. J Magn Magn Mater, 2011, 323(5), 440 doi: 10.1016/j.jmmm.2010.09.043
[32]
Zhang H, Chen M X, Wang Y Z, et al. Correlation between oxygen vacancies and room temperature ferromagnetism in Ti0.94Co0.03La0.03O2 nanoparticles influenced by different post annealing treatment. J Sol–gel Sci Techn, 2018, 86(1), 162 doi: 10.1007/s10971-018-4625-y
[33]
Zhang H, Huang W Q, Lin R, et al. Room temperature ferromagnetism in pristine TiO2 nanoparticles triggered by singly ionized surface oxygen vacancy induced via calcining in different air pressure. J Alloy Compd, 2021, 860, 157913 doi: 10.1016/j.jallcom.2020.157913
[34]
Zhang H, Zheng L Q, Ouyang X H, et al. Carbon doping of Ti0.91Co0.03La0.06O2 nanoparticles for enhancing room-temperature ferromagnetism using carboxymethyl cellulose as carbon source. Ceram Int, 2018, 44(13), 15754 doi: 10.1016/j.ceramint.2018.05.250
[35]
Zhang H, Xu Y, Yang W B, et al. Structural and magnetic evolution of Fe-doped TiO2 nanoparticles synthesized by sol–gel method. J Electroceram, 2017, 38(1), 104 doi: 10.1007/s10832-017-0068-z
[36]
Lee H Y, Clark S J, Robertson J. Calculation of point defects in rutile TiO2 by the screened-exchange hybrid functional. Phys Rev B, 2012, 86(7), 075209 doi: 10.1103/PhysRevB.86.075209
[37]
Na-Phattalung S, Smith M F, Kim K, et al. First-principles study of native defects in anatase TiO2. Phys Rev B, 2006, 73(12), 125205 doi: 10.1103/PhysRevB.73.125205
[38]
Santara B, Giri P K, Dhara S, et al. Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J Phys D, 2014, 47(73), 235304 doi: 10.1088/0022-3727/47/23/235304
[39]
Patel S K S, Gajbhiye N S, Date S K. Ferromagnetism of Mn-doped TiO2 nanorods synthesized by hydrothermal method. J Alloy Compd, 2011, 509(S1), S427 doi: 10.1016/j.jallcom.2011.01.086
[40]
Mahmoud M S, Ahmed E, Farghalid A A, et al. Synthesis of Fe/Co-doped titanate nanotube as redox catalyst for photon-induced water splitting. Mater Chem Phys, 2018, 217, 125 doi: 10.1016/j.matchemphys.2018.06.058
[41]
Yadav H M, Kim J S. Sol–gel synthesis of Co2+-doped TiO2 nanoparticles and their photocatalytic activity study. Sci Adv Mater, 2017, 9(12), 1114 doi: 10.1166/sam.2017.2796
[42]
Kumar A, Kashyap M K, Sabharwal N, et al. Structural, optical and weak magnetic properties of Co and Mn codoped TiO2 nanoparticles. Solid State Sci, 2017, 73, 19 doi: 10.1016/j.solidstatesciences.2017.09.002
[43]
Li Z H, Zhong W W, Li X M, et al. Strong room-temperature ferromagnetism of pure ZnO nanostructure arrays via colloidal template. J Mater Chem C, 2013, 1(41), 6807 doi: 10.1039/c3tc31387e
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2181 Times PDF downloads: 61 Times Cited by: 0 Times

    History

    Received: 19 January 2021 Revised: 03 February 2021 Online: Accepted Manuscript: 09 April 2021Uncorrected proof: 29 June 2021Published: 05 July 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wenqiang Huang, Rui Lin, Weijie Chen, Yuzhu Wang, Hong Zhang. High room-temperature magnetization in Co-doped TiO2 nanoparticles promoted by vacuum annealing for different durations[J]. Journal of Semiconductors, 2021, 42(7): 072501. doi: 10.1088/1674-4926/42/7/072501 W Q Huang, R Lin, W J Chen, Y Z Wang, H Zhang, High room-temperature magnetization in Co-doped TiO2 nanoparticles promoted by vacuum annealing for different durations[J]. J. Semicond., 2021, 42(7): 072501. doi: 10.1088/1674-4926/42/7/072501.Export: BibTex EndNote
      Citation:
      Wenqiang Huang, Rui Lin, Weijie Chen, Yuzhu Wang, Hong Zhang. High room-temperature magnetization in Co-doped TiO2 nanoparticles promoted by vacuum annealing for different durations[J]. Journal of Semiconductors, 2021, 42(7): 072501. doi: 10.1088/1674-4926/42/7/072501

      W Q Huang, R Lin, W J Chen, Y Z Wang, H Zhang, High room-temperature magnetization in Co-doped TiO2 nanoparticles promoted by vacuum annealing for different durations[J]. J. Semicond., 2021, 42(7): 072501. doi: 10.1088/1674-4926/42/7/072501.
      Export: BibTex EndNote

      High room-temperature magnetization in Co-doped TiO2 nanoparticles promoted by vacuum annealing for different durations

      doi: 10.1088/1674-4926/42/7/072501
      More Information
      • Author Bio:

        Wenqiang Huang is currently a undergraduate in College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University. He is the project principal of the National Training Program of Innovation and Entrepreneurship for Undergraduates (No. 201910389022) under the supervision of Dr Hong Zhang. His current research focuses on the magnetic performance of TiO2-based dilute magnetic semiconductor

        Hong Zhang got his PhD from Fujian Agriculture and Forestry University. He worked in Limerick Pulp and Paper Centre, University of New Brunswick, Canada as a visiting scholar from 2017 to 2018. He is currently an associate professor in College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University. His current research focuses on the magnetic performance of TiO2-based dilute magnetic semiconductor

      • Corresponding author: zhanghong381@fafu.edu.cn
      • Received Date: 2021-01-19
      • Revised Date: 2021-02-03
      • Published Date: 2021-07-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return