J. Semicond. > Volume 38 > Issue 3 > Article Number: 031004

Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures

Huihui Yang 1, 2, 3, , Feng Gao 1, 2, 3, , Mingjin Dai 1, 2, 3, , Dechang Jia 1, , Yu Zhou 1, and Ping'an Hu 1, 2, 3,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Two-dimensional (2D) layered materials, such as graphene, hexagonal boron nitride (h-BN), molybdenum disulfide (MoS2), have attracted tremendous interest due to their atom-thickness structures and excellent physical properties. h-BN has predominant advantages as the dielectric substrate in FET devices due to its outstanding properties such as chemically inert surface, being free of dangling bonds and surface charge traps, especially the large-band-gap insulativity. h-BN involved vertical heterostructures have been widely exploited during the past few years. Such heterostructures adopting h-BN as dielectric layers exhibit enhanced electronic performance, and provide further possibilities for device engineering. Besides, a series of intriguing physical phenomena are observed in certain vertical heterostructures, such as superlattice potential induced replication of Dirac points, band gap tuning, Hofstadter butterfly states, gate-dependent pseudospin mixing. Herein we focus on the rapid developments of h-BN synthesis and fabrication of vertical heterostructures devices based on h-BN, and review the novel properties as well as the potential applications of the heterostructures composed of h-BN.

Key words: h-BNheterostructuresgraphenevan der Waals epitaxyFETs

Abstract: Two-dimensional (2D) layered materials, such as graphene, hexagonal boron nitride (h-BN), molybdenum disulfide (MoS2), have attracted tremendous interest due to their atom-thickness structures and excellent physical properties. h-BN has predominant advantages as the dielectric substrate in FET devices due to its outstanding properties such as chemically inert surface, being free of dangling bonds and surface charge traps, especially the large-band-gap insulativity. h-BN involved vertical heterostructures have been widely exploited during the past few years. Such heterostructures adopting h-BN as dielectric layers exhibit enhanced electronic performance, and provide further possibilities for device engineering. Besides, a series of intriguing physical phenomena are observed in certain vertical heterostructures, such as superlattice potential induced replication of Dirac points, band gap tuning, Hofstadter butterfly states, gate-dependent pseudospin mixing. Herein we focus on the rapid developments of h-BN synthesis and fabrication of vertical heterostructures devices based on h-BN, and review the novel properties as well as the potential applications of the heterostructures composed of h-BN.

Key words: h-BNheterostructuresgraphenevan der Waals epitaxyFETs



References:

[1]

Pakde A, Bando Y, Golberg D. Nano boron nitride flatland[J]. Chem Soc Rev, 2014, 43: 934. doi: 10.1039/C3CS60260E

[2]

Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal[J]. Nat Mater, 2004, 3(6): 404. doi: 10.1038/nmat1134

[3]

Wang H L, Zhang X W, Liu H. Synthesis of large-sized single-crystal hexagonal boron nitride domains on nickel foils by ion beam sputtering deposition[J]. Adv Mater, 2015, 27(48): 8109. doi: 10.1002/adma.201504042

[4]

Ahmed K, Dahal R, Weltz A. Growth of hexagonal boron nitride on (111) Si for deep UV photonics and thermal neutron detection[J]. Appl Phys Lett, 2016, 109(11): 113501. doi: 10.1063/1.4962831

[5]

Yin J, Li J D, Hang Y. Boron nitride nanostructures:fabrication, functionalization and applications[J]. Small, 2016, 12(22): 2942. doi: 10.1002/smll.201600053

[6]

Britnell L, Gorbachev R V, Jalil R. Field-effect tunneling transistor based on vertical graphene heterostructures[J]. Science, 2012, 335(6071): 947. doi: 10.1126/science.1218461

[7]

Dean C R, Young A F, Meric I. Boron nitride substrates for high-quality graphene electronics[J]. Nat Nanotechnol, 2010, 5: 722. doi: 10.1038/nnano.2010.172

[8]

Li L K, Ye G J, Tran V. Quantum oscillations in a twodimensional electron gas in black phosphorus thin films[J]. Nat Nanotechnol, 2015, 10: 608. doi: 10.1038/nnano.2015.91

[9]

Giovannetti G, Khomyakov P A, Brocks G. Substrateinduced band gap in graphene on hexagonal boron nitride:ab initio density functional calculations[J]. Phys Rev B, 2007, 76(7): 073103. doi: 10.1103/PhysRevB.76.073103

[10]

Yang W, Chen G R, Shi Z W. Epitaxial growth of singledomain graphene on hexagonal boron nitride[J]. Nat Mater, 2013, 12: 792. doi: 10.1038/nmat3695

[11]

Wang E, Lu X B, Ding S J. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride[J]. Nat Phys, 2016, 12: 1111. doi: 10.1038/nphys3856

[12]

Yankowitz M, Xue J M, Cormode D. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride[J]. Nat Phys, 2012, 8: 382. doi: 10.1038/nphys2272

[13]

Ponomarenko L A, Gorbachev R V, Yu G L. Cloning of Dirac fermions in graphene superlattices[J]. Nature, 2013, 497: 594. doi: 10.1038/nature12187

[14]

Gorbachev R V, Song J C W, Yu G L. Detecting topological currents in graphene superlattices[J]. Science, 2014, 346(6208): 448. doi: 10.1126/science.1254966

[15]

Novoselov K S, Jiang D, Schedin F. Two-dimensional atomic crystals[J]. Proc Natl Acad Sci USA, 2005, 102(30): 10451. doi: 10.1073/pnas.0502848102

[16]

Pacilé D, Meyer J C, Girit Ç Ö. The two-dimensional phase of boron nitride:few-atomic-layer sheets and suspended membranes[J]. Appl Phys Lett, 2008, 92(13): 133107. doi: 10.1063/1.2903702

[17]

Alem N, Erni R, Kisielowski C. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy[J]. Phys Rev B, 2009, 80(15): 155425. doi: 10.1103/PhysRevB.80.155425

[18]

Jin C H, Lin F, Suenaga K. Fabrication of a freestanding boron nitride single layer and its defect assignments[J]. Phys Rev Lett, 2009, 102(19): 195505. doi: 10.1103/PhysRevLett.102.195505

[19]

Lee C G, Li Q Y, Kalb W. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328(5974): 76. doi: 10.1126/science.1184167

[20]

Gorbachev R V, Riaz I, Nair R R. Hunting for monolayer boron nitride:optical and Raman signatures[J]. Small, 2011, 7(4): 465. doi: 10.1002/smll.201001628

[21]

Golberg D, Bando Y, Huang Y. Boron nitride nanotubes and nanosheets[J]. ACS Nano, 2010, 4(6): 2979. doi: 10.1021/nn1006495

[22]

Zhi C Y, Bando Y, Tang C C. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties[J]. Adv Mater, 2009, 21(28): 2889. doi: 10.1002/adma.v21:28

[23]

Lin Y, Williams T V, Connell J W. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. J Phys Chem Lett, 2010, 1(1): 277. doi: 10.1021/jz9002108

[24]

Wang Y, Shi Z X, Yin J. Boron nitride nanosheets:large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole[J]. J Mater Chem, 2011, 21: 11371. doi: 10.1039/c1jm10342c

[25]

Lin Y, Williams T V, Xu T B. Aqueous dispersions of fewlayered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis:critical role of water[J]. J Phys Chem, 2011, 115: 2679. doi: 10.1021/jp1105778

[26]

Zhou K G, Mao N N, Wang H X. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues[J]. Angew Chem Int Edit, 2011, 50(46): 10839. doi: 10.1002/anie.v50.46

[27]

Sarmazdeh Z R, Jafari S H, Ahmadi S J. Large-scale exfoliation of hexagonal boron nitride with combined fast quenching and liquid exfoliation strategies[J]. J Mater Sci, 2016, 51(6): 3162. doi: 10.1007/s10853-015-9626-4

[28]

Zhu W S, Gao X, Li Q. Controlled gas exfoliation of boron nitride into few-layered nanosheets[J]. Angew Chem Int Edit, 2016, 128: 10924. doi: 10.1002/ange.201605515

[29]

Nagashima A, Tejima N, Gamou Y. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface[J]. Phys Rev B, 1995, 51(7): 4606. doi: 10.1103/PhysRevB.51.4606

[30]

Koepke J C, Wood J D, Chen Y F. Role of pressure in the growth of hexagonal boron nitride thin films from ammoniaborane[J]. Chem Mater, 2016, 28(12): 4169. doi: 10.1021/acs.chemmater.6b00396

[31]

Auwärter W, Suter H U, Sachdev H. Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from BTrichloroborazine (ClBNH)3[J]. Chem Mater, 2004, 16(2): 343. doi: 10.1021/cm034805s

[32]

Müller F, Stöwe K, Sachdev H. Symmetry versus commensurability:epitaxial growth of hexagonal boron nitride on Pt(111) from B-Trichloroborazine (ClBNH)3[J]. Chem Mater, 2005, 17(13): 3464. doi: 10.1021/cm048629e

[33]

Shi Y M, Hamsen C, Jia X T. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition[J]. Nano Lett, 2010, 10(10): 4134. doi: 10.1021/nl1023707

[34]

Song L, Ci L J, Lu H. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Lett, 2010, 10(8): 3209. doi: 10.1021/nl1022139

[35]

Lee K H, Shin H J, Lee J. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics[J]. Nano Lett, 2012, 12(1): 714.

[36]

Gao Y, Ren W C, Ma T. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils[J]. ACS Nano, 2013, 7(6): 5200.

[37]

Ismach A, Chou H, Ferrer D A. Toward the controlled synthesis of hexagonal boron nitride films[J]. ACS Nano, 2012, 6(7): 6378. doi: 10.1021/nn301940k

[38]

Chatterjee S, Luo Z T, Acerce M. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions[J]. Chem Mater, 2011, 23(20): 4414. doi: 10.1021/cm201955v

[39]

Kim K K, Hsu A, Jia X T. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition[J]. Nano Lett, 2012, 12(1): 162.

[40]

Behura S J, Nguyen P, Che S W. Large-area, transferfree, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2[J]. J Am Chem Soc, 2015, 137(40): 13060. doi: 10.1021/jacs.5b07739

[41]

Han J H, Lee J Y, Kwon H M. Synthesis of waferscale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition[J]. Nanotechnology, 2014, 25(14): 145604. doi: 10.1088/0957-4484/25/14/145604

[42]

Morsche M, Corso M, Greber T. Formation of single layer h-BN on Pd(111)[J]. Surf Sci, 2006, 600(16): 3280. doi: 10.1016/j.susc.2006.06.016

[43]

Müller F, Hüfner S, Sachdev H. Epitaxial growth of hexagonal boron nitride on Ag(111)[J]. Phys Rev B, 2010, 82(11): 113406. doi: 10.1103/PhysRevB.82.113406

[44]

Müller F, Hüfner S, Sachdev H. One-dimensional structure of boron nitride on chromium (110)-a study of the growth of boron nitride by chemical vapour deposition of borazine[J]. Surf Sci, 2008, 602(22): 3467. doi: 10.1016/j.susc.2008.06.037

[45]

Corso M, Greber T, Osterwalder J. H-BN on Pd(110):a tunable system for self-assembled nanostructures[J]. Surf Sci, 2005, 577(2/3): 78.

[46]

Goriachko A, He Y B, Knapp M. Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001)[J]. Langmuir, 2007, 23: 2928. doi: 10.1021/la062990t

[47]

Tay R Y, Griep M H, Mallick G. Growth of large singlecrystalline two-dimensional boron nitride hexagons on electropolished copper[J]. Nano Lett, 2014, 14(2): 839. doi: 10.1021/nl404207f

[48]

Wang L F, Wu B, Chen J. Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors[J]. Adv Mater, 2014, 26(10): 1559. doi: 10.1002/adma.201304937

[49]

Wang J, Chen L F, Wu N. Graphene on liquid metal by chemical vapour deposition at reduced temperature[J]. Carbon, 2016, 96: 799. doi: 10.1016/j.carbon.2015.10.015

[50]

Geng D C, Wu B, Guo Y L. Uniform hexagonal graphene flakes and films grown on liquid copper surface[J]. Proc Natl Acad Sci USA, 2012, 109(21): 17992.

[51]

Tan L F, Han J L, Mendes R G. Self-aligned singlecrystalline hexagonal boron nitride arrays:toward higher integrated electronic devices[J]. Adv Electron Mater, 2015, 1(11): 1500223. doi: 10.1002/aelm.201500223

[52]

Khan M H, Huang Z G, Xiao F. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper[J]. Sci Rep, 2015, 5: 7743. doi: 10.1038/srep07743

[53]

Jang A R, Hong S, Hyun C. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire[J]. Nano Lett, 2016, 16(5): 3360. doi: 10.1021/acs.nanolett.6b01051

[54]

Caneva S, Weatherup R S, Bayer B C. Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts[J]. Nano Lett, 2015, 15(3): 1867. doi: 10.1021/nl5046632

[55]

Lu G Y, Wu T R, Yuan Q H. Synthesis of large singlecrystal hexagonal boron nitride grains on Cu-Ni alloy[J]. Nat Commun, 2015, 6: 6160. doi: 10.1038/ncomms7160

[56]

Li J, Wang X Y, Liu X R. Facile growth of centimeter-sized single-crystal graphene on copper foil at atmospheric pressure[J]. J Mater Chem C, 2015, 3: 3530. doi: 10.1039/C5TC00235D

[57]

Guo W, Jing F, Xiao J. Oxidative-etching-assisted synthesis of centimeter-sized single-crystalline graphene[J]. Adv Mater, 2016, 28(16): 3152. doi: 10.1002/adma.201503705

[58]

Tay R Y, Park H J, Ryu G H. Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper[J]. Nanoscale, 2016, 8(4): 2434. doi: 10.1039/C5NR08036C

[59]

Wu Q K, Park J H, Park S. Single crystalline film of hexagonal boron nitride atomic monolayer by controlling nucleation seeds and domains[J]. Sci Rep, 2015, 5: 16159. doi: 10.1038/srep16159

[60]

Stehle Y, Meyerlll H M, Unocic R R. Synthesis of hexagonal boron nitride monolayer:control of nucleation and crystal morphology[J]. Chem Mater, 2015, 27(23): 8041. doi: 10.1021/acs.chemmater.5b03607

[61]

Yin J, Yu J, Li X M. Large single-crystal hexagonal boron nitride monolayer domains with controlled morphology and straight merging boundaries[J]. Small, 2015, 11(35): 4497. doi: 10.1002/smll.v11.35

[62]

Zhang Z H, Liu Y Y, Yang Y. Growth mechanism and morphology of hexagonal boron nitride[J]. Nano Lett, 2016, 16(2): 1398. doi: 10.1021/acs.nanolett.5b04874

[63]

Song X J, Gao J F, Nie Y F. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation[J]. Nano Res, 2015, 8(10): 3164. doi: 10.1007/s12274-015-0816-9

[64]

Wood G E, Marsden A J, Mudd J J. van der Waals epitaxy of monolayer hexagonal boron nitride on copper foil:growth, crystallography and electronic band structure[J]. 2D Mater, 2015, 2(2): 025003. doi: 10.1088/2053-1583/2/2/025003

[65]

Li J D, Li Y, Yin J. Growth of polar hexagonal boron nitride monolayer on nonpolar copper with unique orientation[J]. Small, 2016, 12(27): 3645. doi: 10.1002/smll.v12.27

[66]

Sutter P, Lahiri J, Albrecht P. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films[J]. ACS Nano, 2011, 5(9): 7303. doi: 10.1021/nn202141k

[67]

Wang L F, Wu B, Jiang L L. Growth and etching of monolayer hexagonal boron nitride[J]. Adv Mater, 2015, 27(330): 4858.

[68]

Sharma S, Kalita G, Vishwakarma R. Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal[J]. Sci Rep, 2015, 5: 10426. doi: 10.1038/srep10426

[69]

Elbadawi C, Tran T T, Kolíbal M. Electron beam directed etching of hexagonal boron nitride[J]. Nanoscale, 2016, 8: 16182. doi: 10.1039/C6NR04959A

[70]

Kan M, Zhou J, Wang Q. Tuning the band gap and magnetic properties of BN sheets impregnated with graphene flakes[J]. Phys Rev B, 2011, 84(20): 205412. doi: 10.1103/PhysRevB.84.205412

[71]

Ci L J, Song L, Jin C H. Atomic layers of hybridized boron nitride and graphene domains[J]. Nat Mater, 2010, 9: 430. doi: 10.1038/nmat2711

[72]

Levendorf M P, Kim C J, Brown L. Graphene and boron nitride lateral heterostructures for atomically thin circuitry[J]. Nature, 2012, 488: 627. doi: 10.1038/nature11408

[73]

Liu Z, Ma L L, Shi G. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[J]. Nat Nanotechnol, 2013, 8: 119. doi: 10.1038/nnano.2012.256

[74]

Liu L, Park J, Siegel D A. Heteroepitaxial growth of twoDimensional Hexagonal boron nitride templated by graphene edges[J]. Science, 2014, 343(6167): 163. doi: 10.1126/science.1246137

[75]

Han G H, Rodríguez-Manzo J A, Lee C W. Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition[J]. ACS Nano, 2013, 7(11): 10129. doi: 10.1021/nn404331f

[76]

Sutter P, Cortes R, Lahiri J. Interface formation in monolayer graphene-boron nitride heterostructures[J]. Nano Lett, 2012, 12(9): 4869. doi: 10.1021/nl302398m

[77]

Gao Y B, Zhang Y F, Chen P C. Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edge[J]. Nano Lett, 2013, 13(7): 3439. doi: 10.1021/nl4021123

[78]

Gao T, Song X J, Du H W. Temperature-triggered chemical switching growth of in-plane and vertically stacked grapheneboron nitride heterostructures[J]. Nat Commun, 2015, 6: 6835. doi: 10.1038/ncomms7835

[79]

Ceballos F, Bellus M Z, Chiu H Y. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure[J]. ACS Nano, 2014, 8(12): 12717. doi: 10.1021/nn505736z

[80]

Bellus M Z, Ceballos F, Chiu H Y. Tightly bound trions in transition metal dichalcogenide heterostructures[J]. ACS Nano, 2015, 9(6): 6459. doi: 10.1021/acsnano.5b02144

[81]

Son M, Lim H, Hong M. Direct growth of graphene pad on exfoliated hexagonal boron nitride surface[J]. Nanoscale, 2011, 3: 3089. doi: 10.1039/c1nr10504c

[82]

Tang S J, Ding G Q, Xie X M. Nucleation and growth of single crystal graphene on hexagonal boron nitride[J]. Carbon, 2011, 50(1): 329.

[83]

Tang S J, Wang H M, Zhang Y. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition[J]. Sci Rep, 2013, 3: 2666.

[84]

Mishra N, Miseikis V, Convertino D. Rapid and catalystfree van der Waals epitaxy of graphene on hexagonal boron nitride[J]. Carbon, 2016, 96: 497. doi: 10.1016/j.carbon.2015.09.100

[85]

Tang S J, Wang H M, Wang H S. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride[J]. Nat Commun, 2015, 6: 6499. doi: 10.1038/ncomms7499

[86]

Kim S M, Hsu A, Araujo P T. Synthesis of patched or stacked graphene and hBN flakes:a route to hybrid structure discovery[J]. Nano Lett, 2013, 13(3): 933. doi: 10.1021/nl303760m

[87]

Meng J H, Zhang X W, Wang H L. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition[J]. Nanoscale, 2015, 7: 16046. doi: 10.1039/C5NR04490A

[88]

Gong Y J, Lei S D, Ye G L. Two-step growth of twodimensional WSe2/MoSe2 heterostructures[J]. Nano Lett, 2015, 15(9): 6135. doi: 10.1021/acs.nanolett.5b02423

[89]

Zhang C H, Zhao S L, Jin C H. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method[J]. Nat Commun, 2015, 6: 6519. doi: 10.1038/ncomms7519

[90]

Song X J, Gao T, Nie Y F. Seed-assisted growth of singlecrystalline patterned graphene domains on hexagonal boron nitride by chemical vapor deposition[J]. Nano Lett, 2016, 16(10): 6109. doi: 10.1021/acs.nanolett.6b02279

[91]

Zhang Y, Zhang Y F, Ji Q Q. Controlled growth of highquality monolayer WS2 layers on sapphire and imaging its grain boundary[J]. ACS Nano, 2013, 7(10): 8963. doi: 10.1021/nn403454e

[92]

Zhan Y J, Liu Z, Najmaei S. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8(7): 966. doi: 10.1002/smll.201102654

[93]

Wang X L, Gong Y J, Shi G. Chemical vapor deposition growth of crystalline monolayer MoSe2[J]. ACS Nano, 2014, 8(5): 5125. doi: 10.1021/nn501175k

[94]

Cui X, Lee G H, Kim Y D. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform[J]. Nat Nanotechnol, 2015, 10: 534. doi: 10.1038/nnano.2015.70

[95]

Lee G H, Yu Y J, Cui X. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano, 2013, 7(9): 7931. doi: 10.1021/nn402954e

[96]

Ross J S, Klement P, Jones A M. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions[J]. Nat Nanotechnol, 2014, 9: 268. doi: 10.1038/nnano.2014.26

[97]

Okada M, Sawazaki T, Watanabe K. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride[J]. ACS Nano, 2014, 8(8): 8273. doi: 10.1021/nn503093k

[98]

Yan A, Velasco J Jr, Kahn S. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles[J]. Nano Lett, 2015, 15(10): 6324. doi: 10.1021/acs.nanolett.5b01311

[99]

Wang S S, Wang X C, Warner J H. All chemical vapor deposition growth of MoS2:h-BN vertical van der Waals heterostructures[J]. ACS Nano, 2015, 9(5): 5246. doi: 10.1021/acsnano.5b00655

[100]

Fu L, Sun Y Y, Wu N. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy[J]. ACS Nano, 2016, 10(2): 2063. doi: 10.1021/acsnano.5b06254

[101]

Zhang M, Zhu Y M, Wang X S. Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride[J]. Nat Nanotechnol, 2015, 10: 534. doi: 10.1038/nnano.2015.70

[102]

Woods C R, Britnell L, Eckmann A. Commensurateincommensurate transition in graphene on hexagonal boron nitride[J]. Nat Phys, 2014, 10: 451. doi: 10.1038/nphys2954

[103]

Park C H, Yang L, Son Y W. New generation of massless Dirac fermions in graphene under external periodic potentials[J]. Phys Rev Lett, 2008, 101(12): 126804. doi: 10.1103/PhysRevLett.101.126804

[104]

Sui M Q, Chen G R, Ma L G. Gate-tunable topological valley transport in bilayer graphene[J]. Nat Phys, 2015, 11: 1027. doi: 10.1038/nphys3485

[105]

Shi Z W, Jin C H, Yang W. Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices[J]. Nat Phys, 2014, 10: 743.

[106]

Hunt B, Sanchez-Yamagishi J D, Young A F. Massive Dirac Fermions and Hofstadter butterfly in a van der Waals heterostructures[J]. Science, 2013, 340(6139): 1427. doi: 10.1126/science.1237240

[107]

Yu G L, Gorbachev R V, Tu J S. Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices[J]. Nat Phys, 2014, 10: 525. doi: 10.1038/nphys2979

[108]

Xue J M, Yamagishi J S, Bulmash D. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride[J]. Nat Mater, 2011, 10: 282. doi: 10.1038/nmat2968

[109]

Petrone N, Chari T, Meric I. Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride[J]. ACS Nano, 2015, 9(9): 8953. doi: 10.1021/acsnano.5b02816

[110]

Iqbal M W, Iqbal M Z, Khan M F. High-mobility and airstable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films[J]. Sci Rep, 2015, 5: 10699. doi: 10.1038/srep10699

[111]

Lee G H, Yu Y J, Cui X, e t, a l. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano, 2013, 7(9): 7931. doi: 10.1021/nn402954e

[112]

Chan M Y, Komatsu K, Li S L, e t, a l. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates[J]. Nanoscale, 2013, 5: 9572. doi: 10.1039/c3nr03220e

[113]

Wang L, Chen Z, Dean C R. Negligible environmental sensitivity of graphene in a hexagonal boron nitride/graphene/h-BN sandwich structure[J]. ACS Nano, 2012, 6(10): 9314. doi: 10.1021/nn304004s

[114]

Stolyarov M A, Liu G X, Rumyantsev S L. Suppression of 1=f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors[J]. Appl Phys Lett, 2015, 107(2): 023106. doi: 10.1063/1.4926872

[115]

Britnell L, Gorbachev R V, Jalil R. Electron tunneling through ultrathin boron nitride crystalline barriers[J]. Nano Lett, 2012, 12(3): 1707. doi: 10.1021/nl3002205

[116]

Lee S H, Choi M S, Lee J. High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure[J]. Appl Phys Lett, 2014, 104(5): 053103. doi: 10.1063/1.4863840

[117]

Nguyen V H, Mazzamuto F, Bournel A. Resonant tunnelling diodes based on graphene/h-BN heterostructure[J]. J Phys D, 2012, 45: 325104. doi: 10.1088/0022-3727/45/32/325104

[118]

Gaskell J, Eaves L, Novoselov K S. Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators[J]. Appl Phys Lett, 2015, 107(10): 103105. doi: 10.1063/1.4930230

[119]

Menga J H, Liua X, Zhang X W. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer[J]. Nano Energy, 2016, 28: 44. doi: 10.1016/j.nanoen.2016.08.028

[120]

Woessner A, Lundeberg M B, Gao Y D. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J]. Nat Mater, 2015, 14: 421.

[121]

Ma Q, Andersen T I, Nair N L. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructures[J]. Nat Phys, 2016, 12: 455. doi: 10.1038/nphys3620

[122]

Chen C C, Li Z, Shi L. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures[J]. Nano Res, 2015, 8(2): 666. doi: 10.1007/s12274-014-0550-8

[123]

Xu Y, Guo Z D, Chen H B. In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures[J]. Appl Phys Lett, 2011, 99(13): 133109. doi: 10.1063/1.3643899

[124]

Dauber J, Sagade A A, Oellers M. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride[J]. Appl Phys Lett, 2015, 106(19): 193501. doi: 10.1063/1.4919897

[125]

Gopinadhan K, Shin Y J, Jalil R. Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures[J]. Nat Commun, 2015, 6: 8337. doi: 10.1038/ncomms9337

[1]

Pakde A, Bando Y, Golberg D. Nano boron nitride flatland[J]. Chem Soc Rev, 2014, 43: 934. doi: 10.1039/C3CS60260E

[2]

Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal[J]. Nat Mater, 2004, 3(6): 404. doi: 10.1038/nmat1134

[3]

Wang H L, Zhang X W, Liu H. Synthesis of large-sized single-crystal hexagonal boron nitride domains on nickel foils by ion beam sputtering deposition[J]. Adv Mater, 2015, 27(48): 8109. doi: 10.1002/adma.201504042

[4]

Ahmed K, Dahal R, Weltz A. Growth of hexagonal boron nitride on (111) Si for deep UV photonics and thermal neutron detection[J]. Appl Phys Lett, 2016, 109(11): 113501. doi: 10.1063/1.4962831

[5]

Yin J, Li J D, Hang Y. Boron nitride nanostructures:fabrication, functionalization and applications[J]. Small, 2016, 12(22): 2942. doi: 10.1002/smll.201600053

[6]

Britnell L, Gorbachev R V, Jalil R. Field-effect tunneling transistor based on vertical graphene heterostructures[J]. Science, 2012, 335(6071): 947. doi: 10.1126/science.1218461

[7]

Dean C R, Young A F, Meric I. Boron nitride substrates for high-quality graphene electronics[J]. Nat Nanotechnol, 2010, 5: 722. doi: 10.1038/nnano.2010.172

[8]

Li L K, Ye G J, Tran V. Quantum oscillations in a twodimensional electron gas in black phosphorus thin films[J]. Nat Nanotechnol, 2015, 10: 608. doi: 10.1038/nnano.2015.91

[9]

Giovannetti G, Khomyakov P A, Brocks G. Substrateinduced band gap in graphene on hexagonal boron nitride:ab initio density functional calculations[J]. Phys Rev B, 2007, 76(7): 073103. doi: 10.1103/PhysRevB.76.073103

[10]

Yang W, Chen G R, Shi Z W. Epitaxial growth of singledomain graphene on hexagonal boron nitride[J]. Nat Mater, 2013, 12: 792. doi: 10.1038/nmat3695

[11]

Wang E, Lu X B, Ding S J. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride[J]. Nat Phys, 2016, 12: 1111. doi: 10.1038/nphys3856

[12]

Yankowitz M, Xue J M, Cormode D. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride[J]. Nat Phys, 2012, 8: 382. doi: 10.1038/nphys2272

[13]

Ponomarenko L A, Gorbachev R V, Yu G L. Cloning of Dirac fermions in graphene superlattices[J]. Nature, 2013, 497: 594. doi: 10.1038/nature12187

[14]

Gorbachev R V, Song J C W, Yu G L. Detecting topological currents in graphene superlattices[J]. Science, 2014, 346(6208): 448. doi: 10.1126/science.1254966

[15]

Novoselov K S, Jiang D, Schedin F. Two-dimensional atomic crystals[J]. Proc Natl Acad Sci USA, 2005, 102(30): 10451. doi: 10.1073/pnas.0502848102

[16]

Pacilé D, Meyer J C, Girit Ç Ö. The two-dimensional phase of boron nitride:few-atomic-layer sheets and suspended membranes[J]. Appl Phys Lett, 2008, 92(13): 133107. doi: 10.1063/1.2903702

[17]

Alem N, Erni R, Kisielowski C. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy[J]. Phys Rev B, 2009, 80(15): 155425. doi: 10.1103/PhysRevB.80.155425

[18]

Jin C H, Lin F, Suenaga K. Fabrication of a freestanding boron nitride single layer and its defect assignments[J]. Phys Rev Lett, 2009, 102(19): 195505. doi: 10.1103/PhysRevLett.102.195505

[19]

Lee C G, Li Q Y, Kalb W. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328(5974): 76. doi: 10.1126/science.1184167

[20]

Gorbachev R V, Riaz I, Nair R R. Hunting for monolayer boron nitride:optical and Raman signatures[J]. Small, 2011, 7(4): 465. doi: 10.1002/smll.201001628

[21]

Golberg D, Bando Y, Huang Y. Boron nitride nanotubes and nanosheets[J]. ACS Nano, 2010, 4(6): 2979. doi: 10.1021/nn1006495

[22]

Zhi C Y, Bando Y, Tang C C. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties[J]. Adv Mater, 2009, 21(28): 2889. doi: 10.1002/adma.v21:28

[23]

Lin Y, Williams T V, Connell J W. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. J Phys Chem Lett, 2010, 1(1): 277. doi: 10.1021/jz9002108

[24]

Wang Y, Shi Z X, Yin J. Boron nitride nanosheets:large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole[J]. J Mater Chem, 2011, 21: 11371. doi: 10.1039/c1jm10342c

[25]

Lin Y, Williams T V, Xu T B. Aqueous dispersions of fewlayered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis:critical role of water[J]. J Phys Chem, 2011, 115: 2679. doi: 10.1021/jp1105778

[26]

Zhou K G, Mao N N, Wang H X. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues[J]. Angew Chem Int Edit, 2011, 50(46): 10839. doi: 10.1002/anie.v50.46

[27]

Sarmazdeh Z R, Jafari S H, Ahmadi S J. Large-scale exfoliation of hexagonal boron nitride with combined fast quenching and liquid exfoliation strategies[J]. J Mater Sci, 2016, 51(6): 3162. doi: 10.1007/s10853-015-9626-4

[28]

Zhu W S, Gao X, Li Q. Controlled gas exfoliation of boron nitride into few-layered nanosheets[J]. Angew Chem Int Edit, 2016, 128: 10924. doi: 10.1002/ange.201605515

[29]

Nagashima A, Tejima N, Gamou Y. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface[J]. Phys Rev B, 1995, 51(7): 4606. doi: 10.1103/PhysRevB.51.4606

[30]

Koepke J C, Wood J D, Chen Y F. Role of pressure in the growth of hexagonal boron nitride thin films from ammoniaborane[J]. Chem Mater, 2016, 28(12): 4169. doi: 10.1021/acs.chemmater.6b00396

[31]

Auwärter W, Suter H U, Sachdev H. Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from BTrichloroborazine (ClBNH)3[J]. Chem Mater, 2004, 16(2): 343. doi: 10.1021/cm034805s

[32]

Müller F, Stöwe K, Sachdev H. Symmetry versus commensurability:epitaxial growth of hexagonal boron nitride on Pt(111) from B-Trichloroborazine (ClBNH)3[J]. Chem Mater, 2005, 17(13): 3464. doi: 10.1021/cm048629e

[33]

Shi Y M, Hamsen C, Jia X T. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition[J]. Nano Lett, 2010, 10(10): 4134. doi: 10.1021/nl1023707

[34]

Song L, Ci L J, Lu H. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Lett, 2010, 10(8): 3209. doi: 10.1021/nl1022139

[35]

Lee K H, Shin H J, Lee J. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics[J]. Nano Lett, 2012, 12(1): 714.

[36]

Gao Y, Ren W C, Ma T. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils[J]. ACS Nano, 2013, 7(6): 5200.

[37]

Ismach A, Chou H, Ferrer D A. Toward the controlled synthesis of hexagonal boron nitride films[J]. ACS Nano, 2012, 6(7): 6378. doi: 10.1021/nn301940k

[38]

Chatterjee S, Luo Z T, Acerce M. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions[J]. Chem Mater, 2011, 23(20): 4414. doi: 10.1021/cm201955v

[39]

Kim K K, Hsu A, Jia X T. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition[J]. Nano Lett, 2012, 12(1): 162.

[40]

Behura S J, Nguyen P, Che S W. Large-area, transferfree, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2[J]. J Am Chem Soc, 2015, 137(40): 13060. doi: 10.1021/jacs.5b07739

[41]

Han J H, Lee J Y, Kwon H M. Synthesis of waferscale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition[J]. Nanotechnology, 2014, 25(14): 145604. doi: 10.1088/0957-4484/25/14/145604

[42]

Morsche M, Corso M, Greber T. Formation of single layer h-BN on Pd(111)[J]. Surf Sci, 2006, 600(16): 3280. doi: 10.1016/j.susc.2006.06.016

[43]

Müller F, Hüfner S, Sachdev H. Epitaxial growth of hexagonal boron nitride on Ag(111)[J]. Phys Rev B, 2010, 82(11): 113406. doi: 10.1103/PhysRevB.82.113406

[44]

Müller F, Hüfner S, Sachdev H. One-dimensional structure of boron nitride on chromium (110)-a study of the growth of boron nitride by chemical vapour deposition of borazine[J]. Surf Sci, 2008, 602(22): 3467. doi: 10.1016/j.susc.2008.06.037

[45]

Corso M, Greber T, Osterwalder J. H-BN on Pd(110):a tunable system for self-assembled nanostructures[J]. Surf Sci, 2005, 577(2/3): 78.

[46]

Goriachko A, He Y B, Knapp M. Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001)[J]. Langmuir, 2007, 23: 2928. doi: 10.1021/la062990t

[47]

Tay R Y, Griep M H, Mallick G. Growth of large singlecrystalline two-dimensional boron nitride hexagons on electropolished copper[J]. Nano Lett, 2014, 14(2): 839. doi: 10.1021/nl404207f

[48]

Wang L F, Wu B, Chen J. Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors[J]. Adv Mater, 2014, 26(10): 1559. doi: 10.1002/adma.201304937

[49]

Wang J, Chen L F, Wu N. Graphene on liquid metal by chemical vapour deposition at reduced temperature[J]. Carbon, 2016, 96: 799. doi: 10.1016/j.carbon.2015.10.015

[50]

Geng D C, Wu B, Guo Y L. Uniform hexagonal graphene flakes and films grown on liquid copper surface[J]. Proc Natl Acad Sci USA, 2012, 109(21): 17992.

[51]

Tan L F, Han J L, Mendes R G. Self-aligned singlecrystalline hexagonal boron nitride arrays:toward higher integrated electronic devices[J]. Adv Electron Mater, 2015, 1(11): 1500223. doi: 10.1002/aelm.201500223

[52]

Khan M H, Huang Z G, Xiao F. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper[J]. Sci Rep, 2015, 5: 7743. doi: 10.1038/srep07743

[53]

Jang A R, Hong S, Hyun C. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire[J]. Nano Lett, 2016, 16(5): 3360. doi: 10.1021/acs.nanolett.6b01051

[54]

Caneva S, Weatherup R S, Bayer B C. Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts[J]. Nano Lett, 2015, 15(3): 1867. doi: 10.1021/nl5046632

[55]

Lu G Y, Wu T R, Yuan Q H. Synthesis of large singlecrystal hexagonal boron nitride grains on Cu-Ni alloy[J]. Nat Commun, 2015, 6: 6160. doi: 10.1038/ncomms7160

[56]

Li J, Wang X Y, Liu X R. Facile growth of centimeter-sized single-crystal graphene on copper foil at atmospheric pressure[J]. J Mater Chem C, 2015, 3: 3530. doi: 10.1039/C5TC00235D

[57]

Guo W, Jing F, Xiao J. Oxidative-etching-assisted synthesis of centimeter-sized single-crystalline graphene[J]. Adv Mater, 2016, 28(16): 3152. doi: 10.1002/adma.201503705

[58]

Tay R Y, Park H J, Ryu G H. Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper[J]. Nanoscale, 2016, 8(4): 2434. doi: 10.1039/C5NR08036C

[59]

Wu Q K, Park J H, Park S. Single crystalline film of hexagonal boron nitride atomic monolayer by controlling nucleation seeds and domains[J]. Sci Rep, 2015, 5: 16159. doi: 10.1038/srep16159

[60]

Stehle Y, Meyerlll H M, Unocic R R. Synthesis of hexagonal boron nitride monolayer:control of nucleation and crystal morphology[J]. Chem Mater, 2015, 27(23): 8041. doi: 10.1021/acs.chemmater.5b03607

[61]

Yin J, Yu J, Li X M. Large single-crystal hexagonal boron nitride monolayer domains with controlled morphology and straight merging boundaries[J]. Small, 2015, 11(35): 4497. doi: 10.1002/smll.v11.35

[62]

Zhang Z H, Liu Y Y, Yang Y. Growth mechanism and morphology of hexagonal boron nitride[J]. Nano Lett, 2016, 16(2): 1398. doi: 10.1021/acs.nanolett.5b04874

[63]

Song X J, Gao J F, Nie Y F. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation[J]. Nano Res, 2015, 8(10): 3164. doi: 10.1007/s12274-015-0816-9

[64]

Wood G E, Marsden A J, Mudd J J. van der Waals epitaxy of monolayer hexagonal boron nitride on copper foil:growth, crystallography and electronic band structure[J]. 2D Mater, 2015, 2(2): 025003. doi: 10.1088/2053-1583/2/2/025003

[65]

Li J D, Li Y, Yin J. Growth of polar hexagonal boron nitride monolayer on nonpolar copper with unique orientation[J]. Small, 2016, 12(27): 3645. doi: 10.1002/smll.v12.27

[66]

Sutter P, Lahiri J, Albrecht P. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films[J]. ACS Nano, 2011, 5(9): 7303. doi: 10.1021/nn202141k

[67]

Wang L F, Wu B, Jiang L L. Growth and etching of monolayer hexagonal boron nitride[J]. Adv Mater, 2015, 27(330): 4858.

[68]

Sharma S, Kalita G, Vishwakarma R. Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal[J]. Sci Rep, 2015, 5: 10426. doi: 10.1038/srep10426

[69]

Elbadawi C, Tran T T, Kolíbal M. Electron beam directed etching of hexagonal boron nitride[J]. Nanoscale, 2016, 8: 16182. doi: 10.1039/C6NR04959A

[70]

Kan M, Zhou J, Wang Q. Tuning the band gap and magnetic properties of BN sheets impregnated with graphene flakes[J]. Phys Rev B, 2011, 84(20): 205412. doi: 10.1103/PhysRevB.84.205412

[71]

Ci L J, Song L, Jin C H. Atomic layers of hybridized boron nitride and graphene domains[J]. Nat Mater, 2010, 9: 430. doi: 10.1038/nmat2711

[72]

Levendorf M P, Kim C J, Brown L. Graphene and boron nitride lateral heterostructures for atomically thin circuitry[J]. Nature, 2012, 488: 627. doi: 10.1038/nature11408

[73]

Liu Z, Ma L L, Shi G. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[J]. Nat Nanotechnol, 2013, 8: 119. doi: 10.1038/nnano.2012.256

[74]

Liu L, Park J, Siegel D A. Heteroepitaxial growth of twoDimensional Hexagonal boron nitride templated by graphene edges[J]. Science, 2014, 343(6167): 163. doi: 10.1126/science.1246137

[75]

Han G H, Rodríguez-Manzo J A, Lee C W. Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition[J]. ACS Nano, 2013, 7(11): 10129. doi: 10.1021/nn404331f

[76]

Sutter P, Cortes R, Lahiri J. Interface formation in monolayer graphene-boron nitride heterostructures[J]. Nano Lett, 2012, 12(9): 4869. doi: 10.1021/nl302398m

[77]

Gao Y B, Zhang Y F, Chen P C. Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edge[J]. Nano Lett, 2013, 13(7): 3439. doi: 10.1021/nl4021123

[78]

Gao T, Song X J, Du H W. Temperature-triggered chemical switching growth of in-plane and vertically stacked grapheneboron nitride heterostructures[J]. Nat Commun, 2015, 6: 6835. doi: 10.1038/ncomms7835

[79]

Ceballos F, Bellus M Z, Chiu H Y. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure[J]. ACS Nano, 2014, 8(12): 12717. doi: 10.1021/nn505736z

[80]

Bellus M Z, Ceballos F, Chiu H Y. Tightly bound trions in transition metal dichalcogenide heterostructures[J]. ACS Nano, 2015, 9(6): 6459. doi: 10.1021/acsnano.5b02144

[81]

Son M, Lim H, Hong M. Direct growth of graphene pad on exfoliated hexagonal boron nitride surface[J]. Nanoscale, 2011, 3: 3089. doi: 10.1039/c1nr10504c

[82]

Tang S J, Ding G Q, Xie X M. Nucleation and growth of single crystal graphene on hexagonal boron nitride[J]. Carbon, 2011, 50(1): 329.

[83]

Tang S J, Wang H M, Zhang Y. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition[J]. Sci Rep, 2013, 3: 2666.

[84]

Mishra N, Miseikis V, Convertino D. Rapid and catalystfree van der Waals epitaxy of graphene on hexagonal boron nitride[J]. Carbon, 2016, 96: 497. doi: 10.1016/j.carbon.2015.09.100

[85]

Tang S J, Wang H M, Wang H S. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride[J]. Nat Commun, 2015, 6: 6499. doi: 10.1038/ncomms7499

[86]

Kim S M, Hsu A, Araujo P T. Synthesis of patched or stacked graphene and hBN flakes:a route to hybrid structure discovery[J]. Nano Lett, 2013, 13(3): 933. doi: 10.1021/nl303760m

[87]

Meng J H, Zhang X W, Wang H L. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition[J]. Nanoscale, 2015, 7: 16046. doi: 10.1039/C5NR04490A

[88]

Gong Y J, Lei S D, Ye G L. Two-step growth of twodimensional WSe2/MoSe2 heterostructures[J]. Nano Lett, 2015, 15(9): 6135. doi: 10.1021/acs.nanolett.5b02423

[89]

Zhang C H, Zhao S L, Jin C H. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method[J]. Nat Commun, 2015, 6: 6519. doi: 10.1038/ncomms7519

[90]

Song X J, Gao T, Nie Y F. Seed-assisted growth of singlecrystalline patterned graphene domains on hexagonal boron nitride by chemical vapor deposition[J]. Nano Lett, 2016, 16(10): 6109. doi: 10.1021/acs.nanolett.6b02279

[91]

Zhang Y, Zhang Y F, Ji Q Q. Controlled growth of highquality monolayer WS2 layers on sapphire and imaging its grain boundary[J]. ACS Nano, 2013, 7(10): 8963. doi: 10.1021/nn403454e

[92]

Zhan Y J, Liu Z, Najmaei S. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8(7): 966. doi: 10.1002/smll.201102654

[93]

Wang X L, Gong Y J, Shi G. Chemical vapor deposition growth of crystalline monolayer MoSe2[J]. ACS Nano, 2014, 8(5): 5125. doi: 10.1021/nn501175k

[94]

Cui X, Lee G H, Kim Y D. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform[J]. Nat Nanotechnol, 2015, 10: 534. doi: 10.1038/nnano.2015.70

[95]

Lee G H, Yu Y J, Cui X. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano, 2013, 7(9): 7931. doi: 10.1021/nn402954e

[96]

Ross J S, Klement P, Jones A M. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions[J]. Nat Nanotechnol, 2014, 9: 268. doi: 10.1038/nnano.2014.26

[97]

Okada M, Sawazaki T, Watanabe K. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride[J]. ACS Nano, 2014, 8(8): 8273. doi: 10.1021/nn503093k

[98]

Yan A, Velasco J Jr, Kahn S. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles[J]. Nano Lett, 2015, 15(10): 6324. doi: 10.1021/acs.nanolett.5b01311

[99]

Wang S S, Wang X C, Warner J H. All chemical vapor deposition growth of MoS2:h-BN vertical van der Waals heterostructures[J]. ACS Nano, 2015, 9(5): 5246. doi: 10.1021/acsnano.5b00655

[100]

Fu L, Sun Y Y, Wu N. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy[J]. ACS Nano, 2016, 10(2): 2063. doi: 10.1021/acsnano.5b06254

[101]

Zhang M, Zhu Y M, Wang X S. Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride[J]. Nat Nanotechnol, 2015, 10: 534. doi: 10.1038/nnano.2015.70

[102]

Woods C R, Britnell L, Eckmann A. Commensurateincommensurate transition in graphene on hexagonal boron nitride[J]. Nat Phys, 2014, 10: 451. doi: 10.1038/nphys2954

[103]

Park C H, Yang L, Son Y W. New generation of massless Dirac fermions in graphene under external periodic potentials[J]. Phys Rev Lett, 2008, 101(12): 126804. doi: 10.1103/PhysRevLett.101.126804

[104]

Sui M Q, Chen G R, Ma L G. Gate-tunable topological valley transport in bilayer graphene[J]. Nat Phys, 2015, 11: 1027. doi: 10.1038/nphys3485

[105]

Shi Z W, Jin C H, Yang W. Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices[J]. Nat Phys, 2014, 10: 743.

[106]

Hunt B, Sanchez-Yamagishi J D, Young A F. Massive Dirac Fermions and Hofstadter butterfly in a van der Waals heterostructures[J]. Science, 2013, 340(6139): 1427. doi: 10.1126/science.1237240

[107]

Yu G L, Gorbachev R V, Tu J S. Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices[J]. Nat Phys, 2014, 10: 525. doi: 10.1038/nphys2979

[108]

Xue J M, Yamagishi J S, Bulmash D. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride[J]. Nat Mater, 2011, 10: 282. doi: 10.1038/nmat2968

[109]

Petrone N, Chari T, Meric I. Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride[J]. ACS Nano, 2015, 9(9): 8953. doi: 10.1021/acsnano.5b02816

[110]

Iqbal M W, Iqbal M Z, Khan M F. High-mobility and airstable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films[J]. Sci Rep, 2015, 5: 10699. doi: 10.1038/srep10699

[111]

Lee G H, Yu Y J, Cui X, e t, a l. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano, 2013, 7(9): 7931. doi: 10.1021/nn402954e

[112]

Chan M Y, Komatsu K, Li S L, e t, a l. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates[J]. Nanoscale, 2013, 5: 9572. doi: 10.1039/c3nr03220e

[113]

Wang L, Chen Z, Dean C R. Negligible environmental sensitivity of graphene in a hexagonal boron nitride/graphene/h-BN sandwich structure[J]. ACS Nano, 2012, 6(10): 9314. doi: 10.1021/nn304004s

[114]

Stolyarov M A, Liu G X, Rumyantsev S L. Suppression of 1=f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors[J]. Appl Phys Lett, 2015, 107(2): 023106. doi: 10.1063/1.4926872

[115]

Britnell L, Gorbachev R V, Jalil R. Electron tunneling through ultrathin boron nitride crystalline barriers[J]. Nano Lett, 2012, 12(3): 1707. doi: 10.1021/nl3002205

[116]

Lee S H, Choi M S, Lee J. High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure[J]. Appl Phys Lett, 2014, 104(5): 053103. doi: 10.1063/1.4863840

[117]

Nguyen V H, Mazzamuto F, Bournel A. Resonant tunnelling diodes based on graphene/h-BN heterostructure[J]. J Phys D, 2012, 45: 325104. doi: 10.1088/0022-3727/45/32/325104

[118]

Gaskell J, Eaves L, Novoselov K S. Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators[J]. Appl Phys Lett, 2015, 107(10): 103105. doi: 10.1063/1.4930230

[119]

Menga J H, Liua X, Zhang X W. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer[J]. Nano Energy, 2016, 28: 44. doi: 10.1016/j.nanoen.2016.08.028

[120]

Woessner A, Lundeberg M B, Gao Y D. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J]. Nat Mater, 2015, 14: 421.

[121]

Ma Q, Andersen T I, Nair N L. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructures[J]. Nat Phys, 2016, 12: 455. doi: 10.1038/nphys3620

[122]

Chen C C, Li Z, Shi L. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures[J]. Nano Res, 2015, 8(2): 666. doi: 10.1007/s12274-014-0550-8

[123]

Xu Y, Guo Z D, Chen H B. In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures[J]. Appl Phys Lett, 2011, 99(13): 133109. doi: 10.1063/1.3643899

[124]

Dauber J, Sagade A A, Oellers M. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride[J]. Appl Phys Lett, 2015, 106(19): 193501. doi: 10.1063/1.4919897

[125]

Gopinadhan K, Shin Y J, Jalil R. Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures[J]. Nat Commun, 2015, 6: 8337. doi: 10.1038/ncomms9337

[1]

Santosh Kumar Gupta, Rupesh Shukla. Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications. J. Semicond., 2019, 40(3): 032801. doi: 10.1088/1674-4926/40/3/032801

[2]

Nengjie Huo, Yujue Yang, Jingbo Li. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond., 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002

[3]

Jiajun Deng, Pei Chen, Wenjie Wang, Bing Hu, Jiantao Che, Lin Chen, Hailong Wang, Jianhua Zhao. The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures. J. Semicond., 2013, 34(8): 083003. doi: 10.1088/1674-4926/34/8/083003

[4]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[5]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[6]

K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001

[7]

Li Wuqun, Cao Juncheng. Anisotropic polarization due to electron–phonon interactions in graphene. J. Semicond., 2009, 30(11): 112002. doi: 10.1088/1674-4926/30/11/112002

[8]

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

[9]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[10]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[11]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

[12]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[13]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[14]

Lara Valentic, Nima E. Gorji. Comment on Chen et al. "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition", Electrochimica Acta, 2014. J. Semicond., 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012

[15]

Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005

[16]

Luqi Tao, Danyang Wang, Song Jiang, Ying Liu, Qianyi Xie, He Tian, Ningqin Deng, Xuefeng Wang, Yi Yang, Tianling Ren. Fabrication techniques and applications of flexible graphene-based electronic devices. J. Semicond., 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001

[17]

Wenchao Min, Hao Sun, Qilian Zhang, Zhiying Chen, Yanhui Zhang, Guanghui Yu, Xiaowei Sun. A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene. J. Semicond., 2014, 35(5): 056001. doi: 10.1088/1674-4926/35/5/056001

[18]

Yubing Wang, Weihong Yin, Qin Han, Xiaohong Yang, Han Ye, Dongdong Yin. A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer. J. Semicond., 2017, 38(4): 046001. doi: 10.1088/1674-4926/38/4/046001

[19]

Yan Gao, Liyun Zhao, Qiuyu Shang, Chun Li, Zhen Liu, Qi Li, Xina Wang, Qing Zhang. Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate. J. Semicond., 2019, 40(5): 052201. doi: 10.1088/1674-4926/40/5/052201

[20]

Chao Li, Peng Zhou, David Wei Zhang. Devices and applications of van der Waals heterostructures. J. Semicond., 2017, 38(3): 031005. doi: 10.1088/1674-4926/38/3/031005

Search

Advanced Search >>

GET CITATION

H H Yang, F Gao, M J Dai, D C Jia, Y Zhou, P A Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures[J]. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004.

Export: BibTex EndNote

Article Metrics

Article views: 2378 Times PDF downloads: 41 Times Cited by: 0 Times

History

Manuscript received: 19 October 2016 Manuscript revised: 09 November 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误