J. Semicond. >  Just Accepted

Effect of substrate temperature on the physical properties of SnS2:Cu thin films deposited by spray pyrolysis

M. R. Fadavieslam1 1, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The main impetus of the present study is to investigate thin films of tin disulfide that have been doped with copper impurities and prepared on glass substrates by using the spray pyrolysis technique. Also, the influence of the substrate temperature on the structural, optical, and electrical properties of these films are investigated. The thin films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical absorption (UV–vis) analyses. The XRD patterns clarify that the thin films possess polycrystalline structures, having a peak associated with the (001) plane of the SnS2 phase. The average crystalline grain sizes were estimated to be within the range 5.7–7.1 nm. The SEM images indicate that the grain size increases from 53 to 114 nm with an increment in the substrate temperature, resulting in an increasing – decreasing trend in the band gap of the thin films. However, the films’ resistance decreases from 92.5 Ω cm to 1.74 × 10−1 Ω cm as the substrate temperature increases from 400 °C to 450 °C. Also, their optical energy band gap depicts an increasing – decreasing trend with the estimated values of 2.81, 3.21, and 3.06 eV at 400, 425, and 450 °C, respectively. The thin films exhibit n-type conductivity.

Key words: spray pyrolysisthin filmpolycrystalline

Abstract: The main impetus of the present study is to investigate thin films of tin disulfide that have been doped with copper impurities and prepared on glass substrates by using the spray pyrolysis technique. Also, the influence of the substrate temperature on the structural, optical, and electrical properties of these films are investigated. The thin films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical absorption (UV–vis) analyses. The XRD patterns clarify that the thin films possess polycrystalline structures, having a peak associated with the (001) plane of the SnS2 phase. The average crystalline grain sizes were estimated to be within the range 5.7–7.1 nm. The SEM images indicate that the grain size increases from 53 to 114 nm with an increment in the substrate temperature, resulting in an increasing – decreasing trend in the band gap of the thin films. However, the films’ resistance decreases from 92.5 Ω cm to 1.74 × 10−1 Ω cm as the substrate temperature increases from 400 °C to 450 °C. Also, their optical energy band gap depicts an increasing – decreasing trend with the estimated values of 2.81, 3.21, and 3.06 eV at 400, 425, and 450 °C, respectively. The thin films exhibit n-type conductivity.

Key words: spray pyrolysisthin filmpolycrystalline



References:

[1]

Price L S, Parkin I P, Hardy A M E, et al. Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass. Chem Mater, 1999, 11(7): 1792

[2]

Santhosh Kumar K, Manoharan C, Dhanapandian S, et al. Effect of indium incorporation on properties of SnS thin films prepared by spray pyrolysis. Optik – Int J Light Electron Opt, 2014, 125(15): 3996

[3]

Jakhar A, Jamdagni A, Bakshi A, et al. Refractive index of SnS thin nano-crystalline films. Solid State Commun, 2013, 168(Supplement C): 31

[4]

Mariappan R, Mahalingam T, Ponnuswamy V. Preparation and characterization of electrodeposited SnS thin films. Optik – Int J Light Electron Opt, 2011, 122(24): 2216

[5]

Kevin P, Lewis D J, Raftery J, et al. Thin films of tin(II) sulphide (SnS) by aerosol-assisted chemical vapour deposition (AACVD) using tin(II) dithiocarbamates as single-source precursors. J. Cryst. Growth, 2015, 415(Supplement C): 93

[6]

Bashkirov S A, Gremenok V F, Ivanov V A, et al. Influence of substrate material on the microstructure and optical properties of hot wall deposited SnS thin films. Thin Solid Films, 2015, 585(Supplement C): 40

[7]

Ghosh B, Bhattacharjee R, Banerjee P, et al. Structural and optoelectronic properties of vacuum evaporated SnS thin films annealed in argon ambient. Appl Surf Sci, 2011, 257(8): 3670

[8]

Robles V, Trigo J F, Guillén C, et al. Growth of SnS thin films by co-evaporation and sulfurization for use as absorber layers in solar cells Mater. Chem Phys, 2015, 167(Supplement C): 165

[9]

Reddy N K, Devika M, Hahn Y B, et al. Impact of chemical treatment on the surface, structure, optical, and electrical properties of SnS thin films. Appl Surf Sci, 2013, 268(Supplement C): 317

[10]
[11]

Kherchachi I B, Attaf A, Saidi H, et al. Structural, optical, and electrical properties of SnxSy thin films grown by spray ultrasonic. J Semiconduct, 2016, 37(3): 032001

[12]

Manohari A G, Santhosh Kumar K, Lou C, et al. Buffer layer of antimony doped tin disulphide thin films for heterojunction solar cells. Mater Lett, 2015, 155(Supplement C): 121

[13]

Liu X, Zhao H, Kulka A, et al. Characterization of the physicochemical properties of novel SnS2 with cubic structure and diamond-like Sn sublattice. Acta Materialia, 2015, 82(Supplement C): 212

[14]

Burton L A, Colombara D, Abellon R D, et al. Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem Mater, 2013, 25(24): 4908

[15]

Burton L A, Walsh A. Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3. J Phys Chem C, 2012, 116(45): 24262

[16]

Sharon M, Basavaswaran K. Photoelectrochemical behaviour of tin monosulphide. Solar Cells, 1988, 25(2): 97

[17]

Hofmann W. Ergebnisse der Strukturbestimmung komplexer sulfide. Z Kristallogr Cryst Mater, 2015, 92: 161

[18]

Del Bucchia S, Jumas J C, Maurin M. Contribution a l'etude de composes sulfures d'etain(II): affinement de la structure de SnS. Acta Crystallogr B, 1981, 37(10): 1903

[19]

Mootz D, Puhl H. Die Kristallstruktur von Sn2S3. Acta Crystallogr, 1967, 23(3): 471

[20]

Kawano K, Nakata R, Sumita M. Effects of substrate temperature on absorption edge and photocurrent in evaporated amorphous SnS2 films. J Phy D, 1989, 22(1): 136

[21]

Ballipinar F, Rastogi A C. Tin sulfide (SnS) semiconductor photo-absorber thin films for solar cells by vapor phase sulfurization of Sn metallic layers using organic sulfur source. J Alloys Compd, 2017, 728(Supplement C): 179

[22]

Hadef Z, Kamli K, Attaf A, et al. Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis. J Semicond, 2017, 38(6): 063001

[23]

Yashika G, Arun P. Optimization of SnS active layer thickness for solar cell application. J Semicond, 2017, 2017, 38(11): 113001

[24]

Fu Y, Gou G, Wang X, et al. High-performance photodetectors based on CVD-grown high-quality SnS2 nanosheets. Appl Phys A, 2017, 123(4): 299

[25]

Feng J, Chen J, Geng B, et al. Two-dimensional hexagonal SnS2 nanoflakes: fabrication, characterization, and growth mechanism. Appl Phys A, 2011, 103(2): 413

[26]

Etefagh R, Shahtahmassebi N, Benam M R, et al. Effect of Zn-doping on absorption coefficient and photo-conductivity of SnS2 thin films deposited by spray pyrolysis technique. Indian J Phys, 2014, 88(6): 563

[27]

Mukherjee A, Mitra P. Characterization of tin(II) sulphide thin film synthesized by successive chemical solution deposition. Indian J Phys, 2015, 89(10): 1007

[28]

Santhosh Kumar K, Manoharan C, Dhanapandian S, et al. Effect of Sb dopant on the structural, optical, and electrical properties of SnS thin films by spray pyrolysis technique. Spectrochimica Acta A, 2013, 115(Supplement C): 840

[29]

Manohari A G, Dhanapandian S, Manoharan C, et al. Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis. Mater Sci Semicond Proc, 2014, 17(Supplement C): 138

[30]

Priyal J, Arun P. Parameters influencing the optical properties of SnS thin films. J Semiconduct, 2013, 34(9): 093004

[31]

Bommireddy P R, Musalikunta C S, Uppala C, et al. Influence of Cu doping on physical properties of sol–gel processed SnS thin films. Mater Sci Semicond Proc, 2017, 71(Supplement C): 139

[32]

Ninan G G, Kartha C S, Vijayakumar K P. Spray pyrolysed SnS thin films in n- and p-type: optimization of deposition process and characterization of samples. J Anal Appl Pyrolysis, 2016, 120(Supplement C): 121

[33]

Sunil H C, Mahesh D C, Deshpande M P. SnS thin films deposited by chemical bath deposition, dip coating, and SILAR techniques. J Semicond, 2016, 37(5): 053001

[34]

Shibata T, Muranushi Y, Miura T, et al. Chemical and structural characterization of SnS2 single crystals grown by low-temperature chemical vapour transport. J Mater Sci, 1991, 26(18): 5107

[35]

Amalraj L, Sanjeeviraja C, Jayachandran M. Spray pyrolysized tin disulphide thin film and characterization. J Cryst Growth, 2002, 234(4): 683

[36]

Fadavieslam M R, Shahtahmasebi N, Rezaee-Roknabadi M, et al. A study of the photoconductivity and thermoelectric properties of SnxSy optical semiconductor thin films deposited by the spray pyrolysis technique. Physica Scripta, 2011, 84(3): 035705

[37]

Agashe C, Hüpkes J, Schöpe G, et al. Physical properties of highly oriented spray-deposited fluorine-doped tin dioxide films as transparent conductor. Solar Energy Mater Solar Cells, 2009, 93(8): 1256

[38]

Biçer M, Şişman İ. Electrodeposition and growth mechanism of SnSe thin films. Appl Surf Sci, 2011, 257(7): 2944

[39]

Lee E J H, Ribeiro C, Giraldi T R, et al. Photoluminescence in quantum-confined SnO2 nanocrystals: evidence of free exciton decay. Appl Phy. Lett, 2004, 84(10): 1745

[40]

Sánchez-Juárez A, Tiburcio-Silver A, Ortiz A. Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition. Thin Solid Films, 2005, 480–481(Supplement C): 452

[41]

Kana A T, Hibbert T G, Mahon M F, et al. Organotin unsymmetric dithiocarbamates: synthesis, formation, and characterization of tin(II) sulfide films by atmospheric pressure chemical vapour deposition. Polyhedron, 2001, 20(24–25): 2989

[42]

Thangaraju B, Kaliannan P. Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. J Phys D, 2000, 33(9): 1054

[43]

Deshpande N G, Sagade A A, Gudage Y G, et al. Growth and characterization of tin disulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR) technique. J Alloys Compd, 2007, 436(1): 421

[44]

Shi C, Chen Z, Shi G, et al. Influence of annealing on characteristics of tin disulfide thin films by vacuum thermal evaporation. Thin Solid Films, 2012, 520(15): 4898

[45]

Gupta R K, Yakuphanoglu F. Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications. Sol Energy, 2012, 86(5): 1539

[46]

Zhao P, Vyas P B, McDonnell S, et al. Electrical characterization of top-gated molybdenum disulfide metal–oxide–semiconductor capacitors with high-k dielectrics. Microelectron Eng, 2015, 147: 151

[47]

Said G, Lee P A. Electrical conduction mechanisms in tin disulphide. Phys Status Solidi A, 1973, 15(1): 99

[1]

Price L S, Parkin I P, Hardy A M E, et al. Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass. Chem Mater, 1999, 11(7): 1792

[2]

Santhosh Kumar K, Manoharan C, Dhanapandian S, et al. Effect of indium incorporation on properties of SnS thin films prepared by spray pyrolysis. Optik – Int J Light Electron Opt, 2014, 125(15): 3996

[3]

Jakhar A, Jamdagni A, Bakshi A, et al. Refractive index of SnS thin nano-crystalline films. Solid State Commun, 2013, 168(Supplement C): 31

[4]

Mariappan R, Mahalingam T, Ponnuswamy V. Preparation and characterization of electrodeposited SnS thin films. Optik – Int J Light Electron Opt, 2011, 122(24): 2216

[5]

Kevin P, Lewis D J, Raftery J, et al. Thin films of tin(II) sulphide (SnS) by aerosol-assisted chemical vapour deposition (AACVD) using tin(II) dithiocarbamates as single-source precursors. J. Cryst. Growth, 2015, 415(Supplement C): 93

[6]

Bashkirov S A, Gremenok V F, Ivanov V A, et al. Influence of substrate material on the microstructure and optical properties of hot wall deposited SnS thin films. Thin Solid Films, 2015, 585(Supplement C): 40

[7]

Ghosh B, Bhattacharjee R, Banerjee P, et al. Structural and optoelectronic properties of vacuum evaporated SnS thin films annealed in argon ambient. Appl Surf Sci, 2011, 257(8): 3670

[8]

Robles V, Trigo J F, Guillén C, et al. Growth of SnS thin films by co-evaporation and sulfurization for use as absorber layers in solar cells Mater. Chem Phys, 2015, 167(Supplement C): 165

[9]

Reddy N K, Devika M, Hahn Y B, et al. Impact of chemical treatment on the surface, structure, optical, and electrical properties of SnS thin films. Appl Surf Sci, 2013, 268(Supplement C): 317

[10]
[11]

Kherchachi I B, Attaf A, Saidi H, et al. Structural, optical, and electrical properties of SnxSy thin films grown by spray ultrasonic. J Semiconduct, 2016, 37(3): 032001

[12]

Manohari A G, Santhosh Kumar K, Lou C, et al. Buffer layer of antimony doped tin disulphide thin films for heterojunction solar cells. Mater Lett, 2015, 155(Supplement C): 121

[13]

Liu X, Zhao H, Kulka A, et al. Characterization of the physicochemical properties of novel SnS2 with cubic structure and diamond-like Sn sublattice. Acta Materialia, 2015, 82(Supplement C): 212

[14]

Burton L A, Colombara D, Abellon R D, et al. Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem Mater, 2013, 25(24): 4908

[15]

Burton L A, Walsh A. Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3. J Phys Chem C, 2012, 116(45): 24262

[16]

Sharon M, Basavaswaran K. Photoelectrochemical behaviour of tin monosulphide. Solar Cells, 1988, 25(2): 97

[17]

Hofmann W. Ergebnisse der Strukturbestimmung komplexer sulfide. Z Kristallogr Cryst Mater, 2015, 92: 161

[18]

Del Bucchia S, Jumas J C, Maurin M. Contribution a l'etude de composes sulfures d'etain(II): affinement de la structure de SnS. Acta Crystallogr B, 1981, 37(10): 1903

[19]

Mootz D, Puhl H. Die Kristallstruktur von Sn2S3. Acta Crystallogr, 1967, 23(3): 471

[20]

Kawano K, Nakata R, Sumita M. Effects of substrate temperature on absorption edge and photocurrent in evaporated amorphous SnS2 films. J Phy D, 1989, 22(1): 136

[21]

Ballipinar F, Rastogi A C. Tin sulfide (SnS) semiconductor photo-absorber thin films for solar cells by vapor phase sulfurization of Sn metallic layers using organic sulfur source. J Alloys Compd, 2017, 728(Supplement C): 179

[22]

Hadef Z, Kamli K, Attaf A, et al. Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis. J Semicond, 2017, 38(6): 063001

[23]

Yashika G, Arun P. Optimization of SnS active layer thickness for solar cell application. J Semicond, 2017, 2017, 38(11): 113001

[24]

Fu Y, Gou G, Wang X, et al. High-performance photodetectors based on CVD-grown high-quality SnS2 nanosheets. Appl Phys A, 2017, 123(4): 299

[25]

Feng J, Chen J, Geng B, et al. Two-dimensional hexagonal SnS2 nanoflakes: fabrication, characterization, and growth mechanism. Appl Phys A, 2011, 103(2): 413

[26]

Etefagh R, Shahtahmassebi N, Benam M R, et al. Effect of Zn-doping on absorption coefficient and photo-conductivity of SnS2 thin films deposited by spray pyrolysis technique. Indian J Phys, 2014, 88(6): 563

[27]

Mukherjee A, Mitra P. Characterization of tin(II) sulphide thin film synthesized by successive chemical solution deposition. Indian J Phys, 2015, 89(10): 1007

[28]

Santhosh Kumar K, Manoharan C, Dhanapandian S, et al. Effect of Sb dopant on the structural, optical, and electrical properties of SnS thin films by spray pyrolysis technique. Spectrochimica Acta A, 2013, 115(Supplement C): 840

[29]

Manohari A G, Dhanapandian S, Manoharan C, et al. Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis. Mater Sci Semicond Proc, 2014, 17(Supplement C): 138

[30]

Priyal J, Arun P. Parameters influencing the optical properties of SnS thin films. J Semiconduct, 2013, 34(9): 093004

[31]

Bommireddy P R, Musalikunta C S, Uppala C, et al. Influence of Cu doping on physical properties of sol–gel processed SnS thin films. Mater Sci Semicond Proc, 2017, 71(Supplement C): 139

[32]

Ninan G G, Kartha C S, Vijayakumar K P. Spray pyrolysed SnS thin films in n- and p-type: optimization of deposition process and characterization of samples. J Anal Appl Pyrolysis, 2016, 120(Supplement C): 121

[33]

Sunil H C, Mahesh D C, Deshpande M P. SnS thin films deposited by chemical bath deposition, dip coating, and SILAR techniques. J Semicond, 2016, 37(5): 053001

[34]

Shibata T, Muranushi Y, Miura T, et al. Chemical and structural characterization of SnS2 single crystals grown by low-temperature chemical vapour transport. J Mater Sci, 1991, 26(18): 5107

[35]

Amalraj L, Sanjeeviraja C, Jayachandran M. Spray pyrolysized tin disulphide thin film and characterization. J Cryst Growth, 2002, 234(4): 683

[36]

Fadavieslam M R, Shahtahmasebi N, Rezaee-Roknabadi M, et al. A study of the photoconductivity and thermoelectric properties of SnxSy optical semiconductor thin films deposited by the spray pyrolysis technique. Physica Scripta, 2011, 84(3): 035705

[37]

Agashe C, Hüpkes J, Schöpe G, et al. Physical properties of highly oriented spray-deposited fluorine-doped tin dioxide films as transparent conductor. Solar Energy Mater Solar Cells, 2009, 93(8): 1256

[38]

Biçer M, Şişman İ. Electrodeposition and growth mechanism of SnSe thin films. Appl Surf Sci, 2011, 257(7): 2944

[39]

Lee E J H, Ribeiro C, Giraldi T R, et al. Photoluminescence in quantum-confined SnO2 nanocrystals: evidence of free exciton decay. Appl Phy. Lett, 2004, 84(10): 1745

[40]

Sánchez-Juárez A, Tiburcio-Silver A, Ortiz A. Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition. Thin Solid Films, 2005, 480–481(Supplement C): 452

[41]

Kana A T, Hibbert T G, Mahon M F, et al. Organotin unsymmetric dithiocarbamates: synthesis, formation, and characterization of tin(II) sulfide films by atmospheric pressure chemical vapour deposition. Polyhedron, 2001, 20(24–25): 2989

[42]

Thangaraju B, Kaliannan P. Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. J Phys D, 2000, 33(9): 1054

[43]

Deshpande N G, Sagade A A, Gudage Y G, et al. Growth and characterization of tin disulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR) technique. J Alloys Compd, 2007, 436(1): 421

[44]

Shi C, Chen Z, Shi G, et al. Influence of annealing on characteristics of tin disulfide thin films by vacuum thermal evaporation. Thin Solid Films, 2012, 520(15): 4898

[45]

Gupta R K, Yakuphanoglu F. Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications. Sol Energy, 2012, 86(5): 1539

[46]

Zhao P, Vyas P B, McDonnell S, et al. Electrical characterization of top-gated molybdenum disulfide metal–oxide–semiconductor capacitors with high-k dielectrics. Microelectron Eng, 2015, 147: 151

[47]

Said G, Lee P A. Electrical conduction mechanisms in tin disulphide. Phys Status Solidi A, 1973, 15(1): 99

[1]

M. R. Fadavieslam, M. M. Bagheri-Mohagheghi. Spray pyrolysis of tin selenide thin-film semiconductors:the effect of selenium concentration on the properties of the thin films. J. Semicond., 2013, 34(8): 082001. doi: 10.1088/1674-4926/34/8/082001

[2]

M. R. Fadavieslam, N. Shahtahmasebi, M. Rezaee-Roknabadi, M. M. Bagheri-Mohagheghi. Effect of deposition conditions on the physical properties of SnxSy thin films prepared by the spray pyrolysis technique. J. Semicond., 2011, 32(11): 113002. doi: 10.1088/1674-4926/32/11/113002

[3]

Thierno Sall, A. Nafidi, Bernabé Marí Soucase, Miguel Mollar, Bouchaib Hartitti, Mounir Fahoume. Synthesis of In2S3 thin films by spray pyrolysis from precursors with different[S]/[In] ratios. J. Semicond., 2014, 35(6): 063002. doi: 10.1088/1674-4926/35/6/063002

[4]

S.M. Salaken, E. Farzana, J. Podder. Effect of Fe-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis. J. Semicond., 2013, 34(7): 073003. doi: 10.1088/1674-4926/34/7/073003

[5]

R. M. Hodlur, M. K. Rabinal. Influence of pH of spray solution on optoelectronic properties of cadmium oxide thin films. J. Semicond., 2015, 36(3): 033003. doi: 10.1088/1674-4926/36/3/033003

[6]

Dipak L Gapale, Sandeep A Arote, Balasaheb M Palve, Ratan Y Borse. Influence of precursor solution concentration on the structural, optical and humidity sensing properties of spray-deposited TiO2 thin films. J. Semicond., 2019, 40(2): 1.

[7]

Jinhuo Chen, Wenjian Li. Significant improvement of ZnS film electrical and optical performance by indium incorporation. J. Semicond., 2014, 35(9): 093003. doi: 10.1088/1674-4926/35/9/093003

[8]

Achour Rahal, Said Benramache, Boubaker Benhaoua. The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method. J. Semicond., 2013, 34(9): 093003. doi: 10.1088/1674-4926/34/9/093003

[9]

S. Guitouni, M. Khammar, M. Messaoudi, N. Attaf, M.S. Aida. Electrical properties of Cu4ZnSnS2/ZnS heterojunction prepared by ultrasonic spray pyrolysis. J. Semicond., 2016, 37(12): 122001. doi: 10.1088/1674-4926/37/12/122001

[10]

A. M. M. Tanveer Karim, M. K. R. Khan, M. Mozibur Rahman. Structural and opto-electrical properties of pyrolized ZnO-CdO crystalline thin films. J. Semicond., 2015, 36(5): 053001. doi: 10.1088/1674-4926/36/5/053001

[11]

Lu Feiping, Peng Yingquan, Song Chang'an, Xing Hongwei, Li Xunshuan, Yang Qingsen. Preparation and Optical Properties of 8-Hydroxylquinline Cadmium Thin Film. J. Semicond., 2007, 28(7): 1063.

[12]

Lily Liu, Changbin Song, Bin Xue, Jing Li, Junxi Wang, Jinmin Li. Exploration of photosensitive polyimide as the modification layer in thin film microcircuit. J. Semicond., 2018, 39(2): 026001. doi: 10.1088/1674-4926/39/2/026001

[13]

Zhao Miao, Zhou Daibing, Tan Manqing, Wang Xiaodong, Wu Xuming. Preparation of Si/SiO2 Optical Thin Film by Double Source Electron Beam Evaporation Technology. J. Semicond., 2006, 27(9): 1586.

[14]

T. Bentrcia, F. Djeffal, E. Chebaaki. ANFIS-based approach to studying subthreshold behavior including the traps effect for nanoscale thin-film DG MOSFETs. J. Semicond., 2013, 34(8): 084001. doi: 10.1088/1674-4926/34/8/084001

[15]

Balasaheb M. Palve, Sandesh R. Jadkar, Habib M. Pathan. A simple chemical route to synthesize the umangite phase of copper selenide (Cu3Se2) thin film at room temperature. J. Semicond., 2017, 38(6): 063003. doi: 10.1088/1674-4926/38/6/063003

[16]

Kh. S. Karimov, M. Mahroof-Tahir, M. Saleem, N. Ahmad, A. Rashid. Optical transmission in thin films of vanadium compounds. J. Semicond., 2014, 35(7): 072002. doi: 10.1088/1674-4926/35/7/072002

[17]

Dandan Wang, Qingpu Wang, Hanbin Wang, Xijian Zhang, Liwei Wu, Fujie Li, Shuai Yuan. Characteristics of sputtered Y-doped IZO thin films and devices. J. Semicond., 2015, 36(9): 093004. doi: 10.1088/1674-4926/36/9/093004

[18]

Wang Gang, Li Wei, Li Ping, Li Zuxiong, Fan Xue, Jiang Jing. A novel antifuse structure based on amorphous bismuth zinc niobate thin films. J. Semicond., 2012, 33(8): 084002. doi: 10.1088/1674-4926/33/8/084002

[19]

Achour Rahal, Said Benramache, Boubaker Benhaoua. Preparation of n-type semiconductor SnO2 thin films. J. Semicond., 2013, 34(8): 083002. doi: 10.1088/1674-4926/34/8/083002

[20]

Xiao Qingquan, Xie Quan, Chen Qian, Zhao Kejie, Yu Zhiqiang, Shen Xiangqian. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition. J. Semicond., 2011, 32(8): 082002. doi: 10.1088/1674-4926/32/8/082002

Search

Advanced Search >>

Article Metrics

Article views: 29 Times PDF downloads: 4 Times Cited by: 0 Times

History

Manuscript received: 16 July 2018 Manuscript revised: 06 October 2018 Online: Accepted Manuscript: 08 November 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误