SEMICONDUCTOR MATERIALS

Effect of substrate temperature on the physical properties of SnS2:Cu thin films deposited by spray pyrolysis

M. R. Fadavieslam

+ Author Affiliations

 Corresponding author: M. R. Fadavieslam, Email address: m.r.fadavieslam@du.ac.ir

PDF

Turn off MathJax

Abstract: The main impetus of the present study is to investigate thin films of tin disulfide that have been doped with copper impurities and prepared on glass substrates by using the spray pyrolysis technique. Also, the influence of the substrate temperature on the structural, optical, and electrical properties of these films are investigated. The thin films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical absorption (UV–vis) analyses. The XRD patterns clarify that the thin films possess polycrystalline structures, having a peak associated with the (001) plane of the SnS2 phase. The average crystalline grain sizes were estimated to be within the range 5.7–7.1 nm. The SEM images indicate that the grain size increases from 53 to 114 nm with an increment in the substrate temperature, resulting in an increasing–decreasing trend in the band gap of the thin films. However, the films’ resistance decreases from 92.5 to 0.174 Ω·cm as the substrate temperature increases from 400 to 450 °C. Also, their optical energy band gap depicts an increasing–decreasing trend with the estimated values of 2.81, 3.21, and 3.06 eV at 400, 425, and 450 °C, respectively. The thin films exhibit n-type conductivity.

Key words: spray pyrolysisthin filmpolycrystalline



[1]
Price L S, Parkin I P, Hardy A M E, et al. Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass. Chem Mater, 1999, 11(7): 1792 doi: 10.1021/cm990005z
[2]
Santhosh Kumar K, Manoharan C, Dhanapandian S, et al. Effect of indium incorporation on properties of SnS thin films prepared by spray pyrolysis. Optik – Int J Light Electron Opt, 2014, 125(15): 3996 doi: 10.1016/j.ijleo.2014.01.144
[3]
Jakhar A, Jamdagni A, Bakshi A, et al. Refractive index of SnS thin nano-crystalline films. Solid State Commun, 2013, 168(Supplement C): 31
[4]
Mariappan R, Mahalingam T, Ponnuswamy V. Preparation and characterization of electrodeposited SnS thin films. Optik – Int J Light Electron Opt, 2011, 122(24): 2216 doi: 10.1016/j.ijleo.2011.01.015
[5]
Kevin P, Lewis D J, Raftery J, et al. Thin films of tin(II) sulphide (SnS) by aerosol-assisted chemical vapour deposition (AACVD) using tin(II) dithiocarbamates as single-source precursors. J Cryst Growth, 2015, 415(Supplement C): 93
[6]
Bashkirov S A, Gremenok V F, Ivanov V A, et al. Influence of substrate material on the microstructure and optical properties of hot wall deposited SnS thin films. Thin Solid Films, 2015, 585(Supplement C): 40
[7]
Ghosh B, Bhattacharjee R, Banerjee P, et al. Structural and optoelectronic properties of vacuum evaporated SnS thin films annealed in argon ambient. Appl Surf Sci, 2011, 257(8): 3670 doi: 10.1016/j.apsusc.2010.11.103
[8]
Robles V, Trigo J F, Guillén C, et al. Growth of SnS thin films by co-evaporation and sulfurization for use as absorber layers in solar cells Mater. Chem Phys, 2015, 167(Supplement C): 165
[9]
Reddy N K, Devika M, Hahn Y B, et al. Impact of chemical treatment on the surface, structure, optical, and electrical properties of SnS thin films. Appl Surf Sci, 2013, 268(Supplement C): 317
[10]
Reddy N K, Reddy K T R. Preparation and characterization of sprayed tin sulphide films grown at different precursor concentrations. Mater Chem Phys, 2007, 101(1): 13
[11]
Kherchachi I B, Attaf A, Saidi H, et al. Structural, optical, and electrical properties of SnxSy thin films grown by spray ultrasonic. J Semiconduct, 2016, 37(3): 032001 doi: 10.1088/1674-4926/37/3/032001
[12]
Manohari A G, Santhosh Kumar K, Lou C, et al. Buffer layer of antimony doped tin disulphide thin films for heterojunction solar cells. Mater Lett, 2015, 155(Supplement C): 121
[13]
Liu X, Zhao H, Kulka A, et al. Characterization of the physicochemical properties of novel SnS2 with cubic structure and diamond-like Sn sublattice. Acta Materialia, 2015, 82(Supplement C): 212
[14]
Burton L A, Colombara D, Abellon R D, et al. Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem Mater, 2013, 25(24): 4908 doi: 10.1021/cm403046m
[15]
Burton L A, Walsh A. Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3. J Phys Chem C, 2012, 116(45): 24262 doi: 10.1021/jp309154s
[16]
Sharon M, Basavaswaran K. Photoelectrochemical behaviour of tin monosulphide. Solar Cells, 1988, 25(2): 97 doi: 10.1016/0379-6787(88)90015-4
[17]
Hofmann W. Ergebnisse der Strukturbestimmung komplexer sulfide. Z Kristallogr Cryst Mater, 2015, 92: 161
[18]
Del Bucchia S, Jumas J C, Maurin M. Contribution a l'etude de composes sulfures d'etain(II): affinement de la structure de SnS. Acta Crystallogr B, 1981, 37(10): 1903 doi: 10.1107/S0567740881007528
[19]
Mootz D, Puhl H. Die Kristallstruktur von Sn2S3. Acta Crystallogr, 1967, 23(3): 471 doi: 10.1107/S0365110X67002993
[20]
Kawano K, Nakata R, Sumita M. Effects of substrate temperature on absorption edge and photocurrent in evaporated amorphous SnS2 films. J Phy D, 1989, 22(1): 136 doi: 10.1088/0022-3727/22/1/019
[21]
Ballipinar F, Rastogi A C. Tin sulfide (SnS) semiconductor photo-absorber thin films for solar cells by vapor phase sulfurization of Sn metallic layers using organic sulfur source. J Alloys Compd, 2017, 728(Supplement C): 179
[22]
Hadef Z, Kamli K, Attaf A, et al. Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis. J Semicond, 2017, 38(6): 063001 doi: 10.1088/1674-4926/38/6/063001
[23]
Yashika G, Arun P. Optimization of SnS active layer thickness for solar cell application. J Semicond, 2017, 2017, 38(11): 113001
[24]
Fu Y, Gou G, Wang X, et al. High-performance photodetectors based on CVD-grown high-quality SnS2 nanosheets. Appl Phys A, 2017, 123(4): 299 doi: 10.1007/s00339-017-0883-8
[25]
Feng J, Chen J, Geng B, et al. Two-dimensional hexagonal SnS2 nanoflakes: fabrication, characterization, and growth mechanism. Appl Phys A, 2011, 103(2): 413 doi: 10.1007/s00339-010-6032-2
[26]
Etefagh R, Shahtahmassebi N, Benam M R, et al. Effect of Zn-doping on absorption coefficient and photo-conductivity of SnS2 thin films deposited by spray pyrolysis technique. Indian J Phys, 2014, 88(6): 563 doi: 10.1007/s12648-014-0451-4
[27]
Mukherjee A, Mitra P. Characterization of tin(II) sulphide thin film synthesized by successive chemical solution deposition. Indian J Phys, 2015, 89(10): 1007 doi: 10.1007/s12648-015-0673-0
[28]
Santhosh Kumar K, Manoharan C, Dhanapandian S, et al. Effect of Sb dopant on the structural, optical, and electrical properties of SnS thin films by spray pyrolysis technique. Spectrochimica Acta A, 2013, 115(Supplement C): 840
[29]
Manohari A G, Dhanapandian S, Manoharan C, et al. Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis. Mater Sci Semicond Proc, 2014, 17(Supplement C): 138
[30]
Priyal J, Arun P. Parameters influencing the optical properties of SnS thin films. J Semiconduct, 2013, 34(9): 093004 doi: 10.1088/1674-4926/34/9/093004
[31]
Bommireddy P R, Musalikunta C S, Uppala C, et al. Influence of Cu doping on physical properties of sol–gel processed SnS thin films. Mater Sci Semicond Proc, 2017, 71(Supplement C): 139
[32]
Ninan G G, Kartha C S, Vijayakumar K P. Spray pyrolysed SnS thin films in n- and p-type: optimization of deposition process and characterization of samples. J Anal Appl Pyrolysis, 2016, 120(Supplement C): 121
[33]
Sunil H C, Mahesh D C, Deshpande M P. SnS thin films deposited by chemical bath deposition, dip coating, and SILAR techniques. J Semicond, 2016, 37(5): 053001 doi: 10.1088/1674-4926/37/5/053001
[34]
Shibata T, Muranushi Y, Miura T, et al. Chemical and structural characterization of SnS2 single crystals grown by low-temperature chemical vapour transport. J Mater Sci, 1991, 26(18): 5107 doi: 10.1007/BF00549899
[35]
Amalraj L, Sanjeeviraja C, Jayachandran M. Spray pyrolysized tin disulphide thin film and characterization. J Cryst Growth, 2002, 234(4): 683 doi: 10.1016/S0022-0248(01)01756-0
[36]
Fadavieslam M R, Shahtahmasebi N, Rezaee-Roknabadi M, et al. A study of the photoconductivity and thermoelectric properties of SnxSy optical semiconductor thin films deposited by the spray pyrolysis technique. Physica Scripta, 2011, 84(3): 035705 doi: 10.1088/0031-8949/84/03/035705
[37]
Agashe C, Hüpkes J, Schöpe G, et al. Physical properties of highly oriented spray-deposited fluorine-doped tin dioxide films as transparent conductor. Solar Energy Mater Solar Cells, 2009, 93(8): 1256 doi: 10.1016/j.solmat.2009.01.021
[38]
Biçer M, Şişman İ. Electrodeposition and growth mechanism of SnSe thin films. Appl Surf Sci, 2011, 257(7): 2944 doi: 10.1016/j.apsusc.2010.10.096
[39]
Lee E J H, Ribeiro C, Giraldi T R, et al. Photoluminescence in quantum-confined SnO2 nanocrystals: evidence of free exciton decay. Appl Phy Lett, 2004, 84(10): 1745 doi: 10.1063/1.1655693
[40]
Sánchez-Juárez A, Tiburcio-Silver A, Ortiz A. Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition. Thin Solid Films, 2005, 480–481(Supplement C): 452
[41]
Kana A T, Hibbert T G, Mahon M F, et al. Organotin unsymmetric dithiocarbamates: synthesis, formation, and characterization of tin(II) sulfide films by atmospheric pressure chemical vapour deposition. Polyhedron, 2001, 20(24–25): 2989
[42]
Thangaraju B, Kaliannan P. Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. J Phys D, 2000, 33(9): 1054 doi: 10.1088/0022-3727/33/9/304
[43]
Deshpande N G, Sagade A A, Gudage Y G, et al. Growth and characterization of tin disulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR) technique. J Alloys Compd, 2007, 436(1): 421
[44]
Shi C, Chen Z, Shi G, et al. Influence of annealing on characteristics of tin disulfide thin films by vacuum thermal evaporation. Thin Solid Films, 2012, 520(15): 4898 doi: 10.1016/j.tsf.2012.03.050
[45]
Gupta R K, Yakuphanoglu F. Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications. Sol Energy, 2012, 86(5): 1539 doi: 10.1016/j.solener.2012.02.015
[46]
Zhao P, Vyas P B, McDonnell S, et al. Electrical characterization of top-gated molybdenum disulfide metal–oxide–semiconductor capacitors with high-k dielectrics. Microelectron Eng, 2015, 147: 151 doi: 10.1016/j.mee.2015.04.078
[47]
Said G, Lee P A. Electrical conduction mechanisms in tin disulphide. Phys Status Solidi A, 1973, 15(1): 99 doi: 10.1002/(ISSN)1521-396X
Fig. 1.  Basic setup for direct-current two-probe method.

Fig. 2.  XRD patterns of thin films with various substrate temperatures.

Fig. 3.  (Color online) The variations of average crystalline grain size (D) and strain (ε) as a function of substrate temperatures.

Fig. 4.  (Color online) SEM images of thin films at (a) 400, (b) 425, and (c) 450°C.

Fig. 5.  (Color online) The variation of absorption coefficient versus photon energy (hv) for different substrate temperatures.

Fig. 6.  (Color online) The variation of transmittance versus wavelength for different substrate temperatures.

Fig. 7.  (Color online) Plots of (αhv)2 versus hv for different substrate temperatures.

Fig. 8.  (Color online) The variations of resistivity (ρ), carrier concentration (n) and electron mobility (µ) as a function of substrate temperature.

Fig. 9.  (Color online) The variations of $\frac{{{R_{\rm{L}}} - {R_{\rm{d}}}}}{{{R_{\rm{d}}}}}$ versus time for various values of substrate temperatures.

Table 1.   Conditions of deposition.

Distance of nozzle from substrate (cm) Pressure of carrier gas (atm) Deposition rate Volume of sprayed solvent (mL)
35 3 10 50
DownLoad: CSV

Table 2.   Results of XRD patterns.

Ts (°C) (hkl) 2θ (°) FWHM (°) D (nm) ε d (observe) (Å) d (standard) (Å)
400 001 14.68 1.382 5.80 5.98 6.03 5.81
425 001 14.76 1.131 7.1 4.89 6.00 5.81
450 001 14.84 1.403 5.7 6.07 5.96 5.81
DownLoad: CSV

Table 3.   Results of optical and electrical characterization.

Substrate temperature (°C) 400 425 450
Average transmittance in the
range of visible light
34 53 35
Thickness (nm) 480 420 350
Eg (eV) 2.81 3.23 3.06
ρ (Ω·cm) 9.25 0.172 0.174
Conductivity type n n n
n (1016 cm−3) 8.06 77.86 86.22
µ (cm−2/V.s) 8.38 46.67 41.66
DownLoad: CSV
[1]
Price L S, Parkin I P, Hardy A M E, et al. Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass. Chem Mater, 1999, 11(7): 1792 doi: 10.1021/cm990005z
[2]
Santhosh Kumar K, Manoharan C, Dhanapandian S, et al. Effect of indium incorporation on properties of SnS thin films prepared by spray pyrolysis. Optik – Int J Light Electron Opt, 2014, 125(15): 3996 doi: 10.1016/j.ijleo.2014.01.144
[3]
Jakhar A, Jamdagni A, Bakshi A, et al. Refractive index of SnS thin nano-crystalline films. Solid State Commun, 2013, 168(Supplement C): 31
[4]
Mariappan R, Mahalingam T, Ponnuswamy V. Preparation and characterization of electrodeposited SnS thin films. Optik – Int J Light Electron Opt, 2011, 122(24): 2216 doi: 10.1016/j.ijleo.2011.01.015
[5]
Kevin P, Lewis D J, Raftery J, et al. Thin films of tin(II) sulphide (SnS) by aerosol-assisted chemical vapour deposition (AACVD) using tin(II) dithiocarbamates as single-source precursors. J Cryst Growth, 2015, 415(Supplement C): 93
[6]
Bashkirov S A, Gremenok V F, Ivanov V A, et al. Influence of substrate material on the microstructure and optical properties of hot wall deposited SnS thin films. Thin Solid Films, 2015, 585(Supplement C): 40
[7]
Ghosh B, Bhattacharjee R, Banerjee P, et al. Structural and optoelectronic properties of vacuum evaporated SnS thin films annealed in argon ambient. Appl Surf Sci, 2011, 257(8): 3670 doi: 10.1016/j.apsusc.2010.11.103
[8]
Robles V, Trigo J F, Guillén C, et al. Growth of SnS thin films by co-evaporation and sulfurization for use as absorber layers in solar cells Mater. Chem Phys, 2015, 167(Supplement C): 165
[9]
Reddy N K, Devika M, Hahn Y B, et al. Impact of chemical treatment on the surface, structure, optical, and electrical properties of SnS thin films. Appl Surf Sci, 2013, 268(Supplement C): 317
[10]
Reddy N K, Reddy K T R. Preparation and characterization of sprayed tin sulphide films grown at different precursor concentrations. Mater Chem Phys, 2007, 101(1): 13
[11]
Kherchachi I B, Attaf A, Saidi H, et al. Structural, optical, and electrical properties of SnxSy thin films grown by spray ultrasonic. J Semiconduct, 2016, 37(3): 032001 doi: 10.1088/1674-4926/37/3/032001
[12]
Manohari A G, Santhosh Kumar K, Lou C, et al. Buffer layer of antimony doped tin disulphide thin films for heterojunction solar cells. Mater Lett, 2015, 155(Supplement C): 121
[13]
Liu X, Zhao H, Kulka A, et al. Characterization of the physicochemical properties of novel SnS2 with cubic structure and diamond-like Sn sublattice. Acta Materialia, 2015, 82(Supplement C): 212
[14]
Burton L A, Colombara D, Abellon R D, et al. Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem Mater, 2013, 25(24): 4908 doi: 10.1021/cm403046m
[15]
Burton L A, Walsh A. Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3. J Phys Chem C, 2012, 116(45): 24262 doi: 10.1021/jp309154s
[16]
Sharon M, Basavaswaran K. Photoelectrochemical behaviour of tin monosulphide. Solar Cells, 1988, 25(2): 97 doi: 10.1016/0379-6787(88)90015-4
[17]
Hofmann W. Ergebnisse der Strukturbestimmung komplexer sulfide. Z Kristallogr Cryst Mater, 2015, 92: 161
[18]
Del Bucchia S, Jumas J C, Maurin M. Contribution a l'etude de composes sulfures d'etain(II): affinement de la structure de SnS. Acta Crystallogr B, 1981, 37(10): 1903 doi: 10.1107/S0567740881007528
[19]
Mootz D, Puhl H. Die Kristallstruktur von Sn2S3. Acta Crystallogr, 1967, 23(3): 471 doi: 10.1107/S0365110X67002993
[20]
Kawano K, Nakata R, Sumita M. Effects of substrate temperature on absorption edge and photocurrent in evaporated amorphous SnS2 films. J Phy D, 1989, 22(1): 136 doi: 10.1088/0022-3727/22/1/019
[21]
Ballipinar F, Rastogi A C. Tin sulfide (SnS) semiconductor photo-absorber thin films for solar cells by vapor phase sulfurization of Sn metallic layers using organic sulfur source. J Alloys Compd, 2017, 728(Supplement C): 179
[22]
Hadef Z, Kamli K, Attaf A, et al. Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis. J Semicond, 2017, 38(6): 063001 doi: 10.1088/1674-4926/38/6/063001
[23]
Yashika G, Arun P. Optimization of SnS active layer thickness for solar cell application. J Semicond, 2017, 2017, 38(11): 113001
[24]
Fu Y, Gou G, Wang X, et al. High-performance photodetectors based on CVD-grown high-quality SnS2 nanosheets. Appl Phys A, 2017, 123(4): 299 doi: 10.1007/s00339-017-0883-8
[25]
Feng J, Chen J, Geng B, et al. Two-dimensional hexagonal SnS2 nanoflakes: fabrication, characterization, and growth mechanism. Appl Phys A, 2011, 103(2): 413 doi: 10.1007/s00339-010-6032-2
[26]
Etefagh R, Shahtahmassebi N, Benam M R, et al. Effect of Zn-doping on absorption coefficient and photo-conductivity of SnS2 thin films deposited by spray pyrolysis technique. Indian J Phys, 2014, 88(6): 563 doi: 10.1007/s12648-014-0451-4
[27]
Mukherjee A, Mitra P. Characterization of tin(II) sulphide thin film synthesized by successive chemical solution deposition. Indian J Phys, 2015, 89(10): 1007 doi: 10.1007/s12648-015-0673-0
[28]
Santhosh Kumar K, Manoharan C, Dhanapandian S, et al. Effect of Sb dopant on the structural, optical, and electrical properties of SnS thin films by spray pyrolysis technique. Spectrochimica Acta A, 2013, 115(Supplement C): 840
[29]
Manohari A G, Dhanapandian S, Manoharan C, et al. Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis. Mater Sci Semicond Proc, 2014, 17(Supplement C): 138
[30]
Priyal J, Arun P. Parameters influencing the optical properties of SnS thin films. J Semiconduct, 2013, 34(9): 093004 doi: 10.1088/1674-4926/34/9/093004
[31]
Bommireddy P R, Musalikunta C S, Uppala C, et al. Influence of Cu doping on physical properties of sol–gel processed SnS thin films. Mater Sci Semicond Proc, 2017, 71(Supplement C): 139
[32]
Ninan G G, Kartha C S, Vijayakumar K P. Spray pyrolysed SnS thin films in n- and p-type: optimization of deposition process and characterization of samples. J Anal Appl Pyrolysis, 2016, 120(Supplement C): 121
[33]
Sunil H C, Mahesh D C, Deshpande M P. SnS thin films deposited by chemical bath deposition, dip coating, and SILAR techniques. J Semicond, 2016, 37(5): 053001 doi: 10.1088/1674-4926/37/5/053001
[34]
Shibata T, Muranushi Y, Miura T, et al. Chemical and structural characterization of SnS2 single crystals grown by low-temperature chemical vapour transport. J Mater Sci, 1991, 26(18): 5107 doi: 10.1007/BF00549899
[35]
Amalraj L, Sanjeeviraja C, Jayachandran M. Spray pyrolysized tin disulphide thin film and characterization. J Cryst Growth, 2002, 234(4): 683 doi: 10.1016/S0022-0248(01)01756-0
[36]
Fadavieslam M R, Shahtahmasebi N, Rezaee-Roknabadi M, et al. A study of the photoconductivity and thermoelectric properties of SnxSy optical semiconductor thin films deposited by the spray pyrolysis technique. Physica Scripta, 2011, 84(3): 035705 doi: 10.1088/0031-8949/84/03/035705
[37]
Agashe C, Hüpkes J, Schöpe G, et al. Physical properties of highly oriented spray-deposited fluorine-doped tin dioxide films as transparent conductor. Solar Energy Mater Solar Cells, 2009, 93(8): 1256 doi: 10.1016/j.solmat.2009.01.021
[38]
Biçer M, Şişman İ. Electrodeposition and growth mechanism of SnSe thin films. Appl Surf Sci, 2011, 257(7): 2944 doi: 10.1016/j.apsusc.2010.10.096
[39]
Lee E J H, Ribeiro C, Giraldi T R, et al. Photoluminescence in quantum-confined SnO2 nanocrystals: evidence of free exciton decay. Appl Phy Lett, 2004, 84(10): 1745 doi: 10.1063/1.1655693
[40]
Sánchez-Juárez A, Tiburcio-Silver A, Ortiz A. Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition. Thin Solid Films, 2005, 480–481(Supplement C): 452
[41]
Kana A T, Hibbert T G, Mahon M F, et al. Organotin unsymmetric dithiocarbamates: synthesis, formation, and characterization of tin(II) sulfide films by atmospheric pressure chemical vapour deposition. Polyhedron, 2001, 20(24–25): 2989
[42]
Thangaraju B, Kaliannan P. Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. J Phys D, 2000, 33(9): 1054 doi: 10.1088/0022-3727/33/9/304
[43]
Deshpande N G, Sagade A A, Gudage Y G, et al. Growth and characterization of tin disulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR) technique. J Alloys Compd, 2007, 436(1): 421
[44]
Shi C, Chen Z, Shi G, et al. Influence of annealing on characteristics of tin disulfide thin films by vacuum thermal evaporation. Thin Solid Films, 2012, 520(15): 4898 doi: 10.1016/j.tsf.2012.03.050
[45]
Gupta R K, Yakuphanoglu F. Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications. Sol Energy, 2012, 86(5): 1539 doi: 10.1016/j.solener.2012.02.015
[46]
Zhao P, Vyas P B, McDonnell S, et al. Electrical characterization of top-gated molybdenum disulfide metal–oxide–semiconductor capacitors with high-k dielectrics. Microelectron Eng, 2015, 147: 151 doi: 10.1016/j.mee.2015.04.078
[47]
Said G, Lee P A. Electrical conduction mechanisms in tin disulphide. Phys Status Solidi A, 1973, 15(1): 99 doi: 10.1002/(ISSN)1521-396X
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3061 Times PDF downloads: 30 Times Cited by: 0 Times

    History

    Received: 16 July 2018 Revised: 06 October 2018 Online: Accepted Manuscript: 08 November 2018Uncorrected proof: 19 November 2018Published: 13 December 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      M. R. Fadavieslam. Effect of substrate temperature on the physical properties of SnS2:Cu thin films deposited by spray pyrolysis[J]. Journal of Semiconductors, 2018, 39(12): 123005. doi: 10.1088/1674-4926/39/12/123005 M R Fadavieslam, Effect of substrate temperature on the physical properties of SnS2:Cu thin films deposited by spray pyrolysis[J]. J. Semicond., 2018, 39(12): 123005. doi: 10.1088/1674-4926/39/12/123005.Export: BibTex EndNote
      Citation:
      M. R. Fadavieslam. Effect of substrate temperature on the physical properties of SnS2:Cu thin films deposited by spray pyrolysis[J]. Journal of Semiconductors, 2018, 39(12): 123005. doi: 10.1088/1674-4926/39/12/123005

      M R Fadavieslam, Effect of substrate temperature on the physical properties of SnS2:Cu thin films deposited by spray pyrolysis[J]. J. Semicond., 2018, 39(12): 123005. doi: 10.1088/1674-4926/39/12/123005.
      Export: BibTex EndNote

      Effect of substrate temperature on the physical properties of SnS2:Cu thin films deposited by spray pyrolysis

      doi: 10.1088/1674-4926/39/12/123005
      More Information
      • Corresponding author: Email address: m.r.fadavieslam@du.ac.ir
      • Received Date: 2018-07-16
      • Revised Date: 2018-10-06
      • Published Date: 2018-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return