J. Semicond. > Volume 39 > Issue 1 > Article Number: 011010

Flexible devices: from materials, architectures to applications

Mingzhi Zou 1, , Yue Ma 1, , Xin Yuan 1, , Yi Hu 1, , Jie Liu 1, 2, and Zhong Jin 1, ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The development of flexible devices is moving forward rapidly, as the innovation of methods and manufacturing processes has greatly encouraged the research of flexible devices. This review focuses on advanced materials, architecture designs and abundant applications of flexible devices, and discusses the problems and challenges in current situations of flexible devices. We summarize the discovery of novel materials and the design of new architectures for improving the performance of flexible devices. Finally, we introduce the applications of flexible devices as key components in real life.

Key words: flexible devicesflexible architecturesnanomaterialsstretchability

Abstract: Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The development of flexible devices is moving forward rapidly, as the innovation of methods and manufacturing processes has greatly encouraged the research of flexible devices. This review focuses on advanced materials, architecture designs and abundant applications of flexible devices, and discusses the problems and challenges in current situations of flexible devices. We summarize the discovery of novel materials and the design of new architectures for improving the performance of flexible devices. Finally, we introduce the applications of flexible devices as key components in real life.

Key words: flexible devicesflexible architecturesnanomaterialsstretchability



References:

[1]

Hammock M L, Chortos A, Tee B C, et al. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25(42): 5997

[2]

Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973): 1603

[3]

Someya T. Stretchable electronics. Weinheim: Wiley-VCH , 2012

[4]

Someya T, Sekitani T, Iba S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci, 2004, 101(27): 9966

[5]

Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 2014, 8(5): 4689

[6]

Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater, 2016, 15(9): 937

[7]

Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604

[8]

Mannsfeld S C, Tee B C, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010, 9(10): 859

[9]

Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat nanotechnol, 2011, 6(5): 296

[10]

Kim D H, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333(6044): 838

[11]

Ying M, Bonifas A P, Lu N, et al. Silicon nanomembranes for fingertip electronics. Nanotechnology, 2012, 23(34): 344004

[12]

Schwartz G, Tee B C K, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013, 4: 1859

[13]

Choong C L, Shim M B, Lee B S, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater, 2014, 26(21): 3451

[14]

Trung T Q, Lee N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater, 2016, 28(22): 4338

[15]

Yang Y, Yang X, Zou X, et al. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv Funct Mater, 2017, 27(19): 1604096

[16]

Kenry, Yeo J C, Lim C T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng, 2016, 2: 16043

[17]

Lacour S P, Benmerah S, Tarte E, et al. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med Biolog Eng Comput, 2010, 48(10): 945

[18]

Jeong J W, Kim M K, Cheng H, et al. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv Healthcare Mater, 2014, 3(5): 642

[19]

Chen Z, To J W F, Wang C, et al. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv Energy Mater, 2014, 4(12)

[20]

Lin H, Weng W, Ren J, et al. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv Mater, 2014, 26(8): 1217

[21]

Gwon H, Hong J, Kim H, et al. Recent progress on flexible lithium rechargeable batteries. Energy Environm Sci, 2014, 7(2): 538

[22]

Chen L, Zhou G, Liu Z, et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv Mater, 2016, 28(3): 510

[23]

Mo R, Rooney D, Sun K, et al. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat Commun, 2017, 8: 13949

[24]

Pu J, Yomogida Y, Liu K K, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett, 2012, 12(8): 4013

[25]

Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9): 7931

[26]

Chortos A, Lim J, To J W F, et al. Highly stretchable transistors using a microcracked organic semiconductor. Adv Mater, 2014, 26(25): 4253

[27]

Park S, Shin S H, Yogeesh M N, et al. Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett, 2016, 37(4): 512

[28]

Kim Y H, Lee E Y, Lee H H, et al. Characteristics of reduced graphene oxide quantum dots for a flexible memory thin film transistor. ACS Appl Mater Interfaces, 2017, 9(19): 16375

[29]

Dong S, Xi J, Wu Y, et al. High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Anal Chim Acta, 2015, 853: 200

[30]

Nagaraju G, Raju G S R, Ko Y H, et al. Hierarchical Ni–Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale, 2016, 8(2): 812

[31]

Liang J, Li L, Niu X, et al. Elastomeric polymer light-emitting devices and displays. Nat Photonics, 2013, 7(10): 817

[32]

Jung M, Kim J, Noh J, et al. All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans Electron Devices, 2010, 57(3): 571

[33]

Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574

[34]

Xia M, Cheng Z, Han J, et al. Extremely stretchable all-carbon-nanotube transistor on flexible and transparent substrates. Appl Phy Lett, 2014, 105(14): 143504

[35]

Chortos A, Koleilat G I, Pfattner R, et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater, 2016, 28(22): 4441

[36]

Xu F, Wu M Y, Safron N S, et al. Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. Nano Lett, 2014, 14(2): 682

[37]

Ota H, Chen K, Lin Y, et al. Highly deformable liquid-state heterojunction sensors. Nat Commun, 2014, 5: 5032

[38]

Chen J, Liu Y, Minett A I, et al. Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery. Chem Mater, 2007, 19(15): 3595

[39]

Oh J Y, Kim S, Baik H K, et al. Conducting polymer dough for deformable electronics. Adv Mater, 2016, 28(22): 4455

[40]

Vosgueritchian M, Lipomi D J, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater, 2012, 22(2): 421

[41]

Lee K, Park J, Tchoe Y, et al. Flexible resistive random access memory devices by using NiOx/GaN microdisk arrays fabricated on graphene films. Nanotechnology, 2017, 28(20): 205202

[42]

Sun Y, Rogers J A. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett, 2004, 4(10): 1953

[43]

Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428(6986): 911

[44]

Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun, 2014, 5: 5678

[45]

Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183

[46]

Wu X, Sprinkle M, Li X, et al. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys Rev Lett, 2008, 101(2): 026801

[47]

Eda G, Mattevi C, Yamaguchi H, et al. Insulator to semimetal transition in graphene oxide. J Phys Chem C, 2009, 113(35): 15768

[48]

Kim J, Cote L J, Huang J. Two-dimensional soft material: new faces of graphene oxide. ACC Chem Res, 2012, 45(8): 1356

[49]

Jeong H Y, Kim J Y, Kim J W, et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett, 2010, 10(11): 4381

[50]

Rupprecht L. Conductive polymers and plastics: in industrial applications. William Andrew, 1999

[51]

Parman C E, Israeloff N E, Kakalios J. Conductance fluctuations in doped hydrogenated amorphous silicon. Phys Rev B, 1993, 47(19): 12578

[52]

Liu Y, Zhang A, Shen C, et al. Red phosphorus nano-dots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano, 2017, 11: 5530

[53]

Georgiou T, Jalil R, Belle B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol, 2013, 8(2): 100

[54]

Park S, Vosguerichian M, Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5(5): 1727

[55]

Yakobson B I, Brabec C J, Bernholc J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett, 1996, 76(14): 2511

[56]

Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996, 381(6584): 678

[57]

Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277(5334): 1971

[58]

Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306(5700): 1358

[59]

Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber. Science, 2007, 318(5858): 1892

[60]

Shang Y, He X, Li Y, et al. Super-stretchable spring-like carbon nanotube ropes. Adv Mater, 2012, 24(21): 2896

[61]

Menard E, Nuzzo R G, Rogers J A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl Phys Lett, 2005, 86(9): 093507

[62]

Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater, 2011, 23(13): 1482

[63]

Kumar A, Zhou C. The race to replace tin-doped indium oxide: which material will win. ACS Nano, 2010, 4(1): 11

[64]

Lee P, Lee J, Lee H, et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater, 2012, 24(25): 3326

[65]

Onorato J, Pakhnyuk V, Luscombe C K. Structure and design of polymers for durable, stretchable organic electronics. Polym J, 2017, 49(1): 41

[66]

Oh J Y, Rondeau-Gagné S, Chiu Y C, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539(7629): 411

[67]

Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Commun, 1977(16): 578

[68]

Na S I, Wang G, Kim S S, et al. Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. J Mater Chem, 2009, 19(47): 9045

[69]

Nardes A M, Kemerink M, De Kok M M, et al. Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org Electron, 2008, 9(5): 727

[70]

Vosgueritchian M, Lipomi D J, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater, 2012, 22(2): 421

[71]

Chortos A, Koleilat G I, Pfattner R, et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater, 2016, 28(22): 4441

[72]

Park S I, Ahn J H, Feng X, et al. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv Funct Mater, 2008, 18(18): 2673

[73]

Khang D Y,Rogers J A,Lee H H. Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv Funct Mater, 2009, 19(10): 1526

[74]

Kim D H,Rogers J. A stretchable electronics: materials strategies and devices. Adv Mater, 2008, 20(24): 4887

[75]

Khang D Y, Jiang H, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311(5758): 208

[76]

Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA, 2005, 102(35): 12321

[77]

Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296

[78]

Guo C F, Sun T, Liu Q, et al. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat Commun, 2014, 5: 3121

[79]

Kim D H, Xiao J, Song J, et al. Stretchable, curvilinear electronics based on inorganic materials. Adv Mater, 2010, 22(19): 2108

[80]

Ko H C, Stoykovich M P, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454(7205): 748

[81]

Kim D H, Song J, Choi W M, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad of Sci, 2008, 105(48): 18675

[82]

Hung P J, Jeong K, Liu G L, et al. Microfabricated suspensions for electrical connections on the tunable elastomer membrane. Appl Phys Lett, 2004, 85(24): 6051

[83]

Huang K, Dinyari R, Lanzara G, et al. An approach to cost-effective, robust, large-area electronics using monolithic silicon. IEEE Electron Devices Meeting, 2007: 217

[84]

Gonzalez M, Axisa F, Bulcke M V, et al. Design of metal interconnects for stretchable electronic circuits. Microelectron Reliab, 2008, 48(6): 825

[85]

Gonzalez M, Axisa F, Bossuyt F, et al. Design and performance of metal conductors for stretchable electronic circuits. Circuit World, 2009, 35(1): 22

[86]

Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013, 4: 1543

[87]

Zhang Y, Fu H, Su Y, et al. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater, 2013, 61(20): 7816

[88]

Jang K I, Chung H U, Xu S, et al. Soft network composite materials with deterministic and bio-inspired designs. Nat Commun, 2015, 6: 6566

[89]

Qiu L, Deng J, Lu X, et al. Integrating perovskite solar cells into a flexible fiber. Angew Chem Int Edit, 2014, 53(39): 10425

[90]

Pan S, Yang Z, Li H, et al. Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte. J Am Chem Soc, 2013, 135(29): 10622

[91]

Peng H, Sun X, Cai F, et al. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat Nanotechnol, 2009, 4(11): 738

[92]

Zhang Z, Guo K, Li Y, et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat Photon, 2015, 9(4): 233

[93]

Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nature Mater, 2016, 15(9): 937

[94]

Li C H, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer. Nat Chem, 2016, 8(6): 618

[95]

Lou Z, Chen S, Wang L, et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23: 7

[96]

Lou Z, Chen S, Wang L, et al. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 2017, 38: 28

[97]

Someya T, Sekitani T, Iba S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci, 2004, 101(27): 9966

[98]

Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604

[99]

Chen S, Lou Z, Chen D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv Mater Technolo, 2016, 1(7): 1600136

[100]

Kim D H, Ahn J H, Choi W M, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320(5875): 507

[101]

Salvetat J P, Bonard J M, Thomson N H, et al. Mechanical properties of carbon nanotubes. Appl Phys A, 1999, 69(3): 255

[102]

Gao L. Flexible device applications of 2D semiconductors. Small, 2017, 13: 1603994

[103]

Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9(10): 768

[104]

Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9): 7931

[105]

Zhang Q, Huang J Q, Qian W Z, et al. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small, 2013, 9(8): 1237

[106]

Li X, Yang J, Hu Y, et al. Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage. J Mater Chem, 2012, 22(36): 18847

[107]

Liang C C, Bro P A. High-voltage, solid-state battery system I design considerations. J Electrochem Soc, 1969, 116(9): 1322

[108]

Liu Y, Gorgutsa S, Santato C, et al. Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J Electrochem. Soc, 2012, 159(4): A349

[109]

Ha H J, Kil E H, Kwon Y H, et al. UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy Environ Sci, 2012, 5(4): 6491

[110]

Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects. Energy Environ Sci, 2014, 7(4): 1307

[111]

Hu L, Wu H, La Mantia F, et al. Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843

[112]

Zhang Y, Bai W, Cheng X, et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Edit, 2014, 53(52): 14564

[113]

Zhang Y, Zhao Y, Cheng X, et al. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew Chem Int Edit, 2015, 54(38): 11177

[114]

Xu R P, Li Y Q, Tang J X. Recent advances in flexible organic light-emitting diodes. J Mater Chem C, 2016, 4(39): 9116

[115]

Morales-Masis M, De Wolf S, Woods-Robinson R, et al. Transparent electrodes for efficient optoelectronics. Adv Electron Mater, 2017, 3(5): 1600529

[116]

Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6(2): 105

[117]

Kim D Y, Han Y C, Kim H C, et al. Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes. Adv Funct Mater, 2015, 25(46): 7145

[118]

Ji W, Wang T, Zhu B, et al. Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode. J Mater Chem C, 2017, 5(18): 4543

[119]

Ostroverkhova O. Organic optoelectronic materials: mechanisms and applications. Chem Rev, 2016, 116(22): 13279

[120]

Ahn S, Jeong S H, Han T H, et al. Conducting polymers as anode buffer materials in organic and perovskite optoelectronics. Adv Opt Mater, 2016, 5: 1600512

[121]

Yun J. Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv Funct Mater, 2017, 27(18): 1606641

[122]

Sannicolo T, Lagrange M, Cabos A, et al. Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small, 2016, 12: 6052

[123]

Yang X, Zhou G, Wong W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices. Chem Soc Rev, 2015, 44(23): 8484

[124]

Jou J H, Kumar S, Agrawal A, et al. Approaches for fabricating high efficiency organic light emitting diodes. J Mater Chem C, 2015, 3(13): 2974

[125]

Han T H, Choi M R, Jeon C W, et al. Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials. Sci Adv, 2016, 2(10): e1601428

[126]

Park M H, Kim J Y, Han T H, et al. Flexible lamination encapsulation. Adv Mater, 2015, 27(29): 4308

[127]

Han D, Khan Y, Ting J, et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors. Adv Mater, 2017, 29(22): 1606206

[128]

Wang L, Ruan C, Li M, et al. Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer. J Mater Chem C, 2017, 5(16): 4017

[1]

Hammock M L, Chortos A, Tee B C, et al. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25(42): 5997

[2]

Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973): 1603

[3]

Someya T. Stretchable electronics. Weinheim: Wiley-VCH , 2012

[4]

Someya T, Sekitani T, Iba S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci, 2004, 101(27): 9966

[5]

Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 2014, 8(5): 4689

[6]

Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater, 2016, 15(9): 937

[7]

Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604

[8]

Mannsfeld S C, Tee B C, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010, 9(10): 859

[9]

Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat nanotechnol, 2011, 6(5): 296

[10]

Kim D H, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333(6044): 838

[11]

Ying M, Bonifas A P, Lu N, et al. Silicon nanomembranes for fingertip electronics. Nanotechnology, 2012, 23(34): 344004

[12]

Schwartz G, Tee B C K, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013, 4: 1859

[13]

Choong C L, Shim M B, Lee B S, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater, 2014, 26(21): 3451

[14]

Trung T Q, Lee N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater, 2016, 28(22): 4338

[15]

Yang Y, Yang X, Zou X, et al. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv Funct Mater, 2017, 27(19): 1604096

[16]

Kenry, Yeo J C, Lim C T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng, 2016, 2: 16043

[17]

Lacour S P, Benmerah S, Tarte E, et al. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med Biolog Eng Comput, 2010, 48(10): 945

[18]

Jeong J W, Kim M K, Cheng H, et al. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv Healthcare Mater, 2014, 3(5): 642

[19]

Chen Z, To J W F, Wang C, et al. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv Energy Mater, 2014, 4(12)

[20]

Lin H, Weng W, Ren J, et al. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv Mater, 2014, 26(8): 1217

[21]

Gwon H, Hong J, Kim H, et al. Recent progress on flexible lithium rechargeable batteries. Energy Environm Sci, 2014, 7(2): 538

[22]

Chen L, Zhou G, Liu Z, et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv Mater, 2016, 28(3): 510

[23]

Mo R, Rooney D, Sun K, et al. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat Commun, 2017, 8: 13949

[24]

Pu J, Yomogida Y, Liu K K, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett, 2012, 12(8): 4013

[25]

Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9): 7931

[26]

Chortos A, Lim J, To J W F, et al. Highly stretchable transistors using a microcracked organic semiconductor. Adv Mater, 2014, 26(25): 4253

[27]

Park S, Shin S H, Yogeesh M N, et al. Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett, 2016, 37(4): 512

[28]

Kim Y H, Lee E Y, Lee H H, et al. Characteristics of reduced graphene oxide quantum dots for a flexible memory thin film transistor. ACS Appl Mater Interfaces, 2017, 9(19): 16375

[29]

Dong S, Xi J, Wu Y, et al. High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Anal Chim Acta, 2015, 853: 200

[30]

Nagaraju G, Raju G S R, Ko Y H, et al. Hierarchical Ni–Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale, 2016, 8(2): 812

[31]

Liang J, Li L, Niu X, et al. Elastomeric polymer light-emitting devices and displays. Nat Photonics, 2013, 7(10): 817

[32]

Jung M, Kim J, Noh J, et al. All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans Electron Devices, 2010, 57(3): 571

[33]

Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574

[34]

Xia M, Cheng Z, Han J, et al. Extremely stretchable all-carbon-nanotube transistor on flexible and transparent substrates. Appl Phy Lett, 2014, 105(14): 143504

[35]

Chortos A, Koleilat G I, Pfattner R, et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater, 2016, 28(22): 4441

[36]

Xu F, Wu M Y, Safron N S, et al. Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. Nano Lett, 2014, 14(2): 682

[37]

Ota H, Chen K, Lin Y, et al. Highly deformable liquid-state heterojunction sensors. Nat Commun, 2014, 5: 5032

[38]

Chen J, Liu Y, Minett A I, et al. Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery. Chem Mater, 2007, 19(15): 3595

[39]

Oh J Y, Kim S, Baik H K, et al. Conducting polymer dough for deformable electronics. Adv Mater, 2016, 28(22): 4455

[40]

Vosgueritchian M, Lipomi D J, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater, 2012, 22(2): 421

[41]

Lee K, Park J, Tchoe Y, et al. Flexible resistive random access memory devices by using NiOx/GaN microdisk arrays fabricated on graphene films. Nanotechnology, 2017, 28(20): 205202

[42]

Sun Y, Rogers J A. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett, 2004, 4(10): 1953

[43]

Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428(6986): 911

[44]

Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun, 2014, 5: 5678

[45]

Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183

[46]

Wu X, Sprinkle M, Li X, et al. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys Rev Lett, 2008, 101(2): 026801

[47]

Eda G, Mattevi C, Yamaguchi H, et al. Insulator to semimetal transition in graphene oxide. J Phys Chem C, 2009, 113(35): 15768

[48]

Kim J, Cote L J, Huang J. Two-dimensional soft material: new faces of graphene oxide. ACC Chem Res, 2012, 45(8): 1356

[49]

Jeong H Y, Kim J Y, Kim J W, et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett, 2010, 10(11): 4381

[50]

Rupprecht L. Conductive polymers and plastics: in industrial applications. William Andrew, 1999

[51]

Parman C E, Israeloff N E, Kakalios J. Conductance fluctuations in doped hydrogenated amorphous silicon. Phys Rev B, 1993, 47(19): 12578

[52]

Liu Y, Zhang A, Shen C, et al. Red phosphorus nano-dots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano, 2017, 11: 5530

[53]

Georgiou T, Jalil R, Belle B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol, 2013, 8(2): 100

[54]

Park S, Vosguerichian M, Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5(5): 1727

[55]

Yakobson B I, Brabec C J, Bernholc J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett, 1996, 76(14): 2511

[56]

Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996, 381(6584): 678

[57]

Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277(5334): 1971

[58]

Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306(5700): 1358

[59]

Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber. Science, 2007, 318(5858): 1892

[60]

Shang Y, He X, Li Y, et al. Super-stretchable spring-like carbon nanotube ropes. Adv Mater, 2012, 24(21): 2896

[61]

Menard E, Nuzzo R G, Rogers J A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl Phys Lett, 2005, 86(9): 093507

[62]

Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater, 2011, 23(13): 1482

[63]

Kumar A, Zhou C. The race to replace tin-doped indium oxide: which material will win. ACS Nano, 2010, 4(1): 11

[64]

Lee P, Lee J, Lee H, et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater, 2012, 24(25): 3326

[65]

Onorato J, Pakhnyuk V, Luscombe C K. Structure and design of polymers for durable, stretchable organic electronics. Polym J, 2017, 49(1): 41

[66]

Oh J Y, Rondeau-Gagné S, Chiu Y C, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539(7629): 411

[67]

Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Commun, 1977(16): 578

[68]

Na S I, Wang G, Kim S S, et al. Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. J Mater Chem, 2009, 19(47): 9045

[69]

Nardes A M, Kemerink M, De Kok M M, et al. Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org Electron, 2008, 9(5): 727

[70]

Vosgueritchian M, Lipomi D J, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater, 2012, 22(2): 421

[71]

Chortos A, Koleilat G I, Pfattner R, et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater, 2016, 28(22): 4441

[72]

Park S I, Ahn J H, Feng X, et al. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv Funct Mater, 2008, 18(18): 2673

[73]

Khang D Y,Rogers J A,Lee H H. Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv Funct Mater, 2009, 19(10): 1526

[74]

Kim D H,Rogers J. A stretchable electronics: materials strategies and devices. Adv Mater, 2008, 20(24): 4887

[75]

Khang D Y, Jiang H, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311(5758): 208

[76]

Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA, 2005, 102(35): 12321

[77]

Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6(5): 296

[78]

Guo C F, Sun T, Liu Q, et al. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat Commun, 2014, 5: 3121

[79]

Kim D H, Xiao J, Song J, et al. Stretchable, curvilinear electronics based on inorganic materials. Adv Mater, 2010, 22(19): 2108

[80]

Ko H C, Stoykovich M P, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454(7205): 748

[81]

Kim D H, Song J, Choi W M, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad of Sci, 2008, 105(48): 18675

[82]

Hung P J, Jeong K, Liu G L, et al. Microfabricated suspensions for electrical connections on the tunable elastomer membrane. Appl Phys Lett, 2004, 85(24): 6051

[83]

Huang K, Dinyari R, Lanzara G, et al. An approach to cost-effective, robust, large-area electronics using monolithic silicon. IEEE Electron Devices Meeting, 2007: 217

[84]

Gonzalez M, Axisa F, Bulcke M V, et al. Design of metal interconnects for stretchable electronic circuits. Microelectron Reliab, 2008, 48(6): 825

[85]

Gonzalez M, Axisa F, Bossuyt F, et al. Design and performance of metal conductors for stretchable electronic circuits. Circuit World, 2009, 35(1): 22

[86]

Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013, 4: 1543

[87]

Zhang Y, Fu H, Su Y, et al. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater, 2013, 61(20): 7816

[88]

Jang K I, Chung H U, Xu S, et al. Soft network composite materials with deterministic and bio-inspired designs. Nat Commun, 2015, 6: 6566

[89]

Qiu L, Deng J, Lu X, et al. Integrating perovskite solar cells into a flexible fiber. Angew Chem Int Edit, 2014, 53(39): 10425

[90]

Pan S, Yang Z, Li H, et al. Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte. J Am Chem Soc, 2013, 135(29): 10622

[91]

Peng H, Sun X, Cai F, et al. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat Nanotechnol, 2009, 4(11): 738

[92]

Zhang Z, Guo K, Li Y, et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat Photon, 2015, 9(4): 233

[93]

Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nature Mater, 2016, 15(9): 937

[94]

Li C H, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer. Nat Chem, 2016, 8(6): 618

[95]

Lou Z, Chen S, Wang L, et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23: 7

[96]

Lou Z, Chen S, Wang L, et al. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 2017, 38: 28

[97]

Someya T, Sekitani T, Iba S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci, 2004, 101(27): 9966

[98]

Zhu H, Wang X, Liang J, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater, 2017, 27(21): 1606604

[99]

Chen S, Lou Z, Chen D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv Mater Technolo, 2016, 1(7): 1600136

[100]

Kim D H, Ahn J H, Choi W M, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320(5875): 507

[101]

Salvetat J P, Bonard J M, Thomson N H, et al. Mechanical properties of carbon nanotubes. Appl Phys A, 1999, 69(3): 255

[102]

Gao L. Flexible device applications of 2D semiconductors. Small, 2017, 13: 1603994

[103]

Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9(10): 768

[104]

Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9): 7931

[105]

Zhang Q, Huang J Q, Qian W Z, et al. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small, 2013, 9(8): 1237

[106]

Li X, Yang J, Hu Y, et al. Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage. J Mater Chem, 2012, 22(36): 18847

[107]

Liang C C, Bro P A. High-voltage, solid-state battery system I design considerations. J Electrochem Soc, 1969, 116(9): 1322

[108]

Liu Y, Gorgutsa S, Santato C, et al. Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J Electrochem. Soc, 2012, 159(4): A349

[109]

Ha H J, Kil E H, Kwon Y H, et al. UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy Environ Sci, 2012, 5(4): 6491

[110]

Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects. Energy Environ Sci, 2014, 7(4): 1307

[111]

Hu L, Wu H, La Mantia F, et al. Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843

[112]

Zhang Y, Bai W, Cheng X, et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Edit, 2014, 53(52): 14564

[113]

Zhang Y, Zhao Y, Cheng X, et al. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew Chem Int Edit, 2015, 54(38): 11177

[114]

Xu R P, Li Y Q, Tang J X. Recent advances in flexible organic light-emitting diodes. J Mater Chem C, 2016, 4(39): 9116

[115]

Morales-Masis M, De Wolf S, Woods-Robinson R, et al. Transparent electrodes for efficient optoelectronics. Adv Electron Mater, 2017, 3(5): 1600529

[116]

Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6(2): 105

[117]

Kim D Y, Han Y C, Kim H C, et al. Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes. Adv Funct Mater, 2015, 25(46): 7145

[118]

Ji W, Wang T, Zhu B, et al. Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode. J Mater Chem C, 2017, 5(18): 4543

[119]

Ostroverkhova O. Organic optoelectronic materials: mechanisms and applications. Chem Rev, 2016, 116(22): 13279

[120]

Ahn S, Jeong S H, Han T H, et al. Conducting polymers as anode buffer materials in organic and perovskite optoelectronics. Adv Opt Mater, 2016, 5: 1600512

[121]

Yun J. Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv Funct Mater, 2017, 27(18): 1606641

[122]

Sannicolo T, Lagrange M, Cabos A, et al. Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small, 2016, 12: 6052

[123]

Yang X, Zhou G, Wong W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices. Chem Soc Rev, 2015, 44(23): 8484

[124]

Jou J H, Kumar S, Agrawal A, et al. Approaches for fabricating high efficiency organic light emitting diodes. J Mater Chem C, 2015, 3(13): 2974

[125]

Han T H, Choi M R, Jeon C W, et al. Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials. Sci Adv, 2016, 2(10): e1601428

[126]

Park M H, Kim J Y, Han T H, et al. Flexible lamination encapsulation. Adv Mater, 2015, 27(29): 4308

[127]

Han D, Khan Y, Ting J, et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors. Adv Mater, 2017, 29(22): 1606206

[128]

Wang L, Ruan C, Li M, et al. Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer. J Mater Chem C, 2017, 5(16): 4017

[1]

Wang Bing, Xu Ping, Yang Guowei. Low-Temperature Growth and Photoluminescence of SnO2 Nanowires. J. Semicond., 2008, 29(8): 1469.

[2]

Hu Weiguo, Wei Hongyuan, Jiao Chunmei, Kang Tingting, Zhang Riqing, Liu Xianglin. Growth of Free-Standing AlN Nanocrystals on Nanorod ZnO Template. J. Semicond., 2007, 28(10): 1508.

[3]

Dingrun Wang, Yongfeng Mei, Gaoshan Huang. Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application. J. Semicond., 2018, 39(1): 011002. doi: 10.1088/1674-4926/39/1/011002

[4]

Ping Sheng, Baomin Wang, Runwei Li. Flexible magnetic thin films and devices. J. Semicond., 2018, 39(1): 011006. doi: 10.1088/1674-4926/39/1/011006

[5]

Hong Zhu, Yang Shen, Yanqing Li, Jianxin Tang. Recent advances in flexible and wearable organic optoelectronic devices. J. Semicond., 2018, 39(1): 011011. doi: 10.1088/1674-4926/39/1/011011

[6]

Luqi Tao, Danyang Wang, Song Jiang, Ying Liu, Qianyi Xie, He Tian, Ningqin Deng, Xuefeng Wang, Yi Yang, Tianling Ren. Fabrication techniques and applications of flexible graphene-based electronic devices. J. Semicond., 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001

[7]

Jingxia Wu, Yang Hong, Bingjie Wang. The applications of carbon nanomaterials in fiber-shaped energy storage devices. J. Semicond., 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004

[8]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[9]

Saeed Ahmed Khan, Min Gao, Yuechang Zhu, Zhuocheng Yan, Yuan Lin. MWCNTs based flexible and stretchable strain sensors. J. Semicond., 2017, 38(5): 053003. doi: 10.1088/1674-4926/38/5/053003

[10]

Li Guofeng, Wu Nanjian. A low power flexible PGA for software defined radio systems. J. Semicond., 2012, 33(5): 055006. doi: 10.1088/1674-4926/33/5/055006

[11]

Yang Liu, Guoqi Zhang, Fenglian Sun. Thermal simulation of flexible LED package enhanced with copper pillars. J. Semicond., 2015, 36(6): 064011. doi: 10.1088/1674-4926/36/6/064011

[12]

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

[13]

Gang Ge, Wei Huang, Jinjun Shao, Xiaochen Dong. Recent progress of flexible and wearable strain sensors for human-motion monitoring. J. Semicond., 2018, 39(1): 011012. doi: 10.1088/1674-4926/39/1/011012

[14]

A. A. Azab, Azza A. Ward, G. M. Mahmoud, Eman M. El-Hanafy, H. El-Zahed, F. S. Terra. Structural and dielectric properties of prepared PbS and PbTe nanomaterials. J. Semicond., 2018, 39(12): 123006. doi: 10.1088/1674-4926/39/12/123006

[15]

Jiazhen Sheng, Ki-Lim Han, TaeHyun Hong, Wan-Ho Choi, Jin-Seong Park. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes. J. Semicond., 2018, 39(1): 011008. doi: 10.1088/1674-4926/39/1/011008

[16]

Zheng Lou, Xiaoli Yang, Haoran Chen, Zhongzhu Liang. Flexible ultraviolet photodetectors based on ZnO–SnO2 heterojunction nanowire arrays. J. Semicond., 2018, 39(2): 024002. doi: 10.1088/1674-4926/39/2/024002

[17]

Wang Wei, Huang Beiju, Dong Zan, Guo Weilian, Chen Hongda. A flexible logic circuit based on a MOS-NDR transistor in standard CMOS technology. J. Semicond., 2010, 31(5): 055007. doi: 10.1088/1674-4926/31/5/055007

[18]

Zhang Huafu, Lei Chengxin, Liu Hanfa, Yuan Changkun. Thickness dependence of the properties of transparent conducting ZnO:Zr films deposited on flexible substrates by RF magnetron sputtering. J. Semicond., 2009, 30(4): 043004. doi: 10.1088/1674-4926/30/4/043004

[19]

Hongyu Zhen, Kan Li, Yaokang Zhang, Lina Chen, Liyong Niu, Xiaoling Wei, Xu Fang, Peng You, Zhike Liu, Dongrui Wang, Feng Yan, Zijian Zheng. Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells. J. Semicond., 2018, 39(1): 014002. doi: 10.1088/1674-4926/39/1/014002

[20]

Tao Cheng, Youwei Wu, Xiaoqin Shen, Wenyong Lai, Wei Huang. Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality. J. Semicond., 2018, 39(1): 015001. doi: 10.1088/1674-4926/39/1/015001

Search

Advanced Search >>

GET CITATION

M Z Zou, Y Ma, X Yuan, Y Hu, J Liu, Z Jin, Flexible devices: from materials, architectures to applications[J]. J. Semicond., 2018, 39(1): 011010. doi: 10.1088/1674-4926/39/1/011010.

Export: BibTex EndNote

Article Metrics

Article views: 2189 Times PDF downloads: 72 Times Cited by: 0 Times

History

Manuscript received: 05 August 2017 Manuscript revised: 05 October 2017 Online: Accepted Manuscript: 27 December 2017 Published: 01 January 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误