ARTICLES

Analysis of the time domain characteristics of tapered semiconductor lasers

Desheng Zeng1, 2, Li Zhong1, , Suping Liu1 and Xiaoyu Ma1, 2

+ Author Affiliations

 Corresponding author: Li Zhong. Email: zhongli@semi.ac.cn

PDF

Turn off MathJax

Abstract: We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings. We analyze the influence of the length of second order gratings on the power and spectrum of output light, and optimizing the length of gratings, in order to reduce the mode competition effect in the device, and obtain the high power output light wave with good longitudinal mode characteristics.

Key words: tapered semiconductor laserstime domain characteristicsDBR gratingsmode competition



[1]
Sun S M, Fan J, Xu L, et al. Research progress of conical semiconductor lasers. Chin Opt, 2019, 12(01), 48 doi: 10.3788/co.20191201.0048
[2]
Zhou X Y, Zhao S Y, Ma X L, et al. Low vertical divergence angle high brightness photonic crystal semiconductor laser. Chin J Lasers, 2017, 44(2), 0201010 doi: 10.3788/CJL201744.0201010
[3]
Liu Y Q, Cao Y H, Li J, et al. 5 kW fiber coupled semiconductor laser for laser processing. Opt Prec Eng, 2015, 23(05), 1279 doi: 10.3788/OPE.20152305.1279
[4]
Paschke K, Sumpf B, Dittmar F, et al. Nearly diffraction limited 980-nm tapered diode lasers with an output power of 7.7 W. IEEE J Sel Top Quantum Electron, 2005, 11(5), 1223 doi: 10.1109/JSTQE.2005.853840
[5]
Jia P, Liu X L, Chen Y Y, et al. Study of dual wavelength distributed Bragg reflection semiconductor laser with high order Bragg gratings. Chin J Lasers, 2015(8), 37 doi: 10.3788/CJL201542.0802007
[6]
Aho A T, Viheriälä J, M Korpijärvi V M, et al. High-power 1180-nm GaInNAs DBR laser diodes. IEEE Photonics Technol Lett, 2017, 29(23), 2023 doi: 10.1109/LPT.2017.2760038
[7]
Fan J, Gong C Y, Yang J J, et al. Research progress of distributed prague reflector semiconductor lasers. Progr Laser Optoelectron, 2019, 56(06), 34 doi: 10.3788/LOP56.060003
[8]
Müller A, Fricke J, Bugge F, et al. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030 nm. Appl Phys B, 2016, 122(4), 87 doi: 10.1007/s00340-016-6360-9
[9]
Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers. J Appl Phys, 1972, 43(5), 2327 doi: 10.1063/1.1661499
[10]
Dente G C, Tilton M L. Modeling multiple-longitudinal-mode dynamics in semiconductor lasers. IEEE J Quantum Electron, 1998, 34(2), 325 doi: 10.1109/3.658726
[11]
Hasler K H, Wenzel H, Klehr A, et al. Simulation of the generation of high-power pulses in the GHz range with three-section DBR lasers. IEE Proceedings-Optoelectronics, 2002, 149(4), 152 doi: 10.1049/ip-opt:20020505
[12]
Radziunas M. Modeling and simulations of broad-area edge-emitting semiconductor devices. Intl J High Perform Comput Appl, 2018, 32(4), 512 doi: 10.1177/1094342016677086
[13]
Vahala K, Yariv A. Semiclassical theory of noise in semiconductor lasers-Part I. IEEE J Quantum Electron, 1983, 19(6), 1096 doi: 10.1109/JQE.1983.1071986
[14]
Vahala K, A Yariv A. Semiclassical theory of noise in semiconductor lasers-Part II. IEEE J Quantum Electron, 1983, 19(6), 1102 doi: 10.1109/JQE.1983.1071984
[15]
Zhang L M, Yu S F, Nowell M C, et al. Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model. IEEE J Quantum Electron, 1994, 30(6), 1389 doi: 10.1109/3.299461
[16]
Dente G C, Tilton M L, Bossert D J, et al. Time-dependent modeling of the MFA-MOPA. In: Laser Diodes and Applications II. International Society for Optics and Photonics, 1996, 2682: 48
[17]
De Melo A M, Petermann K. On the amplified spontaneous emission noise modeling of semiconductor optical amplifiers. Opt Commun, 2008, 281(18), 4598 doi: 10.1016/j.optcom.2008.06.039
[18]
Marcuse D. Computer simulation of laser photon fluctuations: Theory of single-cavity laser. IEEE J Quantum Electron, 1984, 20(10), 1139 doi: 10.1109/JQE.1984.1072276
[19]
Borruel L, Odriozola H, Tijero J M G, et al. Design strategies to increase the brightness of gain guided tapered lasers. Opt Quantum Electron, 2008, 40(2–4), 175 doi: 10.1007/s11082-008-9187-8
[20]
Spreemann M, Lichtner M, Radziunas M, et al. Measurement and simulation of distributed-feedback tapered master-oscillator power amplifiers. IEEE J Quantum Electron, 2009, 45(6), 609 doi: 10.1109/JQE.2009.2013115
[21]
Qiao C, Su R G, Li X, et al. Design and technology of 980 nm high power DBR semiconductor laser. Chin Laser, 2019, 46(7), 0701002
[22]
Wang W X, Lu Y X. Analysis of sampling grating characteristics of distributed feedback semiconductor lasers. Laser J, 2018, 39(10), 57
Fig. 1.  Schematic top view of the laser.

Fig. 2.  (Color online) The top panel shows the change of total charge carriers and the bottom panel shows the change of total photons with the change of time with a 50 μm front grating.

Fig. 3.  (Color online) The frequency of output light with a 50 μm front grating.

Fig. 4.  (Color online) The frequency of output light when front grating is 75 μm.

Fig. 5.  (Color online) The top panel shows the transient frequency of output light during 0–5 ns and the bottom panel shows the stable state frequency of output light with a 100 μm front grating.

Fig. 6.  (Color online) The top panel shows the change of total charge carriers and the bottom panel shows the total photons with a 100 μm front grating.

Fig. 7.  (Color online) The top panel shows the change of output power with the change of time during all simulation time and the bottom panel shows the output power in stable state with a 100 μm front grating.

Fig. 8.  (Color online) The stable state frequency of output light with a 200 μm front grating.

Fig. 9.  (Color online) The top panel shows the change of output power with the change of time during all simulation time and the bottom panel shows the output power in stable state with a 200 μm front grating.

Table 1.   Parameters of simulation.

ParameterTypical value
Back grating length (L1)100 μm
MO area length (L2)600 μm
Front grating length (L3)50, 75, 100, 200 μm
PA area length (L4)1200 μm
MO area width4 μm
Front cavity width134 μm
Current injection efficiency (ƞi)0.95
Spontaneous emission factor (nsp)2.6
Differential gain coefficient (A)1.0 × 10 –11 cm
Transparency carrier density (N0)1.0 × 1012 cm–2
Total recombination time (τe)1.3 × 10–9 s
Grating cross coupling coefficient (ĸ)30 cm–1
Grating radiation loss (ε)10 cm–1
Approximately emission wavelength (λ)980 nm
Front cavity facet power reflective (Rf)0.002
Back cavity facet power reflective (Rb)0.3
Group refractive index (ng)4.6
MO area injection current (IMO)120 mA
PA area injection current (IPA)3.0 A
DownLoad: CSV
[1]
Sun S M, Fan J, Xu L, et al. Research progress of conical semiconductor lasers. Chin Opt, 2019, 12(01), 48 doi: 10.3788/co.20191201.0048
[2]
Zhou X Y, Zhao S Y, Ma X L, et al. Low vertical divergence angle high brightness photonic crystal semiconductor laser. Chin J Lasers, 2017, 44(2), 0201010 doi: 10.3788/CJL201744.0201010
[3]
Liu Y Q, Cao Y H, Li J, et al. 5 kW fiber coupled semiconductor laser for laser processing. Opt Prec Eng, 2015, 23(05), 1279 doi: 10.3788/OPE.20152305.1279
[4]
Paschke K, Sumpf B, Dittmar F, et al. Nearly diffraction limited 980-nm tapered diode lasers with an output power of 7.7 W. IEEE J Sel Top Quantum Electron, 2005, 11(5), 1223 doi: 10.1109/JSTQE.2005.853840
[5]
Jia P, Liu X L, Chen Y Y, et al. Study of dual wavelength distributed Bragg reflection semiconductor laser with high order Bragg gratings. Chin J Lasers, 2015(8), 37 doi: 10.3788/CJL201542.0802007
[6]
Aho A T, Viheriälä J, M Korpijärvi V M, et al. High-power 1180-nm GaInNAs DBR laser diodes. IEEE Photonics Technol Lett, 2017, 29(23), 2023 doi: 10.1109/LPT.2017.2760038
[7]
Fan J, Gong C Y, Yang J J, et al. Research progress of distributed prague reflector semiconductor lasers. Progr Laser Optoelectron, 2019, 56(06), 34 doi: 10.3788/LOP56.060003
[8]
Müller A, Fricke J, Bugge F, et al. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030 nm. Appl Phys B, 2016, 122(4), 87 doi: 10.1007/s00340-016-6360-9
[9]
Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers. J Appl Phys, 1972, 43(5), 2327 doi: 10.1063/1.1661499
[10]
Dente G C, Tilton M L. Modeling multiple-longitudinal-mode dynamics in semiconductor lasers. IEEE J Quantum Electron, 1998, 34(2), 325 doi: 10.1109/3.658726
[11]
Hasler K H, Wenzel H, Klehr A, et al. Simulation of the generation of high-power pulses in the GHz range with three-section DBR lasers. IEE Proceedings-Optoelectronics, 2002, 149(4), 152 doi: 10.1049/ip-opt:20020505
[12]
Radziunas M. Modeling and simulations of broad-area edge-emitting semiconductor devices. Intl J High Perform Comput Appl, 2018, 32(4), 512 doi: 10.1177/1094342016677086
[13]
Vahala K, Yariv A. Semiclassical theory of noise in semiconductor lasers-Part I. IEEE J Quantum Electron, 1983, 19(6), 1096 doi: 10.1109/JQE.1983.1071986
[14]
Vahala K, A Yariv A. Semiclassical theory of noise in semiconductor lasers-Part II. IEEE J Quantum Electron, 1983, 19(6), 1102 doi: 10.1109/JQE.1983.1071984
[15]
Zhang L M, Yu S F, Nowell M C, et al. Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model. IEEE J Quantum Electron, 1994, 30(6), 1389 doi: 10.1109/3.299461
[16]
Dente G C, Tilton M L, Bossert D J, et al. Time-dependent modeling of the MFA-MOPA. In: Laser Diodes and Applications II. International Society for Optics and Photonics, 1996, 2682: 48
[17]
De Melo A M, Petermann K. On the amplified spontaneous emission noise modeling of semiconductor optical amplifiers. Opt Commun, 2008, 281(18), 4598 doi: 10.1016/j.optcom.2008.06.039
[18]
Marcuse D. Computer simulation of laser photon fluctuations: Theory of single-cavity laser. IEEE J Quantum Electron, 1984, 20(10), 1139 doi: 10.1109/JQE.1984.1072276
[19]
Borruel L, Odriozola H, Tijero J M G, et al. Design strategies to increase the brightness of gain guided tapered lasers. Opt Quantum Electron, 2008, 40(2–4), 175 doi: 10.1007/s11082-008-9187-8
[20]
Spreemann M, Lichtner M, Radziunas M, et al. Measurement and simulation of distributed-feedback tapered master-oscillator power amplifiers. IEEE J Quantum Electron, 2009, 45(6), 609 doi: 10.1109/JQE.2009.2013115
[21]
Qiao C, Su R G, Li X, et al. Design and technology of 980 nm high power DBR semiconductor laser. Chin Laser, 2019, 46(7), 0701002
[22]
Wang W X, Lu Y X. Analysis of sampling grating characteristics of distributed feedback semiconductor lasers. Laser J, 2018, 39(10), 57
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2861 Times PDF downloads: 41 Times Cited by: 0 Times

    History

    Received: 24 May 2019 Revised: 17 October 2019 Online: Accepted Manuscript: 08 November 2019Uncorrected proof: 12 November 2019Published: 01 March 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Desheng Zeng, Li Zhong, Suping Liu, Xiaoyu Ma. Analysis of the time domain characteristics of tapered semiconductor lasers[J]. Journal of Semiconductors, 2020, 41(3): 032305. doi: 10.1088/1674-4926/41/3/032305 D S Zeng, L Zhong, S P Liu, X Y Ma, Analysis of the time domain characteristics of tapered semiconductor lasers[J]. J. Semicond., 2020, 41(3): 032305. doi: 10.1088/1674-4926/41/3/032305.Export: BibTex EndNote
      Citation:
      Desheng Zeng, Li Zhong, Suping Liu, Xiaoyu Ma. Analysis of the time domain characteristics of tapered semiconductor lasers[J]. Journal of Semiconductors, 2020, 41(3): 032305. doi: 10.1088/1674-4926/41/3/032305

      D S Zeng, L Zhong, S P Liu, X Y Ma, Analysis of the time domain characteristics of tapered semiconductor lasers[J]. J. Semicond., 2020, 41(3): 032305. doi: 10.1088/1674-4926/41/3/032305.
      Export: BibTex EndNote

      Analysis of the time domain characteristics of tapered semiconductor lasers

      doi: 10.1088/1674-4926/41/3/032305
      More Information
      • Corresponding author: Li Zhong. Email: zhongli@semi.ac.cn
      • Received Date: 2019-05-24
      • Revised Date: 2019-10-17
      • Published Date: 2020-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return