J. Semicond. > Volume 40 > Issue 1 > Article Number: 011802

Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material

Hang Dong 1, 2, , Huiwen Xue 1, 2, , Qiming He 1, 2, , Yuan Qin 1, 2, , Guangzhong Jian 1, 2, , Shibing Long 1, 2, 3, , and Ming Liu 1, 2,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: As a promising ultra-wide bandgap semiconductor, gallium oxide (Ga2O3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field (8 MV/cm), ultra-wide bandgap (~ 4.8 eV) and large Baliga’s figure of merit (BFOM) of Ga2O3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor (FET). In this paper, we introduce the basic physical properties of Ga2O3 single crystal, and review the recent research process of Ga2O3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga2O3 is preliminary revealed. Finally, the prospect of the Ga2O3 based FET for power electronics application is analyzed.

Key words: gallium oxide (Ga2O3)ultra-wide bandgap semiconductorpower devicefield effect transistor (FET)

Abstract: As a promising ultra-wide bandgap semiconductor, gallium oxide (Ga2O3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field (8 MV/cm), ultra-wide bandgap (~ 4.8 eV) and large Baliga’s figure of merit (BFOM) of Ga2O3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor (FET). In this paper, we introduce the basic physical properties of Ga2O3 single crystal, and review the recent research process of Ga2O3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga2O3 is preliminary revealed. Finally, the prospect of the Ga2O3 based FET for power electronics application is analyzed.

Key words: gallium oxide (Ga2O3)ultra-wide bandgap semiconductorpower devicefield effect transistor (FET)



References:

[1]

J Millan, P Godignon, X Perpina, et al. A Survey of Wide Bandgap Power Semiconductor Devices. IEEE Trans Power Electron, 2014, 29(5): 2155

[2]

Baliga B J. Fundamentals of power semiconductor devices. New York: Springer Science & Business Media, 2010

[3]

T P Chow, I Omura, M Higashiwaki, et al. Smart power devices and ICs using GaAs and wide and extreme bandgap semiconductors. IEEE Trans Electron Devices, 2017, 64(3): 856

[4]

S Fujita. Wide-bandgap semiconductor materials: For their full bloom. Jpn J Appl Phys, 2015, 54(3): 030101

[5]

M Higashiwaki, K Sasaki, A Kuramata, et al. Development of gallium oxide power device. Phys Status Solidi A, 2014, 211(1): 21

[6]

M Higashiwaki, K Sasaki, H Murakami, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31(3): 034001

[7]

N Ueda, H Hosono, R Waseda, et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl Phys Lett, 1997, 70(26): 3561

[8]

E G Víllora, K Shimamura, Y Yoshikawa, et al. Large-size β-Ga2O3 single crystals and wafers. J Cryst Growth, 2004, 270(3/4): 420

[9]

K N H Aida, H Takeda, N Aota, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 2008, 47(11): 8506

[10]

M Higashiwaki, K Konishi, K Sasaki, et al. Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl Phys Lett, 2016, 108(13): 133503

[11]

M Higashiwaki, K Sasaki, T Kamimura, et al. Depletion-mode Ga2O3 metal–oxide–semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl Phys Lett, 2013, 103(12): 123511

[12]

M Higashiwaki, K Sasaki, A Kuramata, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100(1): 013504

[13]

W S Hwang, A Verma, H Peelaers, et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl Phys Lett, 2014, 104(20): 203111

[14]

Z Hu, K Nomoto, W Li, et al. Enhancement-mode Ga2O3 vertical Transistors with breakdown voltage > 1 kV. IEEE Electron Device Lett, 2018, 39(6): 869

[15]

K D Chabak, J P McCandless, N A Moser, et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018, 39(1): 67

[16]

M. H. Wong, K. Sasaki, A. Kuramata, et al. Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V. IEEE Electron Device Lett, 2016, 37(2): 212-215

[17]

H Zhou, M Si, S Alghamdi, et al. High performance depletion/enhancement-mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett, 2017, 38(1): 103

[18]

Q He, W Mu, B Fu, et al. Schottky barrier rectifier based on (100) β-Ga2O3 and its DC and AC characteristics. IEEE Electron Device Lett, 2018, 39(4): 556

[19]

K Sasaki, D Wakimoto, Q T Thieu, et al. First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. IEEE Electron Device Lett, 2017, 38(6): 783

[20]

K Konishi, K Goto, H Murakami, et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 2017, 110(10): 103506

[21]

R Roy, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc, 1952, 74: 719

[22]

H H Tippins. Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys Rev, 1965, 140(1A): A316

[23]

T C Lovejoy, E N Yitamben, N. Shamir, et al. Surface morphology and electronic structure of bulk single crystal β-Ga2O3 (100). Appl Phys Lett, 2009, 94(8): 081906

[24]

M Mohamed, C Janowitz, I Unger, et al. The electronic structure of β-Ga2O3. Appl Phys Lett, 2010, 97(21): 211903

[25]

C Janowitz, V Scherer, M Mohamed, et al. Experimental electronic structure of In2O3 and Ga2O3. New J Phys, 2011, 13(8): 085014

[26]

O Ueda, N Ikenag, K Koshi, et al. Structural evaluation of defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth process. Jpn J Appl Phys, 2016, 55(12): 1202BD

[27]

F Mezzadri, G Calestani, F Boschi, et al. Crystal structure and ferroelectric properties of epsilon-Ga2O3 films grown on (0001)-sapphire. Inorg Chem, 2016, 55(22): 2079

[28]

X Xia, Y Chen, Q Feng, et al. Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition. Appl Phys Lett, 2016, 108(20): 202103

[29]

M Slomski, N Blumenschein, P P Paskov, et al. Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants. J Appl Phys, 2017, 121(23): 235104

[30]

K Hoshikawa, E Oh, T Kobayashi, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 2016, 447: 36

[31]

S Yoshioka, H Hayashi, A Kuwabara, et al. Structures and energetics of Ga2O3 polymorphs. J Phys-Condens Mat, 2007, 19(34): 346211

[32]

J Åhman, G Svensson, J Albertsson. A reinvestigation of beta-gallium oxide. Acta Crystallogr C, 1996, 52(6): 1336

[33]

A Janotti, C G Van de Walle. Oxygen vacancies in ZnO. Appl Phys Lett, 2005, 87(12): 122102

[34]

T Oshima, K Kaminaga, A Mukai, et al. Formation of semi-insulating layers on semiconducting β-Ga2O3 single crystals by thermal oxidation. Jpn J Appl Phys, 2013, 52(5R): 051101

[35]

J B Varley, J R Weber, A Janotti, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97(14): 142106

[36]

Z Hajnal, J Miró, G Kiss, et al. Role of oxygen vacancy defect states in then-type conduction of β-Ga2O3. J Appl Phys, 1999, 86(7): 3792

[37]

J G M Fleischer, H Meixner. H2-induced changes in electrical conductance of β-Ga2O3 thin-film systems. Appl Phys A, 1992, 54: 560

[38]

F B C K A F M F C Kohl. Decomposition of methane on polycrystalline thick films of Ga2O3 investigated by thermal desorption spectroscopy with a mass spectrometer. Fresenius J Ana Chem, 1997, 358: 187

[39]

M F T Schwebel, H Meixner, C D Kohl. CO-sensor for domestic use based on high temperature stable Ga2O3 thin films. Sens Actuators B Chem, 1998, 49: 46

[40]

K H M Ogita, Y Nakanishi, Y Hatanaka. Ga2O3 thin film for oxygen sensor at high temperature. Appl Surf Sci, 2001, 175: 721

[41]

Z Guo, A Verma, X Wu, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl Phys Lett, 2015, 106(11): 111909

[42]

M Handwerg, R Mitdank, Z Galazka, et al. Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals. Semicond Sci Tech, 2015, 30(2): 024006

[43]

M D Santia, N Tandon, J D Albrecht. Lattice thermal conductivity in β-Ga2O3 from first principles. Appl Phys Lett, 2015, 107(4): 041907

[44]

Wang H. Investigation of power semiconductor devices for high frequency high density power converters. Virgina Tech, 2007

[45]

Jessen G, Chabak K D, Green A, et al. Toward realization of Ga2O3 for power electronics applications. The 75th IEEE Device Research Conference (DRC), 2017

[46]

N Ma, N Tanen, A Verma, et al. Intrinsic electron mobility limits in β-Ga2O3. Appl Phys Lett, 2016, 109(21): 212101

[47]

T Oishi, Y Koga, K Harada, et al. High-mobility β-Ga2O3 (-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl Phys Express, 2015, 8(3): 031101

[48]

M Higashiwaki, A Kuramata, H Murakami, et al. State-of-the-art technologies of gallium oxide power devices. J Phys D Appl Phys, 2017, 50(33): 333002

[49]

C Tang, J Sun, N Lin, et al. Electronic structure and optical property of metal-doped Ga2O3: a first principles study. RSC Adv, 2016, 6(82): 78322

[50]

H Peelaers, C G Van de Walle. Brillouin zone and band structure of β-Ga2O3. Phys Status Solidi B, 2015, 252(4): 828

[51]

H von Wenckstern. Group-III sesquioxides: growth, physical properties and devices. Adv Electron Mater, 2017, 3(9): 1600350

[52]

K Sasaki, M Higashiwaki, A Kuramata, et al. MBE grown Ga2O3 and its power device applications. J Crys Growth, 2013, 378: 591

[53]

M H Wong, Y Morikawa, K Sasaki, et al. Characterization of channel temperature in Ga2O3 metal–oxide–semiconductor field-effect transistors by electrical measurements and thermal modeling. Appl Phys Lett, 2016, 109(19): 193503

[54]

Wong M H, Takeyama A, Makino T, et al. Radiation hardness of Ga2O3 MOSFETs against gamma-ray irradiation. IEEE Device Research Conference (DRC), 2017

[55]

A J Green, K D Chabak, E R Heller, et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 2016, 37(7): 902

[56]

M H Wong, Y Nakata, A Kuramata, et al. Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Appl Phys Express, 2017, 10: 041101

[57]

Wong M, Goto K, Kuramata A, et al. First demonstration of vertical Ga2O3 MOSFET planar structure with a current aperture. IEEE Device Research Conference (DRC), 2017

[58]

Song B, Verma A K, Nomoto K, et al. Vertical Fin Ga2O3 power field-effect transistors with on/off ratio >109. IEEE Device Research Conference (DRC), 2017

[59]

A J Green, K D Chabak, M Baldini, et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 2017, 38(6): 790

[60]

S Krishnamoorthy, Z Xia, S Bajaj, et al. Delta-doped β-gallium oxide field-effect transistor. Appl Phys Express, 2017, 10(5): 051102

[61]

Z Xia, C Joishi, S Krishnamoorthy, et al. Delta doped β-Ga2O3 field effect transistors with regrown ohmic contacts. IEEE Electron Device Lett, 2018, 39(4): 568

[62]

Hwang A V W S, Protasenko V, Rouvimov S, et al. Nanomembrane β-Ga2O3 high-voltage field effect transistors. IEEE Device Research Conference (DRC), 2013

[63]

S Ahn, F Ren, J Kim, et al. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors. Appl Phys Lett, 2016, 109(6): 062102

[64]

J Bae, H W Kim, I H Kang, et al. High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate. Appl Phys Lett, 2018, 112(12): 122102

[65]

H Zhou, K Maize, G Qiu, et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 2017, 111(9): 092102

[66]

H Zhou, S Alghamdi, S W Si, et al. Al2O3/β-Ga2O3 (-201) interface improvement through piranha pretreatment and postdeposition annealing. IEEE Electron Device Lett, 2016, 37(11): 1411

[67]

T Kamimura, D Krishnamurthy, A Kuramata, et al. Epitaxially grown crystalline Al2O3 interlayer on β-Ga2O3 (010) and its suppressed interface state density. Jpn J Appl Phys, 2016, 55(12): 1202B5

[68]

M Hattori, T Oshima, R Wakabayashi, et al. Epitaxial growth and electric properties of γ-Al2O3 (110) films on β-Ga2O3 (010) substrates. Jpn J Appl Phys, 2016, 55(12): 1202B6

[69]

K Zeng, Y Jia, U Singisetti. Interface state density in atomic layer deposited SiO2/β-Ga2O3 MOSCAPs. IEEE Electron Device Lett, 2016, 37(7): 906

[70]

K Zeng, U Singisetti. Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations. Appl Phys Lett, 2017, 111(12): 122108

[71]

H Dong, W Mu, Y Hu, et al. C-V and J-V investigation of HfO2/Al2O3 bilayer dielectrics MOSCAPs on (100) β-Ga2O3. AIP Adv, 2018, 8(6): 065215

[72]

M A Bhuiyan, H Zhou, R Jiang, et al. Charge trapping in Al2O3/β-Ga2O3 based MOS capacitors. IEEE Electron Device Lett, 2018, 39(7): 1022

[73]

Y Yao, R F Davis, L M Porter. Investigation of different metals as ohmic contacts to β-Ga2O3: comparison and analysis of electrical behavior, morphology, and other physical properties. J Electron Mater, 2016, 46(4): 2053

[74]

N A Moser, J P McCandless, A Crespo, et al. High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl Phys Lett, 2017, 110(14): 143505

[75]

K Sasaki, Q T Thieu, D Wakimoto, et al. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy. Appl Phys Express, 2017, 10(12): 124201.

[76]

K Zeng, J S Wallace, C Heimburger, et al. Ga2O3 MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett, 2017, 38(4): 513-516

[1]

J Millan, P Godignon, X Perpina, et al. A Survey of Wide Bandgap Power Semiconductor Devices. IEEE Trans Power Electron, 2014, 29(5): 2155

[2]

Baliga B J. Fundamentals of power semiconductor devices. New York: Springer Science & Business Media, 2010

[3]

T P Chow, I Omura, M Higashiwaki, et al. Smart power devices and ICs using GaAs and wide and extreme bandgap semiconductors. IEEE Trans Electron Devices, 2017, 64(3): 856

[4]

S Fujita. Wide-bandgap semiconductor materials: For their full bloom. Jpn J Appl Phys, 2015, 54(3): 030101

[5]

M Higashiwaki, K Sasaki, A Kuramata, et al. Development of gallium oxide power device. Phys Status Solidi A, 2014, 211(1): 21

[6]

M Higashiwaki, K Sasaki, H Murakami, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31(3): 034001

[7]

N Ueda, H Hosono, R Waseda, et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl Phys Lett, 1997, 70(26): 3561

[8]

E G Víllora, K Shimamura, Y Yoshikawa, et al. Large-size β-Ga2O3 single crystals and wafers. J Cryst Growth, 2004, 270(3/4): 420

[9]

K N H Aida, H Takeda, N Aota, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 2008, 47(11): 8506

[10]

M Higashiwaki, K Konishi, K Sasaki, et al. Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl Phys Lett, 2016, 108(13): 133503

[11]

M Higashiwaki, K Sasaki, T Kamimura, et al. Depletion-mode Ga2O3 metal–oxide–semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl Phys Lett, 2013, 103(12): 123511

[12]

M Higashiwaki, K Sasaki, A Kuramata, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100(1): 013504

[13]

W S Hwang, A Verma, H Peelaers, et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl Phys Lett, 2014, 104(20): 203111

[14]

Z Hu, K Nomoto, W Li, et al. Enhancement-mode Ga2O3 vertical Transistors with breakdown voltage > 1 kV. IEEE Electron Device Lett, 2018, 39(6): 869

[15]

K D Chabak, J P McCandless, N A Moser, et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018, 39(1): 67

[16]

M. H. Wong, K. Sasaki, A. Kuramata, et al. Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V. IEEE Electron Device Lett, 2016, 37(2): 212-215

[17]

H Zhou, M Si, S Alghamdi, et al. High performance depletion/enhancement-mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett, 2017, 38(1): 103

[18]

Q He, W Mu, B Fu, et al. Schottky barrier rectifier based on (100) β-Ga2O3 and its DC and AC characteristics. IEEE Electron Device Lett, 2018, 39(4): 556

[19]

K Sasaki, D Wakimoto, Q T Thieu, et al. First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. IEEE Electron Device Lett, 2017, 38(6): 783

[20]

K Konishi, K Goto, H Murakami, et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 2017, 110(10): 103506

[21]

R Roy, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc, 1952, 74: 719

[22]

H H Tippins. Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys Rev, 1965, 140(1A): A316

[23]

T C Lovejoy, E N Yitamben, N. Shamir, et al. Surface morphology and electronic structure of bulk single crystal β-Ga2O3 (100). Appl Phys Lett, 2009, 94(8): 081906

[24]

M Mohamed, C Janowitz, I Unger, et al. The electronic structure of β-Ga2O3. Appl Phys Lett, 2010, 97(21): 211903

[25]

C Janowitz, V Scherer, M Mohamed, et al. Experimental electronic structure of In2O3 and Ga2O3. New J Phys, 2011, 13(8): 085014

[26]

O Ueda, N Ikenag, K Koshi, et al. Structural evaluation of defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth process. Jpn J Appl Phys, 2016, 55(12): 1202BD

[27]

F Mezzadri, G Calestani, F Boschi, et al. Crystal structure and ferroelectric properties of epsilon-Ga2O3 films grown on (0001)-sapphire. Inorg Chem, 2016, 55(22): 2079

[28]

X Xia, Y Chen, Q Feng, et al. Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition. Appl Phys Lett, 2016, 108(20): 202103

[29]

M Slomski, N Blumenschein, P P Paskov, et al. Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants. J Appl Phys, 2017, 121(23): 235104

[30]

K Hoshikawa, E Oh, T Kobayashi, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 2016, 447: 36

[31]

S Yoshioka, H Hayashi, A Kuwabara, et al. Structures and energetics of Ga2O3 polymorphs. J Phys-Condens Mat, 2007, 19(34): 346211

[32]

J Åhman, G Svensson, J Albertsson. A reinvestigation of beta-gallium oxide. Acta Crystallogr C, 1996, 52(6): 1336

[33]

A Janotti, C G Van de Walle. Oxygen vacancies in ZnO. Appl Phys Lett, 2005, 87(12): 122102

[34]

T Oshima, K Kaminaga, A Mukai, et al. Formation of semi-insulating layers on semiconducting β-Ga2O3 single crystals by thermal oxidation. Jpn J Appl Phys, 2013, 52(5R): 051101

[35]

J B Varley, J R Weber, A Janotti, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97(14): 142106

[36]

Z Hajnal, J Miró, G Kiss, et al. Role of oxygen vacancy defect states in then-type conduction of β-Ga2O3. J Appl Phys, 1999, 86(7): 3792

[37]

J G M Fleischer, H Meixner. H2-induced changes in electrical conductance of β-Ga2O3 thin-film systems. Appl Phys A, 1992, 54: 560

[38]

F B C K A F M F C Kohl. Decomposition of methane on polycrystalline thick films of Ga2O3 investigated by thermal desorption spectroscopy with a mass spectrometer. Fresenius J Ana Chem, 1997, 358: 187

[39]

M F T Schwebel, H Meixner, C D Kohl. CO-sensor for domestic use based on high temperature stable Ga2O3 thin films. Sens Actuators B Chem, 1998, 49: 46

[40]

K H M Ogita, Y Nakanishi, Y Hatanaka. Ga2O3 thin film for oxygen sensor at high temperature. Appl Surf Sci, 2001, 175: 721

[41]

Z Guo, A Verma, X Wu, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl Phys Lett, 2015, 106(11): 111909

[42]

M Handwerg, R Mitdank, Z Galazka, et al. Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals. Semicond Sci Tech, 2015, 30(2): 024006

[43]

M D Santia, N Tandon, J D Albrecht. Lattice thermal conductivity in β-Ga2O3 from first principles. Appl Phys Lett, 2015, 107(4): 041907

[44]

Wang H. Investigation of power semiconductor devices for high frequency high density power converters. Virgina Tech, 2007

[45]

Jessen G, Chabak K D, Green A, et al. Toward realization of Ga2O3 for power electronics applications. The 75th IEEE Device Research Conference (DRC), 2017

[46]

N Ma, N Tanen, A Verma, et al. Intrinsic electron mobility limits in β-Ga2O3. Appl Phys Lett, 2016, 109(21): 212101

[47]

T Oishi, Y Koga, K Harada, et al. High-mobility β-Ga2O3 (-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl Phys Express, 2015, 8(3): 031101

[48]

M Higashiwaki, A Kuramata, H Murakami, et al. State-of-the-art technologies of gallium oxide power devices. J Phys D Appl Phys, 2017, 50(33): 333002

[49]

C Tang, J Sun, N Lin, et al. Electronic structure and optical property of metal-doped Ga2O3: a first principles study. RSC Adv, 2016, 6(82): 78322

[50]

H Peelaers, C G Van de Walle. Brillouin zone and band structure of β-Ga2O3. Phys Status Solidi B, 2015, 252(4): 828

[51]

H von Wenckstern. Group-III sesquioxides: growth, physical properties and devices. Adv Electron Mater, 2017, 3(9): 1600350

[52]

K Sasaki, M Higashiwaki, A Kuramata, et al. MBE grown Ga2O3 and its power device applications. J Crys Growth, 2013, 378: 591

[53]

M H Wong, Y Morikawa, K Sasaki, et al. Characterization of channel temperature in Ga2O3 metal–oxide–semiconductor field-effect transistors by electrical measurements and thermal modeling. Appl Phys Lett, 2016, 109(19): 193503

[54]

Wong M H, Takeyama A, Makino T, et al. Radiation hardness of Ga2O3 MOSFETs against gamma-ray irradiation. IEEE Device Research Conference (DRC), 2017

[55]

A J Green, K D Chabak, E R Heller, et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 2016, 37(7): 902

[56]

M H Wong, Y Nakata, A Kuramata, et al. Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Appl Phys Express, 2017, 10: 041101

[57]

Wong M, Goto K, Kuramata A, et al. First demonstration of vertical Ga2O3 MOSFET planar structure with a current aperture. IEEE Device Research Conference (DRC), 2017

[58]

Song B, Verma A K, Nomoto K, et al. Vertical Fin Ga2O3 power field-effect transistors with on/off ratio >109. IEEE Device Research Conference (DRC), 2017

[59]

A J Green, K D Chabak, M Baldini, et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 2017, 38(6): 790

[60]

S Krishnamoorthy, Z Xia, S Bajaj, et al. Delta-doped β-gallium oxide field-effect transistor. Appl Phys Express, 2017, 10(5): 051102

[61]

Z Xia, C Joishi, S Krishnamoorthy, et al. Delta doped β-Ga2O3 field effect transistors with regrown ohmic contacts. IEEE Electron Device Lett, 2018, 39(4): 568

[62]

Hwang A V W S, Protasenko V, Rouvimov S, et al. Nanomembrane β-Ga2O3 high-voltage field effect transistors. IEEE Device Research Conference (DRC), 2013

[63]

S Ahn, F Ren, J Kim, et al. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors. Appl Phys Lett, 2016, 109(6): 062102

[64]

J Bae, H W Kim, I H Kang, et al. High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate. Appl Phys Lett, 2018, 112(12): 122102

[65]

H Zhou, K Maize, G Qiu, et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 2017, 111(9): 092102

[66]

H Zhou, S Alghamdi, S W Si, et al. Al2O3/β-Ga2O3 (-201) interface improvement through piranha pretreatment and postdeposition annealing. IEEE Electron Device Lett, 2016, 37(11): 1411

[67]

T Kamimura, D Krishnamurthy, A Kuramata, et al. Epitaxially grown crystalline Al2O3 interlayer on β-Ga2O3 (010) and its suppressed interface state density. Jpn J Appl Phys, 2016, 55(12): 1202B5

[68]

M Hattori, T Oshima, R Wakabayashi, et al. Epitaxial growth and electric properties of γ-Al2O3 (110) films on β-Ga2O3 (010) substrates. Jpn J Appl Phys, 2016, 55(12): 1202B6

[69]

K Zeng, Y Jia, U Singisetti. Interface state density in atomic layer deposited SiO2/β-Ga2O3 MOSCAPs. IEEE Electron Device Lett, 2016, 37(7): 906

[70]

K Zeng, U Singisetti. Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations. Appl Phys Lett, 2017, 111(12): 122108

[71]

H Dong, W Mu, Y Hu, et al. C-V and J-V investigation of HfO2/Al2O3 bilayer dielectrics MOSCAPs on (100) β-Ga2O3. AIP Adv, 2018, 8(6): 065215

[72]

M A Bhuiyan, H Zhou, R Jiang, et al. Charge trapping in Al2O3/β-Ga2O3 based MOS capacitors. IEEE Electron Device Lett, 2018, 39(7): 1022

[73]

Y Yao, R F Davis, L M Porter. Investigation of different metals as ohmic contacts to β-Ga2O3: comparison and analysis of electrical behavior, morphology, and other physical properties. J Electron Mater, 2016, 46(4): 2053

[74]

N A Moser, J P McCandless, A Crespo, et al. High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl Phys Lett, 2017, 110(14): 143505

[75]

K Sasaki, Q T Thieu, D Wakimoto, et al. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy. Appl Phys Express, 2017, 10(12): 124201.

[76]

K Zeng, J S Wallace, C Heimburger, et al. Ga2O3 MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett, 2017, 38(4): 513-516

[1]

Tongchuan Ma, Xuanhu Chen, Fangfang Ren, Shunming Zhu, Shulin Gu, Rong Zhang, Youdou Zheng, Jiandong Ye. Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique. J. Semicond., 2019, 40(1): 012804. doi: 10.1088/1674-4926/40/1/012804

[2]

Meng Gong, Yanan Chen, Wancheng Yu, Peng Jin, Zhanguo Wang, Zhimin Wang, Shenjin Zhang, Feng Yang, Fengfeng Zhang, Qinjun Peng, Zuyan Xu. The effect of oxygen on the epitaxial growth of diamond. J. Semicond., 2018, 39(12): 123004. doi: 10.1088/1674-4926/39/12/123004

[3]

Runhua Huang, Yonghong Tao, Ling Wang, Gang Chen, Song Bai, Rui Li, Zhifei Zhao. Development of 17 kV 4H-SiC PiN diode. J. Semicond., 2016, 37(8): 084001. doi: 10.1088/1674-4926/37/8/084001

[4]

Wang Xiaoliang, Hu Guoxin, Ma Zhiyong, Xiao Hongling, Wang Cuimei, Luo Weijun, Liu Xinyu, Chen Xiaojuan, Li Jianping, Li Jinmin, Qian He, Wang Zhanguo. MOCVD-Grown AlGaN/AlN/GaN HEMT Structure with High Mobility GaN Thin Layer as Channel on SiC. J. Semicond., 2006, 27(9): 1521.

[5]

Wang Xiaoliang, Wang Cuimei, Hu Guoxin, Ma Zhiyong, Xiao Hongling, Ran Junxue, Luo Weijun, Tang Jian, Li Jianping, Li Jinmin, Wang Zhanguo. High Quality AIGaN/GaN HEMT Materials Grown on SiC Substrates. J. Semicond., 2007, 28(S1): 402.

[6]

Xutang Tao, Jiandong Ye, Shibing Long, Zhitai Jia. Preface to the Special Issue on Ultra-Wide Bandgap Semiconductor Gallium Oxide: from Materials to Devices. J. Semicond., 2019, 40(1): 010101. doi: 10.1088/1674-4926/40/1/010101

[7]

Xiangqian Xiu, Liying Zhang, Yuewen Li, Zening Xiong, Rong Zhang, Youdou Zheng. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3. J. Semicond., 2019, 40(1): 011805. doi: 10.1088/1674-4926/40/1/011805

[8]

Bo Fu, Zhitai Jia, Wenxiang Mu, Yanru Yin, Jian Zhang, Xutang Tao. A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism. J. Semicond., 2019, 40(1): 011804. doi: 10.1088/1674-4926/40/1/011804

[9]

Yuanjie Lü, Xubo Song, Zezhao He, Yuangang Wang, Xin Tan, Shixiong Liang, Cui Wei, Xingye Zhou, Zhihong Feng. Source-field-plated Ga2O3 MOSFET with a breakdown voltage of 550 V. J. Semicond., 2019, 40(1): 012803. doi: 10.1088/1674-4926/40/1/012803

[10]

Huihui Zhuang, Jinliang Yan, Chengyang Xu, Delan Meng. Effect of Ga2O3 buffer layer thickness on the properties of Cu/ITO thin films deposited on flexible substrates. J. Semicond., 2014, 35(5): 053001. doi: 10.1088/1674-4926/35/5/053001

[11]

Chengyang Xu, Jinliang Yan, Chao Li, Huihui Zhuang. The effect of the multi-period on the properties of deep-ultraviolet transparent conductive Ga2O3/ITO alternating multilayer films. J. Semicond., 2013, 34(10): 103004. doi: 10.1088/1674-4926/34/10/103004

[12]

, , , , , , , , , . . J. Semicond., 2005, 26(6): 1116.

[13]

, , , , , , , , , , . . J. Semicond., 2005, 26(10): 1865.

[14]

H. F. Mohamed, Changtai Xia, Qinglin Sai, Huiyuan Cui, Mingyan Pan, Hongji Qi. Growth and fundamentals of bulk β-Ga2O3 single crystals. J. Semicond., 2019, 40(1): 011801. doi: 10.1088/1674-4926/40/1/011801

[15]

Sah Chih-Tang, Jie Binbin. The Bipolar Theory of the Field-Effect Transistor:X.The Fundamental Physics and Theory(All Device Structures). J. Semicond., 2008, 29(4): 613.

[16]

Pranav Kumar Asthana, Yogesh Goswami, Bahniman Ghosh. A novel sub 20 nm single gate tunnel field effect transistor with intrinsic channel forultra low power applications. J. Semicond., 2016, 37(5): 054002. doi: 10.1088/1674-4926/37/5/054002

[17]

Pranav Kumar Asthana. High performance 20 nm GaSb/InAs junctionless tunnel field effect transistor for low power supply. J. Semicond., 2015, 36(2): 024003. doi: 10.1088/1674-4926/36/2/024003

[18]

Jianfeng Fan, Xiaoman Cheng, Xiao Bai, Lingcheng Zheng, Jing Jiang, Feng Wu. Performance enhancement of pentacene-based organic field-effect transistor by inserting a WO3 buffer layer. J. Semicond., 2014, 35(6): 064004. doi: 10.1088/1674-4926/35/6/064004

[19]

Zizeng Lin, Mingmin Cao, Shengkai Wang, Qi Li, Gongli Xiao, Xi Gao, Honggang Liu, Haiou Li. The effect of nitridation and sulfur passivation for In0.53Ga0.47As surfaces on their Al/Al2O3/InGaAs MOS capacitors properties. J. Semicond., 2016, 37(2): 026002. doi: 10.1088/1674-4926/37/2/026002

[20]

Huifang Xu, Yuehua Dai, Ning Li, Jianbin Xu. A 2-D semi-analytical model of double-gate tunnel field-effect transistor. J. Semicond., 2015, 36(5): 054002. doi: 10.1088/1674-4926/36/5/054002

Search

Advanced Search >>

GET CITATION

H Dong, H W Xue, Q M He, Y Qin, G Z Jian, S B Long, M Liu, Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material[J]. J. Semicond., 2019, 40(1): 011802. doi: 10.1088/1674-4926/40/1/011802.

Export: BibTex EndNote

Article Metrics

Article views: 1157 Times PDF downloads: 219 Times Cited by: 0 Times

History

Manuscript received: 05 August 2018 Manuscript revised: 20 September 2018 Online: Accepted Manuscript: 20 December 2018 Uncorrected proof: 28 December 2018 Published: 07 January 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误