J. Semicond. > Volume 38 > Issue 1 > Article Number: 011005

Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells

Dongxue Liu and Yongsheng Liu ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Organic-inorganic hybrid perovskite solar cells have undergone especially intense research and transformation over the past seven years due to their enormous progress in conversion efficiencies. In this perspective, we review the latest developments of conventional perovskite solar cells with a main focus on dopant-free organic hole transporting materials (HTMs). Regarding the rapid progress of perovskite solar cells, stability of devices using dopant-free HTMs are also discussed to help readers understand the challenges and opportunities in high performance and stable perovskite solar cells .

Key words: hole transport materialsperovskitephotovoltaiccharger transportstability

Abstract: Organic-inorganic hybrid perovskite solar cells have undergone especially intense research and transformation over the past seven years due to their enormous progress in conversion efficiencies. In this perspective, we review the latest developments of conventional perovskite solar cells with a main focus on dopant-free organic hole transporting materials (HTMs). Regarding the rapid progress of perovskite solar cells, stability of devices using dopant-free HTMs are also discussed to help readers understand the challenges and opportunities in high performance and stable perovskite solar cells .

Key words: hole transport materialsperovskitephotovoltaiccharger transportstability



References:

[1]

Polman A, Knight M, Garnett E C. Photovoltaic materials:present efficiencies and future challenges[J]. Science, 2016, 352(6283): 307.

[2]

Zhou H P, Chen Q, Li G. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542. doi: 10.1126/science.1254050

[3]

Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234. doi: 10.1126/science.aaa9272

[4]

You J B, Meng L, Song T B. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nat Nanotechnol, 2016, 11: 75.

[5]

Jeon N J, Noh J H, Yang W S. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517: 476. doi: 10.1038/nature14133

[6]

Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nat Photonics, 2014, 8: 506. doi: 10.1038/nphoton.2014.134

[7]

Mei A Y, Li X, Liu L F. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194): 295. doi: 10.1126/science.1254763

[8]

Park N G. Perovskite solar cells:an emerging photovoltaic technology[J]. Mater Today, 2001, 5.

[9]

Liu M Z, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501: 395. doi: 10.1038/nature12509

[10]

Xing G C, Mathews N, Sun S Y. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344. doi: 10.1126/science.1243167

[11]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341. doi: 10.1126/science.1243982

[12]

Pazos-Outon L M, Szumilo M, Lamboll R. Photon recycling in lead iodide perovskite solar cells[J]. Science, 2016, 351(6280): 1430. doi: 10.1126/science.aaf1168

[13]

Gratzel M. The light and shade of perovskite solar cells[J]. Nat Mater, 2014, 13: 838. doi: 10.1038/nmat4065

[14]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050. doi: 10.1021/ja809598r

[15]

Research cell efficiency records, NREL, http://www.nrel.gov/ncpv/, accessed:July 2016

[16]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[17]

Burschka J, Pellet N, Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499: 316. doi: 10.1038/nature12340

[18]

Chen Q, Zhou H P, Hong Z R. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. J Am Chem Soc, 2014, 136(2): 622. doi: 10.1021/ja411509g

[19]

Hao F, Stoumpos C C, Liu Z. Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%[J]. J Am Chem Soc, 2014, 136(2): 16411.

[20]

Zhou H W, Shi Y T, Dong Q S. Hole-conductorfree, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode[J]. Chem Lett, 2014, 5: 3241.

[21]

Etgar L, Gao P, Xue Z S. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. J Am Chem Soc, 2012, 134(42): 17396. doi: 10.1021/ja307789s

[22]

Chen J Z, Rong Y G, Mei A Y. Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3-x)(BF4)(x)[J]. Adv Energy Mater, 2016, 6(5): 1502009. doi: 10.1002/aenm.201502009

[23]

Yu Z, Sun L C. Recent progress on hole-transporting materials for emerging organometal halide perovskite solar cells[J]. Adv Energy Mater, 2015, 5(12): 1500213. doi: 10.1002/aenm.201500213

[24]

Li M H, Yum J H, Moon S J. Inorganic p-type semiconductors:their applications and progress in dye-sensitized solar cells and perovskite solar cells[J]. Energies, 2016, 9(5): 331. doi: 10.3390/en9050331

[25]

Christians J A, Fung R C M, Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells improved hole conductivity with copper iodide[J]. J Am Chem Soc, 2014, 136(2): 758. doi: 10.1021/ja411014k

[26]

Qin P, Tanaka S, Ito S. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nat Commun, 2014, 5: 3834.

[27]

Lee B, Stoumpos C C, Zhou N J. Air-stable molecular semiconducting lodosalts for solar cell applications:Cs(2)Snl(6) as a hole conductor[J]. J Am Chem Soc, 2014, 136(43): 15379. doi: 10.1021/ja508464w

[28]

Li X, Bi D Q, Yi C Y. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353: 58. doi: 10.1126/science.aaf8060

[29]

Burschka J, Dualeh A, Kessler F. Tris (2-(1H-pyrazol-1-yl) pyridine) cobalt (III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dyesensitized solar cells[J]. J Am Chem Soc, 2011, 133(45): 18042. doi: 10.1021/ja207367t

[30]

Leijtens T, Ding I K, Giovenzana T. Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells[J]. ACS Nano, 2012, 6: 1455. doi: 10.1021/nn204296b

[31]

Abate A, Leijtens T, Pathak S. Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells[J]. Phys Chem Chem Phys, 2013, 15: 2572. doi: 10.1039/c2cp44397j

[32]

Liu J, Wu Y Z, Qin C J. A dopant-free hole-transporting material for efficient and stable perovskite solar cells[J]. Energ Environ Sci, 2014, 7: 2963. doi: 10.1039/C4EE01589D

[33]

Leijtens T, Eperon G E, Noel N K. Stability of metal halide perovskite solar cells[J]. Adv Energy Mater, 2015, 5(20): 1500963. doi: 10.1002/aenm.201500963

[34]

Tiep N H, Ku Z L, Fan H J. Recent advances in improving the stability of perovskite solar cells[J]. Adv Energy Mater, 2016, 6(3): 1501420. doi: 10.1002/aenm.201501420

[35]

Kwon Y S, Lim J, Yun H J. Diketopyrrolopyrrolecontaining hole transporting conjugated polymer for use in efficient stable organic-inorganic hybrid solar cells based on a perovskite[J]. Energy Environ Sci, 2014, 7: 1454. doi: 10.1039/c3ee44174a

[36]

Ryu S, Noh J H, Jeon N J. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor[J]. Energy Environ Sci, 2014, 7: 2614. doi: 10.1039/C4EE00762J

[37]

Heo J H, Im S H, Noh J H. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nat Photonics, 2013, 7: 487.

[38]

Conings B, Baeten L, Dobbelaere C D. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach[J]. Adv Mater, 2014, 26(13): 2041. doi: 10.1002/adma.201304803

[39]

Cai B, Xing Y D, Yang Z. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energ Environ Sci, 2013, 6: 1480. doi: 10.1039/c3ee40343b

[40]

Marin-Beloqui J M, Hernandez J P, Palomares E. Photo-induced charge recombination kinetics in MAPbI(3-x)Cl(x) perovskitelike solar cells using low band-gap polymers as hole conductors[J]. Chem Commun, 2014, 50: 14566. doi: 10.1039/C4CC06338D

[41]

Dubey A, Adhikari N, Venkatesan S. Solution processed pristine PDPP3T polymer as hole transport layer for efficient perovskite solar cells with slower degradation[J]. Sol Energy Mat Sol C, 2016, 145(3): 193.

[42]

Kim G W, Kang G, Kim J. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells[J]. Energy Environ Sci, 2016, 9: 2326. doi: 10.1039/C6EE00709K

[43]

Liao H C, Tam T L D, Guo P J. Dopant-free hole transporting polymers for high efficiency, environmentally stable perovskite solar cells[J]. Adv Energy Mater, 2016, 6: 1600502. doi: 10.1002/aenm.201600502

[44]

Kumar C V, Sfyri G, Raptis D. Perovskite solar cell with low cost Cu-phthalocyanine as hole transporting material[J]. Rsc Adv, 2015, 5: 3786. doi: 10.1039/C4RA14321C

[45]

Ishii A, Miyasaka T. A metallocene molecular complex as visible-light absorber for high-voltage organic-inorganic hybrid photovoltaic cells. Chem Phys Chem, 2014, 15(6):1028

[46]

Wang Y K, Yuan Z C, Shi G Z. Dopant-free spirotriphenylamine/fluorene as hole-transporting material for perovskite solar cells with enhanced efficiency and stability[J]. Adv Funct Mater, 2016, 26(9): 1375. doi: 10.1002/adfm.v26.9

[47]

Qin P, Paek S, Dar M I. Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material[J]. J Am Chem Soc, 2014, 136(24): 8516. doi: 10.1021/ja503272q

[48]

Ishii A, Jena A K, Miyasaka T. Fully crystalline perovskiteperylene hybrid photovoltaic cell capable of 1.2 V output with a minimized voltage loss[J]. Appl Mater, 2014, 2: 091102. doi: 10.1063/1.4895039

[49]

Kazim S, Ramos F J, Gao P. A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells[J]. Energy Environ Sci, 2015, 8: 1816. doi: 10.1039/C5EE00599J

[50]

Gong G F, Zhao N, Ni D B. Dopant-free 3, 3'-bithiophene derivatives as hole transport materials for perovskite solar cells[J]. J Mater Chem A, 2016, 4: 3661. doi: 10.1039/C6TA00032K

[51]

Qin P, Kast H, Nazeeruddin M K. Low band gap S, Nheteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells[J]. Energy Environ Sci, 2014, 7: 2981. doi: 10.1039/C4EE01220H

[52]

Steck C, Franckevicius M, Zakeeruddin S M. A-D-A-type S, N-heteropentacene-based hole transport materials for dopantfree perovskite solar cells[J]. J Mater Chem A, 2015, 3: 17738. doi: 10.1039/C5TA03865K

[53]

Cheng M, Chen C, Yang X C. Novel small molecular materials based on phenoxazine core unit for efficient bulk heterojunction organic solar cells and perovskite solar cells[J]. Chem Mater, 2015, 27: 1808. doi: 10.1021/acs.chemmater.5b00001

[54]

Cheng M, Xu B, Chen C. Phenoxazine-based small molecule material for efficient perovskite solar cells and bulk heterojunction organic solar cells[J]. Adv Energy Mater, 2015, 5(8): 1401720. doi: 10.1002/aenm.201401720

[55]

Kulkami A P, Zhu Y, Babel A. New ambipolar organic semiconductors. 2. Effects of electron acceptor strength on intramolecular charge transfer photophysics, highly efficient electroluminescence, and field-effect charge transport of phenoxazine-based donor-acceptor materials[J]. Chem Mater, 2008, 20(13): 4212. doi: 10.1021/cm7022136

[56]

Lee J, Shizu K, Tanaka H. Oxadiazole-and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes[J]. J Mater Chem C, 2013, 1: 4599.

[57]

Zheng L L, Chung Y H, Ma Y Z. A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability[J]. Chem Commun, 2014, 50: 11196. doi: 10.1039/C4CC04680C

[58]

Liu Y S, Chen Q, Duan H S. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells[J]. J Mater Chem A, 2015, 3: 11940. doi: 10.1039/C5TA02502H

[59]

Liu Y S, Hong Z R, Chen Q. Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels[J]. Adv Mater, 2016, 28(3): 440. doi: 10.1002/adma.v28.3

[1]

Polman A, Knight M, Garnett E C. Photovoltaic materials:present efficiencies and future challenges[J]. Science, 2016, 352(6283): 307.

[2]

Zhou H P, Chen Q, Li G. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542. doi: 10.1126/science.1254050

[3]

Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234. doi: 10.1126/science.aaa9272

[4]

You J B, Meng L, Song T B. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nat Nanotechnol, 2016, 11: 75.

[5]

Jeon N J, Noh J H, Yang W S. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517: 476. doi: 10.1038/nature14133

[6]

Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nat Photonics, 2014, 8: 506. doi: 10.1038/nphoton.2014.134

[7]

Mei A Y, Li X, Liu L F. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194): 295. doi: 10.1126/science.1254763

[8]

Park N G. Perovskite solar cells:an emerging photovoltaic technology[J]. Mater Today, 2001, 5.

[9]

Liu M Z, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501: 395. doi: 10.1038/nature12509

[10]

Xing G C, Mathews N, Sun S Y. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344. doi: 10.1126/science.1243167

[11]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341. doi: 10.1126/science.1243982

[12]

Pazos-Outon L M, Szumilo M, Lamboll R. Photon recycling in lead iodide perovskite solar cells[J]. Science, 2016, 351(6280): 1430. doi: 10.1126/science.aaf1168

[13]

Gratzel M. The light and shade of perovskite solar cells[J]. Nat Mater, 2014, 13: 838. doi: 10.1038/nmat4065

[14]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050. doi: 10.1021/ja809598r

[15]

Research cell efficiency records, NREL, http://www.nrel.gov/ncpv/, accessed:July 2016

[16]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[17]

Burschka J, Pellet N, Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499: 316. doi: 10.1038/nature12340

[18]

Chen Q, Zhou H P, Hong Z R. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. J Am Chem Soc, 2014, 136(2): 622. doi: 10.1021/ja411509g

[19]

Hao F, Stoumpos C C, Liu Z. Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%[J]. J Am Chem Soc, 2014, 136(2): 16411.

[20]

Zhou H W, Shi Y T, Dong Q S. Hole-conductorfree, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode[J]. Chem Lett, 2014, 5: 3241.

[21]

Etgar L, Gao P, Xue Z S. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. J Am Chem Soc, 2012, 134(42): 17396. doi: 10.1021/ja307789s

[22]

Chen J Z, Rong Y G, Mei A Y. Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3-x)(BF4)(x)[J]. Adv Energy Mater, 2016, 6(5): 1502009. doi: 10.1002/aenm.201502009

[23]

Yu Z, Sun L C. Recent progress on hole-transporting materials for emerging organometal halide perovskite solar cells[J]. Adv Energy Mater, 2015, 5(12): 1500213. doi: 10.1002/aenm.201500213

[24]

Li M H, Yum J H, Moon S J. Inorganic p-type semiconductors:their applications and progress in dye-sensitized solar cells and perovskite solar cells[J]. Energies, 2016, 9(5): 331. doi: 10.3390/en9050331

[25]

Christians J A, Fung R C M, Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells improved hole conductivity with copper iodide[J]. J Am Chem Soc, 2014, 136(2): 758. doi: 10.1021/ja411014k

[26]

Qin P, Tanaka S, Ito S. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nat Commun, 2014, 5: 3834.

[27]

Lee B, Stoumpos C C, Zhou N J. Air-stable molecular semiconducting lodosalts for solar cell applications:Cs(2)Snl(6) as a hole conductor[J]. J Am Chem Soc, 2014, 136(43): 15379. doi: 10.1021/ja508464w

[28]

Li X, Bi D Q, Yi C Y. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353: 58. doi: 10.1126/science.aaf8060

[29]

Burschka J, Dualeh A, Kessler F. Tris (2-(1H-pyrazol-1-yl) pyridine) cobalt (III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dyesensitized solar cells[J]. J Am Chem Soc, 2011, 133(45): 18042. doi: 10.1021/ja207367t

[30]

Leijtens T, Ding I K, Giovenzana T. Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells[J]. ACS Nano, 2012, 6: 1455. doi: 10.1021/nn204296b

[31]

Abate A, Leijtens T, Pathak S. Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells[J]. Phys Chem Chem Phys, 2013, 15: 2572. doi: 10.1039/c2cp44397j

[32]

Liu J, Wu Y Z, Qin C J. A dopant-free hole-transporting material for efficient and stable perovskite solar cells[J]. Energ Environ Sci, 2014, 7: 2963. doi: 10.1039/C4EE01589D

[33]

Leijtens T, Eperon G E, Noel N K. Stability of metal halide perovskite solar cells[J]. Adv Energy Mater, 2015, 5(20): 1500963. doi: 10.1002/aenm.201500963

[34]

Tiep N H, Ku Z L, Fan H J. Recent advances in improving the stability of perovskite solar cells[J]. Adv Energy Mater, 2016, 6(3): 1501420. doi: 10.1002/aenm.201501420

[35]

Kwon Y S, Lim J, Yun H J. Diketopyrrolopyrrolecontaining hole transporting conjugated polymer for use in efficient stable organic-inorganic hybrid solar cells based on a perovskite[J]. Energy Environ Sci, 2014, 7: 1454. doi: 10.1039/c3ee44174a

[36]

Ryu S, Noh J H, Jeon N J. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor[J]. Energy Environ Sci, 2014, 7: 2614. doi: 10.1039/C4EE00762J

[37]

Heo J H, Im S H, Noh J H. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nat Photonics, 2013, 7: 487.

[38]

Conings B, Baeten L, Dobbelaere C D. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach[J]. Adv Mater, 2014, 26(13): 2041. doi: 10.1002/adma.201304803

[39]

Cai B, Xing Y D, Yang Z. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energ Environ Sci, 2013, 6: 1480. doi: 10.1039/c3ee40343b

[40]

Marin-Beloqui J M, Hernandez J P, Palomares E. Photo-induced charge recombination kinetics in MAPbI(3-x)Cl(x) perovskitelike solar cells using low band-gap polymers as hole conductors[J]. Chem Commun, 2014, 50: 14566. doi: 10.1039/C4CC06338D

[41]

Dubey A, Adhikari N, Venkatesan S. Solution processed pristine PDPP3T polymer as hole transport layer for efficient perovskite solar cells with slower degradation[J]. Sol Energy Mat Sol C, 2016, 145(3): 193.

[42]

Kim G W, Kang G, Kim J. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells[J]. Energy Environ Sci, 2016, 9: 2326. doi: 10.1039/C6EE00709K

[43]

Liao H C, Tam T L D, Guo P J. Dopant-free hole transporting polymers for high efficiency, environmentally stable perovskite solar cells[J]. Adv Energy Mater, 2016, 6: 1600502. doi: 10.1002/aenm.201600502

[44]

Kumar C V, Sfyri G, Raptis D. Perovskite solar cell with low cost Cu-phthalocyanine as hole transporting material[J]. Rsc Adv, 2015, 5: 3786. doi: 10.1039/C4RA14321C

[45]

Ishii A, Miyasaka T. A metallocene molecular complex as visible-light absorber for high-voltage organic-inorganic hybrid photovoltaic cells. Chem Phys Chem, 2014, 15(6):1028

[46]

Wang Y K, Yuan Z C, Shi G Z. Dopant-free spirotriphenylamine/fluorene as hole-transporting material for perovskite solar cells with enhanced efficiency and stability[J]. Adv Funct Mater, 2016, 26(9): 1375. doi: 10.1002/adfm.v26.9

[47]

Qin P, Paek S, Dar M I. Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material[J]. J Am Chem Soc, 2014, 136(24): 8516. doi: 10.1021/ja503272q

[48]

Ishii A, Jena A K, Miyasaka T. Fully crystalline perovskiteperylene hybrid photovoltaic cell capable of 1.2 V output with a minimized voltage loss[J]. Appl Mater, 2014, 2: 091102. doi: 10.1063/1.4895039

[49]

Kazim S, Ramos F J, Gao P. A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells[J]. Energy Environ Sci, 2015, 8: 1816. doi: 10.1039/C5EE00599J

[50]

Gong G F, Zhao N, Ni D B. Dopant-free 3, 3'-bithiophene derivatives as hole transport materials for perovskite solar cells[J]. J Mater Chem A, 2016, 4: 3661. doi: 10.1039/C6TA00032K

[51]

Qin P, Kast H, Nazeeruddin M K. Low band gap S, Nheteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells[J]. Energy Environ Sci, 2014, 7: 2981. doi: 10.1039/C4EE01220H

[52]

Steck C, Franckevicius M, Zakeeruddin S M. A-D-A-type S, N-heteropentacene-based hole transport materials for dopantfree perovskite solar cells[J]. J Mater Chem A, 2015, 3: 17738. doi: 10.1039/C5TA03865K

[53]

Cheng M, Chen C, Yang X C. Novel small molecular materials based on phenoxazine core unit for efficient bulk heterojunction organic solar cells and perovskite solar cells[J]. Chem Mater, 2015, 27: 1808. doi: 10.1021/acs.chemmater.5b00001

[54]

Cheng M, Xu B, Chen C. Phenoxazine-based small molecule material for efficient perovskite solar cells and bulk heterojunction organic solar cells[J]. Adv Energy Mater, 2015, 5(8): 1401720. doi: 10.1002/aenm.201401720

[55]

Kulkami A P, Zhu Y, Babel A. New ambipolar organic semiconductors. 2. Effects of electron acceptor strength on intramolecular charge transfer photophysics, highly efficient electroluminescence, and field-effect charge transport of phenoxazine-based donor-acceptor materials[J]. Chem Mater, 2008, 20(13): 4212. doi: 10.1021/cm7022136

[56]

Lee J, Shizu K, Tanaka H. Oxadiazole-and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes[J]. J Mater Chem C, 2013, 1: 4599.

[57]

Zheng L L, Chung Y H, Ma Y Z. A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability[J]. Chem Commun, 2014, 50: 11196. doi: 10.1039/C4CC04680C

[58]

Liu Y S, Chen Q, Duan H S. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells[J]. J Mater Chem A, 2015, 3: 11940. doi: 10.1039/C5TA02502H

[59]

Liu Y S, Hong Z R, Chen Q. Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels[J]. Adv Mater, 2016, 28(3): 440. doi: 10.1002/adma.v28.3

[1]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[2]

Peng Lu, Dongke Li, Yunqing Cao, Jun Xu, Kunji Chen. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications. J. Semicond., 2018, 39(6): 061007. doi: 10.1088/1674-4926/39/6/061007

[3]

Guanhaojie Zheng, Liang Li, Ligang Wang, Xingyu Gao, Huanping Zhou. The investigation of an amidine-based additive in the perovskite films and solar cells. J. Semicond., 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001

[4]

Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002

[5]

Wang Yikai, Wang Yi, Gong Wenchao, He Lenian. High Stability LDO with Large Output Current. J. Semicond., 2007, 28(7): 1149.

[6]

Kunpeng Jia, Jie Yang, Yajuan Su, Pengfei Nie, Jian Zhong, Qingqing Liang, Huilong Zhu. Stability analysis of a back-gate graphene transistor in air environment. J. Semicond., 2013, 34(8): 084004. doi: 10.1088/1674-4926/34/8/084004

[7]

Yan Senlin. Bifurcation and Dynamic Stability of a Light-InjectionMQW Semiconductor Laser. J. Semicond., 2006, 27(5): 910.

[8]

Wang Han, Ye Qing. Design and Stability Analysis of a 0.6V Supply CMOS Voltage Reference. J. Semicond., 2006, 27(8): 1508.

[9]

Caihong Yao, Chenwei Wang, Xinhuan Niu, Yan Wang, Shengjun Tian, Zichao Jiang, Yuling Liu. The stability of a novel weakly alkaline slurry of copper interconnection CMP for GLSI. J. Semicond., 2018, 39(2): 026002. doi: 10.1088/1674-4926/39/2/026002

[10]

Guodong Chen, Yuling Liu, Chenwei Wang, Weijuan Liu, Mengting Jiang, Haobo Yuan. Stability for a novel low-pH alkaline slurry during the copper chemical mechanical planarization. J. Semicond., 2014, 35(8): 086001. doi: 10.1088/1674-4926/35/8/086001

[11]

Chen Haiyang, Yin Jianhua, Li Darang. Electrode pattern design for GaAs betavoltaic batteries. J. Semicond., 2011, 32(8): 084006. doi: 10.1088/1674-4926/32/8/084006

[12]

He Linxiang, Peng Gang, Yang Weiming, Zheng Chaodan, Yu Jun, Wang Yunbo. Preparation and Phase Analysis of PZT Ceramic Targets. J. Semicond., 2007, 28(5): 711.

[13]

Yan Gao, Liyun Zhao, Qiuyu Shang, Chun Li, Zhen Liu, Qi Li, Xina Wang, Qing Zhang. Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate. J. Semicond., 2019, 40(5): 052201. doi: 10.1088/1674-4926/40/5/052201

[14]

Ye Qiang, Liu Jie, Yuan Bing, Lai Xinquan, Liu Ning. On-chip frequency compensation with a dual signal path operational transconductance amplifier for a voltage mode control DC/DC converter. J. Semicond., 2012, 33(4): 045006. doi: 10.1088/1674-4926/33/4/045006

[15]

Wang Yongshun, Liu Chunjuan, Gu Shengjie, Zhang Caizhen. Ohmic contact behaviour of Co/C/4H-SiC structures. J. Semicond., 2011, 32(4): 044003. doi: 10.1088/1674-4926/32/4/044003

[16]

Chen Lei, Zhao Yuanfu, Gao Deyuan, Wen Wu, Wang Zongmin, Zhu Xiaofei. A 16 bit Stereo Audio ΣΔ A/D Converter. J. Semicond., 2006, 27(7): 1183.

[17]

P. Paradeo. Magnetic polarization of a Mn-doped semiconductor nanostructure controlled by an external bias. J. Semicond., 2015, 36(7): 073002. doi: 10.1088/1674-4926/36/7/073002

[18]

Chen Yanhu, Shen Huajun, Wang Xiantai, Ge Ji, Li Bin, Liu Xinyu, Wu Dexin. GaAs HBT Microwave Power Transistor with On-Chip Stabilization Network. J. Semicond., 2006, 27(12): 2075.

[19]

Dong Wang, Yue Chang, Shuping Pang, Guanglei Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature. J. Semicond., 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002

[20]

Yong Chen, Yang Zhao, Qiufeng Ye, Zema Chu, Zhigang Yin, Xingwang Zhang, Jingbi You. Improved efficiency and photo-stability of methylamine-free perovskite solar cells via cadmium doping. J. Semicond., 2019, 40(10): 000000.

Search

Advanced Search >>

GET CITATION

D X Liu, Y S Liu. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells[J]. J. Semicond., 2017, 38(1): 011005. doi: 10.1088/1674-4926/38/1/011005.

Export: BibTex EndNote

Article Metrics

Article views: 3254 Times PDF downloads: 57 Times Cited by: 0 Times

History

Manuscript received: 23 August 2016 Manuscript revised: 14 October 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误