SEMICONDUCTOR DEVICES

Static performance model of GaN MESFET based on the interface state

Xiaohong Li, Ruirong Wang and Tong Chen

+ Author Affiliations

 Corresponding author: Xiaohong Li, 1390052812@qq.com

PDF

Turn off MathJax

Abstract: This paper presents a new model to study the static performances of a GaN metal epitaxial-semiconductor field effect transistor (MESFET) based on the metal–semiconductor interface state of the Schottky junction. The I–V performances of MESFET under different channel lengths and different operating systems (pinch-off or not) have been achieved by our model, which strictly depended on the electrical parameters, such as the drain-gate capacity Cgd, the source–gate capacity Cgs, the transconductance, and the conductance. To determine the accuracy of our model, root-mean-square (RMS) errors were calculated. In the experiment, the experimental data agree with our model. Also, the minimum value of the electrical parameter has been calculated to get the maximum cut-off frequency for the GaN MESFET.

Key words: GaN MESFETstatic performance modelinterface states



[1]
Gačević Ž, LópezRomero D, Mangas T J, et al. A top-gate GaN nanowire metal–semiconductor field effect transistor with improved channel electrostatic control. Appl Phys Lett, 2016, 108(3): 310
[2]
Atalla M R M, Elahi A M N, Mo C, et al. On the design of GaN vertical MESFETs on commercial LED sapphire wafers. Solid-State Electron, 2016, 126: 23 doi: 10.1016/j.sse.2016.09.019
[3]
Li J, Guo H, Liu J, et al. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications. Nanoscale Res Lett, 2013, 8: 218 doi: 10.1186/1556-276X-8-218
[4]
Ciarlet P G, Ciarlet P, Sauter S A, et al. Intrinsic finite element methods for the computation of fluxes for Poisson’s equation. Numerische Mathematik, 2016, 132(3): 433 doi: 10.1007/s00211-015-0730-9
[5]
Shin D, Lee Y, Sasaki M, et al. Violation of Ohm’s law in a Weyl metal. Nat Mater, 2017, 16: 1096 doi: 10.1038/nmat4965
[6]
Biswal S M, Baral B, De D, et al. Study of effect of gate-length downscaling on the analog/RF performance and linearity investigation of InAs-based nanowire Tunnel FET. Superlattices Microstruct, 2016, 91: 319 doi: 10.1016/j.spmi.2016.01.021
[7]
Adams J A, Thayne I G, Beaumont S P, et al. Carrier transit delays in nanometer-scale GaAs MESFETs. IEEE Electron Device Lett, 1993, 14: 85 doi: 10.1109/55.215121
[8]
Mckee R A, Walker F J, Nardelli M B, et al. The interface phase and the Schottky barrier for a crystalline dielectric on silicon. Science, 2003, 300(5626): 1726 doi: 10.1126/science.1083894
[9]
Anugrah Y, Robbins M C, Crowell P A, et al. Determination of the Schottky barrier height of ferromagnetic contacts to few-layer phosphorene. Appl Phys Lett, 2015, 106(10): 372
[10]
Memon N M, Ahmed M M, Rehman F. A comprehensive four parameters I–V model for GaAs MESFET output performances. Solid-State Electron, 2007, 51: 511 doi: 10.1016/j.sse.2006.12.011
[11]
Li D, Cheng R, Zhou H, et al. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nat Commun, 2015, 6: 7509 doi: 10.1038/ncomms8509
[12]
Rodilla H, Schleeh J, Nilsson P A, et al. Cryogenic performance of low-noise InP HEMTs: a Monte Carlo study. IEEE Trans Electron Devices, 2013, 60(5): 1625 doi: 10.1109/TED.2013.2253469
[13]
Azizi M, Azizi C, Zaabat M. Effect of the electric field on the carrier mobility for GaAs MESFET’s with submicron gate. J Electron Devices, 2015, 22: 1880
[14]
Islam M S, Zaman M M. A seven parameter nonlinear I–V performances model for sub-μm range GaN MESFET’s. Solid State Electron, 2004, 48: 1111 doi: 10.1016/j.sse.2004.01.007
Fig. 1.  (Color online) Energy bands in the presence of interface states (a) before contact with the metal and (b) after contact. EF shifts down relative to Ec at the interface and previously filled traps are emptied.

Fig. 2.  (Color online) Distribution of the depletion region in the linear regime.

Fig. 3.  (Color online) Distribution of the depletion region in the saturation regime.

Fig. 4.  (Color online) The experimental data and calculated results of I–V performances with our model and the Islam model. (Full line: proposed model. Dashed line: Islam’s model. Dot: experimental data).

Fig. 5.  (Color online) (a) Change in transconductance as a function of gate voltage for the MESFET. (b) Change in transconductance as a function of drain voltage for MESFET.

Fig. 6.  (Color online) Cut-off frequency for the MESFET. (a) The cut-off frequency of the variation with Vgs. (b) The transconductance on the cut-off frequency. (c) The gate-source capacitance on the cut-off frequency. (d) The gate-drain capacitance on the cut-off frequency.

Table 1.   Geometrical and technological parameters of the transistors MESFET.

L (μm) A (μm) Z (μm) Nd (m−3) μ0 (m2 /(V·s)) Vbi (V) Rs (Ω) Rd (Ω) Rp (Ω)
0.25 0.090 100 1.17 × 1023 0.386 0.45 2.3 2.3 1000
DownLoad: CSV

Table 2.   Average gap of the two models.

Model Calculated errors for different values of Vgs
Vgs = −3.3 V Vgs = −2.2 V Vgs = −1.1 V Vgs = 0.0 V Average gap
Islam’s Model 1.1033 0.1462 1.8865 1.0626 1.0497
The new Approach 1.0095 0.4424 0.8954 0.0465 0.5984
DownLoad: CSV
[1]
Gačević Ž, LópezRomero D, Mangas T J, et al. A top-gate GaN nanowire metal–semiconductor field effect transistor with improved channel electrostatic control. Appl Phys Lett, 2016, 108(3): 310
[2]
Atalla M R M, Elahi A M N, Mo C, et al. On the design of GaN vertical MESFETs on commercial LED sapphire wafers. Solid-State Electron, 2016, 126: 23 doi: 10.1016/j.sse.2016.09.019
[3]
Li J, Guo H, Liu J, et al. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications. Nanoscale Res Lett, 2013, 8: 218 doi: 10.1186/1556-276X-8-218
[4]
Ciarlet P G, Ciarlet P, Sauter S A, et al. Intrinsic finite element methods for the computation of fluxes for Poisson’s equation. Numerische Mathematik, 2016, 132(3): 433 doi: 10.1007/s00211-015-0730-9
[5]
Shin D, Lee Y, Sasaki M, et al. Violation of Ohm’s law in a Weyl metal. Nat Mater, 2017, 16: 1096 doi: 10.1038/nmat4965
[6]
Biswal S M, Baral B, De D, et al. Study of effect of gate-length downscaling on the analog/RF performance and linearity investigation of InAs-based nanowire Tunnel FET. Superlattices Microstruct, 2016, 91: 319 doi: 10.1016/j.spmi.2016.01.021
[7]
Adams J A, Thayne I G, Beaumont S P, et al. Carrier transit delays in nanometer-scale GaAs MESFETs. IEEE Electron Device Lett, 1993, 14: 85 doi: 10.1109/55.215121
[8]
Mckee R A, Walker F J, Nardelli M B, et al. The interface phase and the Schottky barrier for a crystalline dielectric on silicon. Science, 2003, 300(5626): 1726 doi: 10.1126/science.1083894
[9]
Anugrah Y, Robbins M C, Crowell P A, et al. Determination of the Schottky barrier height of ferromagnetic contacts to few-layer phosphorene. Appl Phys Lett, 2015, 106(10): 372
[10]
Memon N M, Ahmed M M, Rehman F. A comprehensive four parameters I–V model for GaAs MESFET output performances. Solid-State Electron, 2007, 51: 511 doi: 10.1016/j.sse.2006.12.011
[11]
Li D, Cheng R, Zhou H, et al. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nat Commun, 2015, 6: 7509 doi: 10.1038/ncomms8509
[12]
Rodilla H, Schleeh J, Nilsson P A, et al. Cryogenic performance of low-noise InP HEMTs: a Monte Carlo study. IEEE Trans Electron Devices, 2013, 60(5): 1625 doi: 10.1109/TED.2013.2253469
[13]
Azizi M, Azizi C, Zaabat M. Effect of the electric field on the carrier mobility for GaAs MESFET’s with submicron gate. J Electron Devices, 2015, 22: 1880
[14]
Islam M S, Zaman M M. A seven parameter nonlinear I–V performances model for sub-μm range GaN MESFET’s. Solid State Electron, 2004, 48: 1111 doi: 10.1016/j.sse.2004.01.007

18040002supp.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3535 Times PDF downloads: 32 Times Cited by: 0 Times

    History

    Received: 02 April 2018 Revised: 27 May 2018 Online: Uncorrected proof: 24 July 2018Corrected proof: 01 November 2018Published: 13 December 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaohong Li, Ruirong Wang, Tong Chen. Static performance model of GaN MESFET based on the interface state[J]. Journal of Semiconductors, 2018, 39(12): 124003. doi: 10.1088/1674-4926/39/12/124003 X H Li, R R Wang, T Chen, Static performance model of GaN MESFET based on the interface state[J]. J. Semicond., 2018, 39(12): 124003. doi: 10.1088/1674-4926/39/12/124003.Export: BibTex EndNote
      Citation:
      Xiaohong Li, Ruirong Wang, Tong Chen. Static performance model of GaN MESFET based on the interface state[J]. Journal of Semiconductors, 2018, 39(12): 124003. doi: 10.1088/1674-4926/39/12/124003

      X H Li, R R Wang, T Chen, Static performance model of GaN MESFET based on the interface state[J]. J. Semicond., 2018, 39(12): 124003. doi: 10.1088/1674-4926/39/12/124003.
      Export: BibTex EndNote

      Static performance model of GaN MESFET based on the interface state

      doi: 10.1088/1674-4926/39/12/124003
      Funds:

      Project supported by the Taiyuan Institute of Technology School Foundation.

      More Information
      • Corresponding author: 1390052812@qq.com
      • Received Date: 2018-04-02
      • Revised Date: 2018-05-27
      • Published Date: 2018-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return