REVIEWS

Typical strategies to facilitate charge transfer for enhanced oxygen evolution reaction: Case studies on hematite

Aizhen Liao1, , Huichao He3, , Yong Zhou2, 4, and Zhigang Zou2, 4

+ Author Affiliations

 Corresponding author: A. Z. Liao, Email: azliao@xiyou.edu.cn; H. C. He, Email: hehuichao@swust.edu.cn; Y. Zhou, Email: zhouyong1999@nju.edu.cn

PDF

Turn off MathJax

Abstract: Hydrogen can be sustainably produced through photoelectrochemical (PEC) water splitting. The process of PEC water splitting is composed of two vital half-reactions: water oxidation to O2 on photoanode, and proton reduction to H2 on photocathode. Both in thermodynamics and kinetics, the oxidation of water on photoanode is much more challenging, because the formation of O2 involves the four-holes reaction process that is more difficult than the two-protons reduction. Accordingly, the oxidation of water into O2 is the rate-determining reaction for PEC water splitting, which is closely affected by the light harvesting, charge separation and transfer, as well as surface activity of photoanode. In principle, water oxidation is initiated by the photo-excited charge of photoanode. In this review, we took hematite photoanode as a typical example to illustrate the progress in modifying the charge separation and migration property of metal-oxide photoanodes for water oxidation. The typical strategies adopted to facilitate the charge transfer and separation of hematite photoanode were specifically summarized. In addition, the views designing and developing hematite photoanode with high-performance for water oxidation were presented. This review provides comprehensive information about the state-of-the-art progress of hematite-based photoanodes and forecast the developing directions of photoanode materials for solar water splitting.

Key words: water splittinghematite photoanodecharge transfermodification strategy



[1]
Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev, 2019, 48, 2109 doi: 10.1039/C8CS00542G
[2]
Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414, 625 doi: 10.1038/414625a
[3]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37 doi: 10.1038/238037a0
[4]
Ma Y, Wang X L, Jia Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev, 2014, 114, 9987 doi: 10.1021/cr500008u
[5]
Wang S C, Chen P, Bai Y, et al. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv Mater, 2018, 30, 1800486 doi: 10.1002/adma.201800486
[6]
Wang W, Xu X M, Zhou W, et al. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv Sci, 2017, 4, 1600371 doi: 10.1002/advs.201600371
[7]
Tamirat A G, Rick J, Dubale A A, et al. Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horiz, 2016, 1, 243 doi: 10.1039/C5NH00098J
[8]
Tahir M, Pan L, Idrees F, et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136 doi: 10.1016/j.nanoen.2017.05.022
[9]
Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem, 2017, 1, 0003 doi: 10.1038/s41570-016-0003
[10]
Shen S H, Lindley S A, Chen X Y, et al. Hematite heterostructures for photoelectrochemical water splitting: Rational materials design and charge carrier dynamics. Energy Environ Sci, 2016, 9, 2744 doi: 10.1039/C6EE01845A
[11]
Carneiro L M, Cushing S K, Liu C, et al. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nat Mater, 2017, 16, 819 doi: 10.1038/nmat4936
[12]
Wang T, Luo W J, Wen X, et al. Nonequilibrium Ti4+ doping significantly enhances the performance of Fe2O3 photoanodes by quenching. ChemNanoMat, 2016, 2, 652 doi: 10.1002/cnma.201600108
[13]
Sivula K, Le Formal F, Grätzel M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem, 2011, 4, 432 doi: 10.1002/cssc.201000416
[14]
Wheeler D A, Wang G M, Ling Y C, et al. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ Sci, 2012, 5, 6682 doi: 10.1039/c2ee00001f
[15]
Pendlebury S R, Cowan A J, Barroso M, et al. Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ Sci, 2012, 5, 6304 doi: 10.1039/C1EE02567H
[16]
Barroso M, Pendlebury S R, Cowan A J, et al. Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem Sci, 2013, 4, 2724 doi: 10.1039/c3sc50496d
[17]
Bessegato G G, Guaraldo T T, Zanoni M V B, et al. Enhancement of photoelectrocatalysis efficiency by using nanostructured electrodes. Mod Electrochem Methods Nano, Surface Corros Sci, 2014, 11, 27 doi: 10.5772/58333
[18]
Tamirat A G, Su W N, Dubale A A, et al. Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) α-Fe2O3 photoanode. J Mater Chem A, 2015, 3, 5949 doi: 10.1039/C4TA06915C
[19]
Jia L C, Harbauer K, Bogdanoff P, et al. α-Fe2O3 films for photoelectrochemical water oxidation – insights of key performance parameters. J Mater Chem A, 2014, 2, 20196 doi: 10.1039/C4TA04720F
[20]
Wang G M, Ling Y C, Lu X H, et al. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale, 2013, 5, 4129 doi: 10.1039/c3nr00569k
[21]
Kim J Y, Magesh G, Youn D H, et al. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci Rep, 2013, 3, 2681 doi: 10.1038/srep02681
[22]
Bohn C D, Agrawal A K, Walter E C, et al. Effect of tin doping on α-Fe2O3 photoanodes for water splitting. J Phys Chem C, 2012, 116, 15290 doi: 10.1021/jp305221v
[23]
Klahr B, Gimenez S, Fabregat-Santiago F, et al. Water oxidation at hematite photoelectrodes: The role of surface states. J Am Chem Soc, 2012, 134, 4294 doi: 10.1021/ja210755h
[24]
Bjoerksten U, Moser J, Graetzel M. Photoelectrochemical studies on nanocrystalline hematite films. Chem Mater, 1994, 6, 858 doi: 10.1021/cm00042a026
[25]
Vura-Weis J, Jiang C M, Liu C, et al. Femtosecond M2, 3-edge spectroscopy of transition-metal oxides: Photoinduced oxidation state change in α-Fe2O3. J Phys Chem Lett, 2013, 4, 3667 doi: 10.1021/jz401997d
[26]
Joly A G, Williams J R, Chambers S A, et al. Carrier dynamics in α-Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity. J Appl Phys, 2006, 99, 053521 doi: 10.1063/1.2177426
[27]
Dare-Edwards M P, Goodenough J B, Hamnett A, et al. Electrochemistry and photoelectrochemistry of iron(III) oxide. J Chem Soc, Faraday Trans 1, 1983, 79, 2027 doi: 10.1039/f19837902027
[28]
Sivula K. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J Phys Chem Lett, 2013, 4, 1624 doi: 10.1021/jz4002983
[29]
Dotan H, Kfir O, Sharlin E, et al. Resonant light trapping in ultrathin films for water splitting. Nat Mater, 2013, 12, 158 doi: 10.1038/nmat3477
[30]
Li J T, Cushing S K, Zheng P, et al. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat Commun, 2013, 4, 2651 doi: 10.1038/ncomms3651
[31]
Wen X G, Wang S H, Ding Y, et al. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3Nanobelts and nanowires. J Phys Chem B, 2005, 109, 215 doi: 10.1021/jp0461448
[32]
Li C C, Li A, Luo Z B, et al. Inside back cover: Surviving high-temperature calcination: ZrO2 -induced hematite nanotubes for photoelectrochemical water oxidation. Angew Chem Int Ed, 2017, 56, 4361 doi: 10.1002/anie.201702266
[33]
Li M Y, Yang Y, Ling Y C, et al. Morphology and doping engineering of Sn-doped hematite nanowire photoanodes. Nano Lett, 2017, 17, 2490 doi: 10.1021/acs.nanolett.7b00184
[34]
Jia C J, Sun L D, Yan Z G, et al. Iron oxide tube-in-tube nanostructures. J Phys Chem C, 2007, 111, 13022 doi: 10.1021/jp073837q
[35]
Cvelbar U, Chen Z Q, Sunkara M K, et al. Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small, 2008, 4, 1610 doi: 10.1002/smll.200800278
[36]
Liao A Z, He H C, Tang L Q, et al. Quasi-topotactic transformation of FeOOH nanorods to robust Fe2O3 porous nanopillars triggered with a facile rapid dehydration strategy for efficient photoelectrochemical water splitting. ACS Appl Mater Interfaces, 2018, 10, 10141 doi: 10.1021/acsami.8b00367
[37]
Chen J S, Lou X W. Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction. Electrochem Commun, 2009, 11, 2332 doi: 10.1016/j.elecom.2009.10.024
[38]
Hoang S, Berglund S P, Fullon R R, et al. Chemical bath deposition of vertically aligned TiO2 nanoplatelet arrays for solar energy conversion applications. J Mater Chem A, 2013, 1, 4307 doi: 10.1039/c3ta01384g
[39]
Wang L, Lee C Y, Mazare A, et al. Enhancing the water splitting efficiency of Sn-doped hematite nanoflakes by flame annealing. Chem Eur J, 2014, 20, 77 doi: 10.1002/chem.201303427
[40]
Ji M, Cai J G, Ma Y R, et al. Controlled growth of ferrihydrite branched nanosheet arrays and their transformation to hematite nanosheet arrays for photoelectrochemical water splitting. ACS Appl Mater Interfaces, 2016, 8, 3651 doi: 10.1021/acsami.5b08116
[41]
Han H, Riboni F, Karlicky F, et al. A-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. Nanoscale, 2017, 9, 134 doi: 10.1039/C6NR06908H
[42]
Cheng C W, Fan H J. Branched nanowires: Synthesis and energy applications. Nano Today, 2012, 7, 327 doi: 10.1016/j.nantod.2012.06.002
[43]
Chen H N, Yang S H. Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems. Nanoscale Horiz, 2016, 1, 96 doi: 10.1039/C5NH00033E
[44]
Li Y G, Wei X L, Zhu B W, et al. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: Facile synthesis and enhanced photoelectrochemical performance. Nanoscale, 2016, 8, 11284 doi: 10.1039/C6NR02430K
[45]
Luo Z B, Wang T, Zhang J J, et al. Cover picture: Dendritic hematite nanoarray photoanode modified with a conformal titanium dioxide interlayer for effective charge collection. Angew Chem Int Ed, 2017, 56, 12791 doi: 10.1002/anie.201708426
[46]
Pu A W, Deng J J, Li M, et al. Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency. J Mater Chem A, 2014, 2, 2491 doi: 10.1039/c3ta14575a
[47]
Cao D P, Luo W J, Li M X, et al. A transparent Ti4+ doped hematite photoanode protectively grown by a facile hydrothermal method. CrystEngComm, 2013, 15, 2386 doi: 10.1039/c3ce26811j
[48]
Launay J C, Horowitz G. Crystal growth and photoelectrochemical study of Zr-doped α-Fe2O3 single crystal. J Cryst Growth, 1982, 57, 118 doi: 10.1016/0022-0248(82)90257-3
[49]
Lukowski M A, Jin S. Improved synthesis and electrical properties of Si-doped α-Fe2O3 nanowires. J Phys Chem C, 2011, 115, 12388 doi: 10.1021/jp203764e
[50]
Ling Y C, Wang G M, Wheeler D A, et al. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett, 2011, 11, 2119 doi: 10.1021/nl200708y
[51]
Chang H W, Fu Y M, Lee W Y, et al. Visible light-induced electronic structure modulation of Nb- and Ta-doped α-Fe2O3 nanorods for effective photoelectrochemical water splitting. Nanotechnology, 2018, 29, 064002 doi: 10.1088/1361-6528/aa9d75
[52]
Hu Y S, Kleiman-Shwarsctein A, Forman A J, et al. Pt-doped α-Fe2O3Thin films active for photoelectrochemical water splitting. Chem Mater, 2008, 20, 3803 doi: 10.1021/cm800144q
[53]
Annamalai A, Lee H H, Choi S H, et al. Sn/be sequentially co-doped hematite photoanodes for enhanced photoelectrochemical water oxidation: Effect of Be2+ as co-dopant. Sci Rep, 2016, 6, 23183 doi: 10.1038/srep23183
[54]
Shen S, Chen J, Wang M, et al. Titanium dioxide nanostructures for photoelectrochemical applications. Prog Mater Sci, 2018, 98(1), 299 doi: 10.1016/j.pmatsci.2018.07.006
[55]
Li S, Cai J J, Liu Y L, et al. Tuning orientation of doped hematite photoanodes for enhanced photoelectrochemical water oxidation. Sol Energy Mater Sol Cells, 2018, 179, 328 doi: 10.1016/j.solmat.2017.12.028
[56]
Zhang M L, Luo W J, Li Z S, et al. Improved photoelectrochemical responses of Si and Ti codoped α-Fe2O3 photoanode films. Appl Phys Lett, 2010, 97, 042105 doi: 10.1063/1.3470109
[57]
Cai J J, Chen H, Liu C X, et al. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation. Dalton Trans, 2020, 49, 11282 doi: 10.1039/C9DT03962G
[58]
Amano F, Ohtani B, Yoshida H. Role of doped titanium species in the enhanced photoelectrochemical properties of iron oxide films: Comparison between water oxidation and iodide ion oxidation. J Electroanal Chem, 2016, 766, 100 doi: 10.1016/j.jelechem.2016.02.001
[59]
Liu R, Zheng Z, Spurgeon J, et al. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ Sci, 2014, 7, 2504 doi: 10.1039/C4EE00450G
[60]
Xi L F, Chiam S Y, Mak W F, et al. A novel strategy for surface treatment on hematite photoanode for efficient water oxidation. Chem Sci, 2013, 4, 164 doi: 10.1039/C2SC20881D
[61]
Lee D K, Choi K S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat Energy, 2018, 3, 53 doi: 10.1038/s41560-017-0057-0
[62]
Ran J R, Zhang J, Yu J G, et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev, 2014, 43, 7787 doi: 10.1039/C3CS60425J
[63]
Xiao J R, Fan L L, Zhao F G, et al. Kinetic analysis of the synergistic effect of NaBH4 treatment and Co–Pi coating on Fe2O3 photoanodes for photoelectrochemical water oxidation. J Catal, 2020, 381, 139 doi: 10.1016/j.jcat.2019.10.033
[64]
Chen D, Liu Z F, Guo Z G, et al. 3D branched Ca-Fe2O3/Fe2O3 decorated with Pt and Co–Pi: Improved charge-separation dynamics and photoelectrochemical performance. ChemSusChem, 2019, 12, 3286 doi: 10.1002/cssc.201901331
[65]
Klahr B, Gimenez S, Fabregat-Santiago F, et al. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. J Am Chem Soc, 2012, 134, 16693 doi: 10.1021/ja306427f
[66]
Zhong D K, Gamelin D R. Photoelectrochemical water oxidation by cobalt catalyst (“Co–Pi”)/α-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc, 2010, 132, 4202 doi: 10.1021/ja908730h
[67]
Carroll G M, Gamelin D R. Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co–Pi/α-Fe2O3 photoanodes. J Mater Chem A, 2016, 4, 2986 doi: 10.1039/C5TA06978E
[68]
Kanan M W, Yano J, Surendranath Y, et al. Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J Am Chem Soc, 2010, 132, 13692 doi: 10.1021/ja1023767
[69]
McAlpin J G, Surendranath Y, Dincǎ M, et al. EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J Am Chem Soc, 2010, 132, 6882 doi: 10.1021/ja1013344
[70]
Riha S C, Klahr B M, Tyo E C, et al. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. ACS Nano, 2013, 7, 2396 doi: 10.1021/nn305639z
[71]
Xi L F, Tran P D, Chiam S Y, et al. Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation. J Phys Chem C, 2012, 116, 13884 doi: 10.1021/jp304285r
[72]
Young K M H, Hamann T W. Enhanced photocatalytic water oxidation efficiency with Ni(OH)2 catalysts deposited on α-Fe2O3 via ALD. Chem Commun, 2014, 50, 8727 doi: 10.1039/C4CC02598A
[73]
Hong Y R, Liu Z L, Al-Bukhari S F B S A, et al. Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation. Chem Commun, 2011, 47, 10653 doi: 10.1039/c1cc13886c
[74]
Wang Z L, Liu G J, Ding C M, et al. Synergetic effect of conjugated Ni(OH)2/IrO2 cocatalyst on titanium-doped hematite photoanode for solar water splitting. J Phys Chem C, 2015, 119, 19607 doi: 10.1021/acs.jpcc.5b04892
[75]
Wang M, Wang J Q, Xi C, et al. A hydrogen-deficient nickel–cobalt double hydroxide for photocatalytic overall water splitting. Angew Chem Int Ed, 2020, 59, 11510 doi: 10.1002/anie.202002650
[76]
Kim J Y, Youn D H, Kang K, et al. Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew Chem Int Ed, 2016, 128, 11012 doi: 10.1002/ange.201605924
[77]
Yu Q, Meng X G, Wang T, et al. Hematite films decorated with nanostructured ferric oxyhydroxide as photoanodes for efficient and stable photoelectrochemical water splitting. Adv Funct Mater, 2015, 25, 2686 doi: 10.1002/adfm.201500383
[78]
Liardet L, Katz J E, Luo J S, et al. An ultrathin cobalt–iron oxide catalyst for water oxidation on nanostructured hematite photoanodes. J Mater Chem A, 2019, 7, 6012 doi: 10.1039/C8TA12295D
[79]
Jang J W, Du C, Ye Y F, et al. Enabling unassisted solar water splitting by iron oxide and silicon. Nat Commun, 2015, 6, 7447 doi: 10.1038/ncomms8447
[80]
Liao A Z, He H C, Fan Z W, et al. Facile room-temperature surface modification of unprecedented FeB co-catalysts on Fe2O3 nanorod photoanodes for high photoelectrochemical performance. J Catal, 2017, 352, 113 doi: 10.1016/j.jcat.2017.04.029
[81]
Liao A Z, Chen R T, Fan F T, et al. Integration of FexS electrocatalysts and simultaneously generated interfacial oxygen vacancies to synergistically boost photoelectrochemical water splitting of Fe2O3 photoanodes. Chem Commun, 2018, 54, 13817 doi: 10.1039/C8CC08350A
[82]
Zandi O, Hamann T W. Enhanced water splitting efficiency through selective surface state removal. J Phys Chem Lett, 2014, 5, 1522 doi: 10.1021/jz500535a
[83]
Yang Y, Forster M, Ling Y C, et al. Acid treatment enables suppression of electron-hole recombination in hematite for photoelectrochemical water splitting. Angew Chem Int Ed, 2016, 55, 3403 doi: 10.1002/anie.201510869
[84]
Kim J Y, Jang J W, Youn D H, et al. A stable and efficient hematite photoanode in a neutral electrolyte for solar water splitting: Towards stability engineering. Adv Energy Mater, 2014, 4, 1400476 doi: 10.1002/aenm.201400476
[85]
Barroso M, Mesa C A, Grätzel M, et al. From the cover: Chemical approaches to artificial photosynthesis. Proc Natl Acad Sci USA, 2012, 109, 15560 doi: 10.1073/pnas.1212254109
[86]
Liu G J, Shi J Y, Zhang F X, et al. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew Chem Int Ed, 2014, 53, 7295 doi: 10.1002/anie.201404697
[87]
Gui Q F, Xu Z, Zhang H F, et al. Enhanced photoelectrochemical water splitting performance of anodic TiO2 nanotube arrays by surface passivation. ACS Appl Mater Interfaces, 2014, 6, 17053 doi: 10.1021/am504662w
[88]
Kelly J J. The influence of surface recombination and trapping on the cathodic photocurrent at p-type III–V electrodes. J Electrochem Soc, 1982, 129, 730 doi: 10.1149/1.2123961
[89]
Steier L, Herraiz-Cardona I, Gimenez S, et al. Understanding the role of underlayers and overlayers in thin film hematite photoanodes. Adv Funct Mater, 2014, 24, 7681 doi: 10.1002/adfm.201402742
[90]
Le Formal F, Tétreault N, Cornuz M, et al. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem Sci, 2011, 2, 737 doi: 10.1039/C0SC00578A
[91]
Tang P Y, Arbiol J. Engineering surface states of hematite based photoanodes for boosting photoelectrochemical water splitting. Nanoscale Horiz, 2019, 4, 1256 doi: 10.1039/C9NH00368A
[92]
Zhou P, Yu J G, Jaroniec M. All-solid-state Z-scheme photocatalytic systems. Adv Mater, 2014, 26, 4920 doi: 10.1002/adma.201400288
[93]
Li H J, Zhou Y, Tu W G, et al. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv Funct Mater, 2015, 25, 998 doi: 10.1002/adfm.201401636
[94]
Cowan A J, Durrant J R. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chem Soc Rev, 2013, 42, 2281 doi: 10.1039/C2CS35305A
[95]
Wang H L, Zhang L S, Chen Z G, et al. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem Soc Rev, 2014, 43, 5234 doi: 10.1039/C4CS00126E
[96]
Sivula K, Formal F L, Grätzel M. WO3–Fe2O3 photoanodes for water splitting: A host scaffold, guest absorber approach. Chem Mater, 2009, 21, 2862 doi: 10.1021/cm900565a
[97]
Zhao P, Kronawitter C X, Yang X F, et al. WO3α-Fe2O3 composite photoelectrodes with low onset potential for solar water oxidation. Phys Chem Chem Phys, 2014, 16, 1327 doi: 10.1039/C3CP53324G
[98]
Mayer M T, Du C, Wang D W. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. J Am Chem Soc, 2012, 134, 12406 doi: 10.1021/ja3051734
[99]
Wang X, Peng K Q, Hu Y, et al. Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. Nano Lett, 2014, 14, 18 doi: 10.1021/nl402205f
[100]
McDonald K J, Choi K S. Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem Mater, 2011, 23, 4863 doi: 10.1021/cm202399g
[101]
Wang Y M, Yu T, Chen X Y, et al. Enhancement of photoelectric conversion properties of SrTiO3/α-Fe2O3 heterojunction photoanode. J Phys D, 2007, 40, 3925 doi: 10.1088/0022-3727/40/13/003
[102]
Li J T, Meng F K, Suri S, et al. Photoelectrochemical performance enhanced by a nickel oxide –hematite p –n junction photoanode. Chem Commun, 2012, 48, 8213 doi: 10.1039/c2cc30376k
[103]
Bora D K, Braun A, Erni R, et al. Hematite–NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity. Phys Chem Chem Phys, 2013, 15, 12648 doi: 10.1039/c3cp52179f
[104]
Bard A J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem, 1979, 10, 59 doi: 10.1016/0047-2670(79)80037-4
[105]
Hou Y, Zuo F, Dagg A, et al. Visible light-driven α-Fe2O3 nanorod/graphene/BiV1– xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett, 2012, 12, 6464 doi: 10.1021/nl303961c
[106]
Liao A Z, Zhou Y, Xiao L X, et al. Correction: Direct Z scheme-fashioned photoanode systems consisting of Fe2O3 nanorod arrays and underlying thin Sb2Se3 layers toward enhanced photoelectrochemical water splitting performance. Nanoscale, 2019, 11, 1451 doi: 10.1039/C8NR90281J
[107]
Rehman A, Zulfiqar S, Shakir I, et al. Nanocrystalline hematite α-Fe2O3 synthesis with different precursors and their composites with graphene oxide. Ceram Int, 2020, 46, 8227 doi: 10.1016/j.ceramint.2019.12.050
[108]
Fu W L, Liu K, Zou X, et al. Surface engineering of defective hematite nanostructures coupled by graphene sheets with enhanced photoelectrochemical performance. ACS Sustain Chem Eng, 2019, 7, 12750 doi: 10.1021/acssuschemeng.9b01056
[109]
Carminati S A, do Nascimento Barbosa A, de Freitas A L, et al. Unraveling the role of single layer graphene as overlayer on hematite photoanodes. J Catal, 2019, 372, 109 doi: 10.1016/j.jcat.2019.02.030
[110]
Lan H W, Xia Y J, Feng K, et al. Co-doped carbon layer to lower the onset potential of hematite for solar water oxidation. Appl Catal B, 2019, 258, 117962 doi: 10.1016/j.apcatb.2019.117962
[111]
Strauss V, Anderson M, Wang C X, et al. Carbon nanodots as feedstock for a uniform hematite-graphene nanocomposite. Small, 2018, 14, 1803656 doi: 10.1002/smll.201803656
[112]
Xie Z R, Tan H L, Wen X M, et al. The importance of the interfacial contact: Is reduced graphene oxide always an enhancer in photo(electro)catalytic water oxidation. ACS Appl Mater Interfaces, 2019, 11, 23125 doi: 10.1021/acsami.9b03624
[113]
Tan H L, Tahini H A, Wen X M, et al. Interfacing BiVO4 with reduced graphene oxide for enhanced photoactivity: A tale of facet dependence of electron shuttling. Small, 2016, 12, 5295 doi: 10.1002/smll.201601536
[114]
Mayer M T, Lin Y J, Yuan G B, et al. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: Case studies on hematite. Acc Chem Res, 2013, 46, 1558 doi: 10.1021/ar300302z
[115]
Rai S, Ikram A, Sahai S, et al. Morphological, optical and photoelectrochemical properties of Fe2O3–GNP composite thin films. RSC Adv, 2014, 4, 17671 doi: 10.1039/c3ra46840b
[116]
Lin Y J, Zhou S, Sheehan S W, et al. Nanonet-based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc, 2011, 133, 2398 doi: 10.1021/ja110741z
[117]
Hisatomi T, Dotan H, Stefik M, et al. Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Adv Mater, 2012, 24, 2699 doi: 10.1002/adma.201104868
[118]
Le Formal F, Grätzel M, Sivula K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv Funct Mater, 2010, 20, 1099 doi: 10.1002/adfm.200902060
[119]
Souza F L, Lopes K P, Longo E, et al. The influence of the film thickness of nanostructured α-Fe2O3 on water photooxidation. Phys Chem Chem Phys, 2009, 11, 1215 doi: 10.1039/b811946e
[120]
Wang D, Zhang X T, Sun P P, et al. Enhanced photoelectrochemical water splitting on hematite thin film with layer-by-layer deposited ultrathin TiO2 underlayer. Int J Hydrog Energy, 2014, 39, 16212 doi: 10.1016/j.ijhydene.2014.01.164
[121]
Cao D P, Luo W J, Feng J Y, et al. Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction. Energy Environ Sci, 2014, 7, 752 doi: 10.1039/C3EE42722F
[122]
Gao H W, Liu C, Jeong H E, et al. Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano, 2012, 6, 234 doi: 10.1021/nn203457a
[123]
Ramadurgam S, Lin T G, Yang C. Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells. Nano Lett, 2014, 14, 4517 doi: 10.1021/nl501541s
Fig. 1.  (Color online) Schematic of water splitting in photoanode-based PEC cell.

Fig. 2.  (Color online) Ultimate photocurrent density and corresponding maximum STH of some semiconductors.

Fig. 3.  (Color online) Comparison of electron–hole recombination in planar and 1D Fe2O3 nanorods arrays electrode.

Fig. 4.  (Color online) (a–c) SEM and (d) TEM images of obtained Fe2O3 by a facile rapid dehydration strategy (RD-Fe2O3). (e) Current density–voltage curves of obtained Fe2O3 by a conventional temperature-rising route (C-Fe2O3) and RD-Fe2O3 collected at 10 mV/s in 1.0 M KOH aqueous electrolyte under AM 1.5G illumination and in the dark. The solid and dashed lines represent the data collected under back (solid lines) and front (dashed lines) illuminations, respectively. Reproduced from Ref. [36].

Fig. 5.  (Color online) (a) Mott–Schottky (M–S) plots measured in 1 M NaOH solution. Conditions: 1 kHz frequency. (b) J–V curves of Sn-doped (green), Sn, Zr-doped α-Fe2O3 (blue), and Sn, Zr-doped α-Fe2O3-NiOOH (red) in the dark and under illumination. Reproduced from ref 18. (c) MS plots of undoped, Si-doped, Ti-doped, and co-doped α-Fe2O3 films at the frequency of 1000 Hz. (d) J–V characteristics of the undoped, Si-doped, Ti-doped, and codoped films in 1 M NaOH under 500 W full arc xenon lamp, the green line indicates dark currents of all the films. The inset is IPCE performance for the four α-Fe2O3 films mentioned above at 0.6 V vs. Ag/AgCl in 1 M NaOH. Reproduced from Ref. [56].

Fig. 6.  (Color online) Comparison of the band structure of an n-type semiconductor photoanode in the presence and the absence of passivation layers inside a PEC cell. (a) High charge recombination at surface defects and inefficient water oxidation by the photogenerated holes. (b) Use of an OER catalyst layer, which promotes facile hole transfer across the interface to the electrolyte for improving water oxidation. (c) Use of thin non-catalytic passivation layers which suppress surface recombination and improve water oxidation.

Fig. 7.  (Color online) (a) J–V curves of a bare hematite electrode (red solid line) and the same electrode after depositing 1 (orange dotted line), 2 (yellow short dashed line), 15 (green dashed double dotted line), 45 (teal long dashed line), and 90 (blue dashed single dotted line) mC/cm2 CoPi catalyst at 5 mV/s. (b) Proposed mechanism of the catalytic process. (c) Anodic and cathodic transient currents at an applied bias of 1.05 V vs. RHE. Reproduced from Ref. [63].

Fig. 8.  (Color online) (a) Scheme of charge transfer from Fe2O3 to H2O through Ni(OH)2 and/or IrO2. (b) Chronoamperometry measurement of Ti-Fe2O3, Ti-Fe2O3/Ni(OH)2, and Ti-Fe2O3/Ni(OH)2/IrO2 under a stepped potential. Reproduced from Ref. [20].

Fig. 9.  (Color online) (a) High-resolution TEM images of Fe2O3/FeB photoanode. (b) Charge separation and (c) injection efficiency at 1.23 V vs. RHE for the Fe2O3 and Fe2O3/FeB photoanodes. Reproduced from Ref. [80]. (d, e) AFM images and (f, g) the corresponding SPVM images of (d, f) Fe2O3 and (e, g) Fe2O3|VO|FexS, respectively. Scale bars in (a–d), 200 nm. (h) Histograms of the SPV distributions on the Fe2O3 and Fe2O3|VO|FexS electrodes. (i) Time evolution of SPV generation and decay with light on and off on Fe2O3 and Fe2O3|VO|FexS. All the SPV signals are obtained under 450 nm laser illumination at a light intensity of 4 mW/cm2. (j) Photocurrent-potential (J–V) curves of the Fe2O3 and Fe2O3|VO|FexS photoanodes in a 1 M NaOH (pH ~ 13.6) aqueous electrolyte under AM 1.5G illumination and in the dark. Reproduced from Ref. [81].

Fig. 10.  (Color online) Schematic illustration of (a) the type-II heterostructure, (b) p–n heterostructure, and (c) Z-scheme system without electron-mediators band alignments, and the correspondingly possible separation and transfer process of photoinduced electron–hole pairs of semiconductor photocatalysts. Reproduced from Refs. [92, 93].

Fig. 11.  (Color online) Schematic for the energy band structure of the Fe2O3-NA/RGO/BiV1–xMoxO4 heterojunction and the proposed mechanism of PEC water splitting. Reproduced from Ref. [105].

Fig. 12.  (Color online) (a) TiSi2 nanonet-based hematite nanostructure is essentially a core/shell arrangement where the core is the nanonet for effective charge collection and the shell is hematite for photocatalytic functionalities. The electronic band structure is shown in the enlarged cross-sectional view. (b) Low- and (c) high-magnification transmission electron microscopy (TEM) images showing the conformal coverage and crystallinity of hematite. (d) J–V curves of an Fe2O3/TiSi2 heteronanostructure and a planar hematite film. (e) IPCE comparison of Fe2O3 with and without TiSi2 nanonets. Reproduced from Ref. [116].

[1]
Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev, 2019, 48, 2109 doi: 10.1039/C8CS00542G
[2]
Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414, 625 doi: 10.1038/414625a
[3]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37 doi: 10.1038/238037a0
[4]
Ma Y, Wang X L, Jia Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev, 2014, 114, 9987 doi: 10.1021/cr500008u
[5]
Wang S C, Chen P, Bai Y, et al. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv Mater, 2018, 30, 1800486 doi: 10.1002/adma.201800486
[6]
Wang W, Xu X M, Zhou W, et al. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv Sci, 2017, 4, 1600371 doi: 10.1002/advs.201600371
[7]
Tamirat A G, Rick J, Dubale A A, et al. Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horiz, 2016, 1, 243 doi: 10.1039/C5NH00098J
[8]
Tahir M, Pan L, Idrees F, et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136 doi: 10.1016/j.nanoen.2017.05.022
[9]
Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem, 2017, 1, 0003 doi: 10.1038/s41570-016-0003
[10]
Shen S H, Lindley S A, Chen X Y, et al. Hematite heterostructures for photoelectrochemical water splitting: Rational materials design and charge carrier dynamics. Energy Environ Sci, 2016, 9, 2744 doi: 10.1039/C6EE01845A
[11]
Carneiro L M, Cushing S K, Liu C, et al. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nat Mater, 2017, 16, 819 doi: 10.1038/nmat4936
[12]
Wang T, Luo W J, Wen X, et al. Nonequilibrium Ti4+ doping significantly enhances the performance of Fe2O3 photoanodes by quenching. ChemNanoMat, 2016, 2, 652 doi: 10.1002/cnma.201600108
[13]
Sivula K, Le Formal F, Grätzel M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem, 2011, 4, 432 doi: 10.1002/cssc.201000416
[14]
Wheeler D A, Wang G M, Ling Y C, et al. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ Sci, 2012, 5, 6682 doi: 10.1039/c2ee00001f
[15]
Pendlebury S R, Cowan A J, Barroso M, et al. Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ Sci, 2012, 5, 6304 doi: 10.1039/C1EE02567H
[16]
Barroso M, Pendlebury S R, Cowan A J, et al. Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem Sci, 2013, 4, 2724 doi: 10.1039/c3sc50496d
[17]
Bessegato G G, Guaraldo T T, Zanoni M V B, et al. Enhancement of photoelectrocatalysis efficiency by using nanostructured electrodes. Mod Electrochem Methods Nano, Surface Corros Sci, 2014, 11, 27 doi: 10.5772/58333
[18]
Tamirat A G, Su W N, Dubale A A, et al. Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) α-Fe2O3 photoanode. J Mater Chem A, 2015, 3, 5949 doi: 10.1039/C4TA06915C
[19]
Jia L C, Harbauer K, Bogdanoff P, et al. α-Fe2O3 films for photoelectrochemical water oxidation – insights of key performance parameters. J Mater Chem A, 2014, 2, 20196 doi: 10.1039/C4TA04720F
[20]
Wang G M, Ling Y C, Lu X H, et al. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale, 2013, 5, 4129 doi: 10.1039/c3nr00569k
[21]
Kim J Y, Magesh G, Youn D H, et al. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci Rep, 2013, 3, 2681 doi: 10.1038/srep02681
[22]
Bohn C D, Agrawal A K, Walter E C, et al. Effect of tin doping on α-Fe2O3 photoanodes for water splitting. J Phys Chem C, 2012, 116, 15290 doi: 10.1021/jp305221v
[23]
Klahr B, Gimenez S, Fabregat-Santiago F, et al. Water oxidation at hematite photoelectrodes: The role of surface states. J Am Chem Soc, 2012, 134, 4294 doi: 10.1021/ja210755h
[24]
Bjoerksten U, Moser J, Graetzel M. Photoelectrochemical studies on nanocrystalline hematite films. Chem Mater, 1994, 6, 858 doi: 10.1021/cm00042a026
[25]
Vura-Weis J, Jiang C M, Liu C, et al. Femtosecond M2, 3-edge spectroscopy of transition-metal oxides: Photoinduced oxidation state change in α-Fe2O3. J Phys Chem Lett, 2013, 4, 3667 doi: 10.1021/jz401997d
[26]
Joly A G, Williams J R, Chambers S A, et al. Carrier dynamics in α-Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity. J Appl Phys, 2006, 99, 053521 doi: 10.1063/1.2177426
[27]
Dare-Edwards M P, Goodenough J B, Hamnett A, et al. Electrochemistry and photoelectrochemistry of iron(III) oxide. J Chem Soc, Faraday Trans 1, 1983, 79, 2027 doi: 10.1039/f19837902027
[28]
Sivula K. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J Phys Chem Lett, 2013, 4, 1624 doi: 10.1021/jz4002983
[29]
Dotan H, Kfir O, Sharlin E, et al. Resonant light trapping in ultrathin films for water splitting. Nat Mater, 2013, 12, 158 doi: 10.1038/nmat3477
[30]
Li J T, Cushing S K, Zheng P, et al. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat Commun, 2013, 4, 2651 doi: 10.1038/ncomms3651
[31]
Wen X G, Wang S H, Ding Y, et al. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3Nanobelts and nanowires. J Phys Chem B, 2005, 109, 215 doi: 10.1021/jp0461448
[32]
Li C C, Li A, Luo Z B, et al. Inside back cover: Surviving high-temperature calcination: ZrO2 -induced hematite nanotubes for photoelectrochemical water oxidation. Angew Chem Int Ed, 2017, 56, 4361 doi: 10.1002/anie.201702266
[33]
Li M Y, Yang Y, Ling Y C, et al. Morphology and doping engineering of Sn-doped hematite nanowire photoanodes. Nano Lett, 2017, 17, 2490 doi: 10.1021/acs.nanolett.7b00184
[34]
Jia C J, Sun L D, Yan Z G, et al. Iron oxide tube-in-tube nanostructures. J Phys Chem C, 2007, 111, 13022 doi: 10.1021/jp073837q
[35]
Cvelbar U, Chen Z Q, Sunkara M K, et al. Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small, 2008, 4, 1610 doi: 10.1002/smll.200800278
[36]
Liao A Z, He H C, Tang L Q, et al. Quasi-topotactic transformation of FeOOH nanorods to robust Fe2O3 porous nanopillars triggered with a facile rapid dehydration strategy for efficient photoelectrochemical water splitting. ACS Appl Mater Interfaces, 2018, 10, 10141 doi: 10.1021/acsami.8b00367
[37]
Chen J S, Lou X W. Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction. Electrochem Commun, 2009, 11, 2332 doi: 10.1016/j.elecom.2009.10.024
[38]
Hoang S, Berglund S P, Fullon R R, et al. Chemical bath deposition of vertically aligned TiO2 nanoplatelet arrays for solar energy conversion applications. J Mater Chem A, 2013, 1, 4307 doi: 10.1039/c3ta01384g
[39]
Wang L, Lee C Y, Mazare A, et al. Enhancing the water splitting efficiency of Sn-doped hematite nanoflakes by flame annealing. Chem Eur J, 2014, 20, 77 doi: 10.1002/chem.201303427
[40]
Ji M, Cai J G, Ma Y R, et al. Controlled growth of ferrihydrite branched nanosheet arrays and their transformation to hematite nanosheet arrays for photoelectrochemical water splitting. ACS Appl Mater Interfaces, 2016, 8, 3651 doi: 10.1021/acsami.5b08116
[41]
Han H, Riboni F, Karlicky F, et al. A-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. Nanoscale, 2017, 9, 134 doi: 10.1039/C6NR06908H
[42]
Cheng C W, Fan H J. Branched nanowires: Synthesis and energy applications. Nano Today, 2012, 7, 327 doi: 10.1016/j.nantod.2012.06.002
[43]
Chen H N, Yang S H. Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems. Nanoscale Horiz, 2016, 1, 96 doi: 10.1039/C5NH00033E
[44]
Li Y G, Wei X L, Zhu B W, et al. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: Facile synthesis and enhanced photoelectrochemical performance. Nanoscale, 2016, 8, 11284 doi: 10.1039/C6NR02430K
[45]
Luo Z B, Wang T, Zhang J J, et al. Cover picture: Dendritic hematite nanoarray photoanode modified with a conformal titanium dioxide interlayer for effective charge collection. Angew Chem Int Ed, 2017, 56, 12791 doi: 10.1002/anie.201708426
[46]
Pu A W, Deng J J, Li M, et al. Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency. J Mater Chem A, 2014, 2, 2491 doi: 10.1039/c3ta14575a
[47]
Cao D P, Luo W J, Li M X, et al. A transparent Ti4+ doped hematite photoanode protectively grown by a facile hydrothermal method. CrystEngComm, 2013, 15, 2386 doi: 10.1039/c3ce26811j
[48]
Launay J C, Horowitz G. Crystal growth and photoelectrochemical study of Zr-doped α-Fe2O3 single crystal. J Cryst Growth, 1982, 57, 118 doi: 10.1016/0022-0248(82)90257-3
[49]
Lukowski M A, Jin S. Improved synthesis and electrical properties of Si-doped α-Fe2O3 nanowires. J Phys Chem C, 2011, 115, 12388 doi: 10.1021/jp203764e
[50]
Ling Y C, Wang G M, Wheeler D A, et al. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett, 2011, 11, 2119 doi: 10.1021/nl200708y
[51]
Chang H W, Fu Y M, Lee W Y, et al. Visible light-induced electronic structure modulation of Nb- and Ta-doped α-Fe2O3 nanorods for effective photoelectrochemical water splitting. Nanotechnology, 2018, 29, 064002 doi: 10.1088/1361-6528/aa9d75
[52]
Hu Y S, Kleiman-Shwarsctein A, Forman A J, et al. Pt-doped α-Fe2O3Thin films active for photoelectrochemical water splitting. Chem Mater, 2008, 20, 3803 doi: 10.1021/cm800144q
[53]
Annamalai A, Lee H H, Choi S H, et al. Sn/be sequentially co-doped hematite photoanodes for enhanced photoelectrochemical water oxidation: Effect of Be2+ as co-dopant. Sci Rep, 2016, 6, 23183 doi: 10.1038/srep23183
[54]
Shen S, Chen J, Wang M, et al. Titanium dioxide nanostructures for photoelectrochemical applications. Prog Mater Sci, 2018, 98(1), 299 doi: 10.1016/j.pmatsci.2018.07.006
[55]
Li S, Cai J J, Liu Y L, et al. Tuning orientation of doped hematite photoanodes for enhanced photoelectrochemical water oxidation. Sol Energy Mater Sol Cells, 2018, 179, 328 doi: 10.1016/j.solmat.2017.12.028
[56]
Zhang M L, Luo W J, Li Z S, et al. Improved photoelectrochemical responses of Si and Ti codoped α-Fe2O3 photoanode films. Appl Phys Lett, 2010, 97, 042105 doi: 10.1063/1.3470109
[57]
Cai J J, Chen H, Liu C X, et al. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation. Dalton Trans, 2020, 49, 11282 doi: 10.1039/C9DT03962G
[58]
Amano F, Ohtani B, Yoshida H. Role of doped titanium species in the enhanced photoelectrochemical properties of iron oxide films: Comparison between water oxidation and iodide ion oxidation. J Electroanal Chem, 2016, 766, 100 doi: 10.1016/j.jelechem.2016.02.001
[59]
Liu R, Zheng Z, Spurgeon J, et al. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ Sci, 2014, 7, 2504 doi: 10.1039/C4EE00450G
[60]
Xi L F, Chiam S Y, Mak W F, et al. A novel strategy for surface treatment on hematite photoanode for efficient water oxidation. Chem Sci, 2013, 4, 164 doi: 10.1039/C2SC20881D
[61]
Lee D K, Choi K S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat Energy, 2018, 3, 53 doi: 10.1038/s41560-017-0057-0
[62]
Ran J R, Zhang J, Yu J G, et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev, 2014, 43, 7787 doi: 10.1039/C3CS60425J
[63]
Xiao J R, Fan L L, Zhao F G, et al. Kinetic analysis of the synergistic effect of NaBH4 treatment and Co–Pi coating on Fe2O3 photoanodes for photoelectrochemical water oxidation. J Catal, 2020, 381, 139 doi: 10.1016/j.jcat.2019.10.033
[64]
Chen D, Liu Z F, Guo Z G, et al. 3D branched Ca-Fe2O3/Fe2O3 decorated with Pt and Co–Pi: Improved charge-separation dynamics and photoelectrochemical performance. ChemSusChem, 2019, 12, 3286 doi: 10.1002/cssc.201901331
[65]
Klahr B, Gimenez S, Fabregat-Santiago F, et al. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. J Am Chem Soc, 2012, 134, 16693 doi: 10.1021/ja306427f
[66]
Zhong D K, Gamelin D R. Photoelectrochemical water oxidation by cobalt catalyst (“Co–Pi”)/α-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc, 2010, 132, 4202 doi: 10.1021/ja908730h
[67]
Carroll G M, Gamelin D R. Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co–Pi/α-Fe2O3 photoanodes. J Mater Chem A, 2016, 4, 2986 doi: 10.1039/C5TA06978E
[68]
Kanan M W, Yano J, Surendranath Y, et al. Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J Am Chem Soc, 2010, 132, 13692 doi: 10.1021/ja1023767
[69]
McAlpin J G, Surendranath Y, Dincǎ M, et al. EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J Am Chem Soc, 2010, 132, 6882 doi: 10.1021/ja1013344
[70]
Riha S C, Klahr B M, Tyo E C, et al. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. ACS Nano, 2013, 7, 2396 doi: 10.1021/nn305639z
[71]
Xi L F, Tran P D, Chiam S Y, et al. Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation. J Phys Chem C, 2012, 116, 13884 doi: 10.1021/jp304285r
[72]
Young K M H, Hamann T W. Enhanced photocatalytic water oxidation efficiency with Ni(OH)2 catalysts deposited on α-Fe2O3 via ALD. Chem Commun, 2014, 50, 8727 doi: 10.1039/C4CC02598A
[73]
Hong Y R, Liu Z L, Al-Bukhari S F B S A, et al. Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation. Chem Commun, 2011, 47, 10653 doi: 10.1039/c1cc13886c
[74]
Wang Z L, Liu G J, Ding C M, et al. Synergetic effect of conjugated Ni(OH)2/IrO2 cocatalyst on titanium-doped hematite photoanode for solar water splitting. J Phys Chem C, 2015, 119, 19607 doi: 10.1021/acs.jpcc.5b04892
[75]
Wang M, Wang J Q, Xi C, et al. A hydrogen-deficient nickel–cobalt double hydroxide for photocatalytic overall water splitting. Angew Chem Int Ed, 2020, 59, 11510 doi: 10.1002/anie.202002650
[76]
Kim J Y, Youn D H, Kang K, et al. Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew Chem Int Ed, 2016, 128, 11012 doi: 10.1002/ange.201605924
[77]
Yu Q, Meng X G, Wang T, et al. Hematite films decorated with nanostructured ferric oxyhydroxide as photoanodes for efficient and stable photoelectrochemical water splitting. Adv Funct Mater, 2015, 25, 2686 doi: 10.1002/adfm.201500383
[78]
Liardet L, Katz J E, Luo J S, et al. An ultrathin cobalt–iron oxide catalyst for water oxidation on nanostructured hematite photoanodes. J Mater Chem A, 2019, 7, 6012 doi: 10.1039/C8TA12295D
[79]
Jang J W, Du C, Ye Y F, et al. Enabling unassisted solar water splitting by iron oxide and silicon. Nat Commun, 2015, 6, 7447 doi: 10.1038/ncomms8447
[80]
Liao A Z, He H C, Fan Z W, et al. Facile room-temperature surface modification of unprecedented FeB co-catalysts on Fe2O3 nanorod photoanodes for high photoelectrochemical performance. J Catal, 2017, 352, 113 doi: 10.1016/j.jcat.2017.04.029
[81]
Liao A Z, Chen R T, Fan F T, et al. Integration of FexS electrocatalysts and simultaneously generated interfacial oxygen vacancies to synergistically boost photoelectrochemical water splitting of Fe2O3 photoanodes. Chem Commun, 2018, 54, 13817 doi: 10.1039/C8CC08350A
[82]
Zandi O, Hamann T W. Enhanced water splitting efficiency through selective surface state removal. J Phys Chem Lett, 2014, 5, 1522 doi: 10.1021/jz500535a
[83]
Yang Y, Forster M, Ling Y C, et al. Acid treatment enables suppression of electron-hole recombination in hematite for photoelectrochemical water splitting. Angew Chem Int Ed, 2016, 55, 3403 doi: 10.1002/anie.201510869
[84]
Kim J Y, Jang J W, Youn D H, et al. A stable and efficient hematite photoanode in a neutral electrolyte for solar water splitting: Towards stability engineering. Adv Energy Mater, 2014, 4, 1400476 doi: 10.1002/aenm.201400476
[85]
Barroso M, Mesa C A, Grätzel M, et al. From the cover: Chemical approaches to artificial photosynthesis. Proc Natl Acad Sci USA, 2012, 109, 15560 doi: 10.1073/pnas.1212254109
[86]
Liu G J, Shi J Y, Zhang F X, et al. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew Chem Int Ed, 2014, 53, 7295 doi: 10.1002/anie.201404697
[87]
Gui Q F, Xu Z, Zhang H F, et al. Enhanced photoelectrochemical water splitting performance of anodic TiO2 nanotube arrays by surface passivation. ACS Appl Mater Interfaces, 2014, 6, 17053 doi: 10.1021/am504662w
[88]
Kelly J J. The influence of surface recombination and trapping on the cathodic photocurrent at p-type III–V electrodes. J Electrochem Soc, 1982, 129, 730 doi: 10.1149/1.2123961
[89]
Steier L, Herraiz-Cardona I, Gimenez S, et al. Understanding the role of underlayers and overlayers in thin film hematite photoanodes. Adv Funct Mater, 2014, 24, 7681 doi: 10.1002/adfm.201402742
[90]
Le Formal F, Tétreault N, Cornuz M, et al. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem Sci, 2011, 2, 737 doi: 10.1039/C0SC00578A
[91]
Tang P Y, Arbiol J. Engineering surface states of hematite based photoanodes for boosting photoelectrochemical water splitting. Nanoscale Horiz, 2019, 4, 1256 doi: 10.1039/C9NH00368A
[92]
Zhou P, Yu J G, Jaroniec M. All-solid-state Z-scheme photocatalytic systems. Adv Mater, 2014, 26, 4920 doi: 10.1002/adma.201400288
[93]
Li H J, Zhou Y, Tu W G, et al. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv Funct Mater, 2015, 25, 998 doi: 10.1002/adfm.201401636
[94]
Cowan A J, Durrant J R. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chem Soc Rev, 2013, 42, 2281 doi: 10.1039/C2CS35305A
[95]
Wang H L, Zhang L S, Chen Z G, et al. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem Soc Rev, 2014, 43, 5234 doi: 10.1039/C4CS00126E
[96]
Sivula K, Formal F L, Grätzel M. WO3–Fe2O3 photoanodes for water splitting: A host scaffold, guest absorber approach. Chem Mater, 2009, 21, 2862 doi: 10.1021/cm900565a
[97]
Zhao P, Kronawitter C X, Yang X F, et al. WO3α-Fe2O3 composite photoelectrodes with low onset potential for solar water oxidation. Phys Chem Chem Phys, 2014, 16, 1327 doi: 10.1039/C3CP53324G
[98]
Mayer M T, Du C, Wang D W. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. J Am Chem Soc, 2012, 134, 12406 doi: 10.1021/ja3051734
[99]
Wang X, Peng K Q, Hu Y, et al. Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. Nano Lett, 2014, 14, 18 doi: 10.1021/nl402205f
[100]
McDonald K J, Choi K S. Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem Mater, 2011, 23, 4863 doi: 10.1021/cm202399g
[101]
Wang Y M, Yu T, Chen X Y, et al. Enhancement of photoelectric conversion properties of SrTiO3/α-Fe2O3 heterojunction photoanode. J Phys D, 2007, 40, 3925 doi: 10.1088/0022-3727/40/13/003
[102]
Li J T, Meng F K, Suri S, et al. Photoelectrochemical performance enhanced by a nickel oxide –hematite p –n junction photoanode. Chem Commun, 2012, 48, 8213 doi: 10.1039/c2cc30376k
[103]
Bora D K, Braun A, Erni R, et al. Hematite–NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity. Phys Chem Chem Phys, 2013, 15, 12648 doi: 10.1039/c3cp52179f
[104]
Bard A J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem, 1979, 10, 59 doi: 10.1016/0047-2670(79)80037-4
[105]
Hou Y, Zuo F, Dagg A, et al. Visible light-driven α-Fe2O3 nanorod/graphene/BiV1– xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett, 2012, 12, 6464 doi: 10.1021/nl303961c
[106]
Liao A Z, Zhou Y, Xiao L X, et al. Correction: Direct Z scheme-fashioned photoanode systems consisting of Fe2O3 nanorod arrays and underlying thin Sb2Se3 layers toward enhanced photoelectrochemical water splitting performance. Nanoscale, 2019, 11, 1451 doi: 10.1039/C8NR90281J
[107]
Rehman A, Zulfiqar S, Shakir I, et al. Nanocrystalline hematite α-Fe2O3 synthesis with different precursors and their composites with graphene oxide. Ceram Int, 2020, 46, 8227 doi: 10.1016/j.ceramint.2019.12.050
[108]
Fu W L, Liu K, Zou X, et al. Surface engineering of defective hematite nanostructures coupled by graphene sheets with enhanced photoelectrochemical performance. ACS Sustain Chem Eng, 2019, 7, 12750 doi: 10.1021/acssuschemeng.9b01056
[109]
Carminati S A, do Nascimento Barbosa A, de Freitas A L, et al. Unraveling the role of single layer graphene as overlayer on hematite photoanodes. J Catal, 2019, 372, 109 doi: 10.1016/j.jcat.2019.02.030
[110]
Lan H W, Xia Y J, Feng K, et al. Co-doped carbon layer to lower the onset potential of hematite for solar water oxidation. Appl Catal B, 2019, 258, 117962 doi: 10.1016/j.apcatb.2019.117962
[111]
Strauss V, Anderson M, Wang C X, et al. Carbon nanodots as feedstock for a uniform hematite-graphene nanocomposite. Small, 2018, 14, 1803656 doi: 10.1002/smll.201803656
[112]
Xie Z R, Tan H L, Wen X M, et al. The importance of the interfacial contact: Is reduced graphene oxide always an enhancer in photo(electro)catalytic water oxidation. ACS Appl Mater Interfaces, 2019, 11, 23125 doi: 10.1021/acsami.9b03624
[113]
Tan H L, Tahini H A, Wen X M, et al. Interfacing BiVO4 with reduced graphene oxide for enhanced photoactivity: A tale of facet dependence of electron shuttling. Small, 2016, 12, 5295 doi: 10.1002/smll.201601536
[114]
Mayer M T, Lin Y J, Yuan G B, et al. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: Case studies on hematite. Acc Chem Res, 2013, 46, 1558 doi: 10.1021/ar300302z
[115]
Rai S, Ikram A, Sahai S, et al. Morphological, optical and photoelectrochemical properties of Fe2O3–GNP composite thin films. RSC Adv, 2014, 4, 17671 doi: 10.1039/c3ra46840b
[116]
Lin Y J, Zhou S, Sheehan S W, et al. Nanonet-based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc, 2011, 133, 2398 doi: 10.1021/ja110741z
[117]
Hisatomi T, Dotan H, Stefik M, et al. Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Adv Mater, 2012, 24, 2699 doi: 10.1002/adma.201104868
[118]
Le Formal F, Grätzel M, Sivula K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv Funct Mater, 2010, 20, 1099 doi: 10.1002/adfm.200902060
[119]
Souza F L, Lopes K P, Longo E, et al. The influence of the film thickness of nanostructured α-Fe2O3 on water photooxidation. Phys Chem Chem Phys, 2009, 11, 1215 doi: 10.1039/b811946e
[120]
Wang D, Zhang X T, Sun P P, et al. Enhanced photoelectrochemical water splitting on hematite thin film with layer-by-layer deposited ultrathin TiO2 underlayer. Int J Hydrog Energy, 2014, 39, 16212 doi: 10.1016/j.ijhydene.2014.01.164
[121]
Cao D P, Luo W J, Feng J Y, et al. Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction. Energy Environ Sci, 2014, 7, 752 doi: 10.1039/C3EE42722F
[122]
Gao H W, Liu C, Jeong H E, et al. Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano, 2012, 6, 234 doi: 10.1021/nn203457a
[123]
Ramadurgam S, Lin T G, Yang C. Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells. Nano Lett, 2014, 14, 4517 doi: 10.1021/nl501541s
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3795 Times PDF downloads: 103 Times Cited by: 0 Times

    History

    Received: 10 August 2020 Revised: 21 August 2020 Online: Accepted Manuscript: 26 August 2020Uncorrected proof: 27 August 2020Published: 04 September 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Aizhen Liao, Huichao He, Yong Zhou, Zhigang Zou. Typical strategies to facilitate charge transfer for enhanced oxygen evolution reaction: Case studies on hematite[J]. Journal of Semiconductors, 2020, 41(9): 091709. doi: 10.1088/1674-4926/41/9/091709 A Z Liao, H C He, Y Zhou, Z G Zou, Typical strategies to facilitate charge transfer for enhanced oxygen evolution reaction: Case studies on hematite[J]. J. Semicond., 2020, 41(9): 091709. doi: 10.1088/1674-4926/41/9/091709.Export: BibTex EndNote
      Citation:
      Aizhen Liao, Huichao He, Yong Zhou, Zhigang Zou. Typical strategies to facilitate charge transfer for enhanced oxygen evolution reaction: Case studies on hematite[J]. Journal of Semiconductors, 2020, 41(9): 091709. doi: 10.1088/1674-4926/41/9/091709

      A Z Liao, H C He, Y Zhou, Z G Zou, Typical strategies to facilitate charge transfer for enhanced oxygen evolution reaction: Case studies on hematite[J]. J. Semicond., 2020, 41(9): 091709. doi: 10.1088/1674-4926/41/9/091709.
      Export: BibTex EndNote

      Typical strategies to facilitate charge transfer for enhanced oxygen evolution reaction: Case studies on hematite

      doi: 10.1088/1674-4926/41/9/091709
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return