Special Topic on Devices and Circuits for Wearable and IoT Systems

Energy-efficient digital and wireless IC design for wireless smart sensing

Jun Zhou1, , Xiongchuan Huang2, , Chao Wang3, Tony Tae-Hyoung Kim4 and Yong Lian5

+ Author Affiliations

 Corresponding author: Jun Zhou, Email: jun.zhou.sg @ieee.org; Xiongchuan Huang, Email: coby.x.huang@gmail.com

PDF

Abstract: Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.

Key words: energy-efficientdigital ICwireless ICwireless smart sensing



[1]
Dreslinski R G, M. Wieckowski M, Blaauw D, et al. Near-threshold computing: reclaiming Moore’s law through energy efficient integrated circuits. Proc IEEE, 2010, 98(2): 253 doi: 10.1109/JPROC.2009.2034764
[2]
Calhoun B H, Wang A, Chandrakasan A. Modeling and sizing for minimum energy operation in subthreshold circuits. IEEE J Solid-State Circuits, 2005, 40(9): 1778 doi: 10.1109/JSSC.2005.852162
[3]
Kim T, Zhou J, Lian Y. Opportunities and challenges: ultra-low voltage digital IC design techniques. IEEE International Conference on ASIC, 2015: 1
[4]
Kwong J, Chandrakasan A. Variation-driven device sizing for minimum energy sub-threshold circuits. International Symposium on Low Power Electronics and Design, 2006: 8
[5]
Kim T, Eom H, Keane J, et al. Utilizing reverse short channel effect for optimal subthreshold circuit design. International Symposium on Low Power Electronics and Design, 2006: 127
[6]
Zhou J, Jayapal S, Busze B, et al. A 40 nm inverse-narrow-width-effect-aware sub-threshold standard cell library. Design Automation Conference, 2011: 441
[7]
Zhou J, Jayapal S, Busze B, et al. A 40 nm dual-width standard cell library for near/sub-threshold operation. IEEE Trans Circuits Syst I , 2012, 59(11): 2569 doi: 10.1109/TCSI.2012.2190674
[8]
Lin Y S, Sylvester D M. Single stage static level shifter design for subthreshold to I/O voltage conversion. International Symposium on Low Power Electronics and Design, 2008: 197
[9]
Chang I J, Kim J J, Kim K, et al. Robust level converter for subthreshold/super-threshold operation: 100 mV to 2.5 V. IEEE Trans Very Large Scale Integr Syst, 2011, 19(8): 1429 doi: 10.1109/TVLSI.2010.2051240
[10]
Zhai B, Pant S L. Nazhandali L, et al. Energy efficient subthreshold processor design. IEEE Trans Very Large Scale Integr Syst, 2009, 17(8): 1127 doi: 10.1109/TVLSI.2008.2007564
[11]
Wooters S N, Calhoun B H, Blalock T N. An energy-efficient subthreshold level converter in 130-nm CMOS. IEEE Trans Circuits Syst II, 2010, 57(4): 290 doi: 10.1109/TCSII.2010.2043471
[12]
Level shifter circuit. US Patent 7924080, 2011, Toshiba
[13]
Osaki Y, Hirose T, Kuroki N, et al. A low-power level shifter with logic error correction for extremely low-voltage digital CMOS LSIs. IEEE J Solid-State Circuits, 2012, 47(7): 1776 doi: 10.1109/JSSC.2012.2191320
[14]
Lutkemeier S, Ruckert U. A subthreshold to above-threshold level shifter comprising a wilson current mirror. IEEE Trans Circuits Syst II, 2010, 57(9): 721 doi: 10.1109/TCSII.2010.2056110
[15]
Zhou J, Wang C, Liu X, et al. An ultra-low voltage level shifter using revised wilson current mirror for fast and energy-efficient wide-range voltage conversion from sub-threshold to I/O voltage. IEEE Trans Circuits Syst I , 2015, 62(3): 697 doi: 10.1109/TCSI.2014.2380691
[16]
Verma N, Chandrakasan A P. A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE J Solid-State Circuits, 2008, 43(1): 141 doi: 10.1109/JSSC.2007.908005
[17]
Li Q, Wang B, Kim T T. A 5.61 pJ, 16 kb 9T SRAM with single-ended equalized bitlines and fast local write-back for cell stability improvement. IEEE European Solid-State Device Research Conference, 2012: 201
[18]
Das S, Tokunaga C, Pant S, et al. Razor II: in situ error detection and correction for PVT and SER tolerance. IEEE J Solid-State Circuits, 2009, 44(1): 32 doi: 10.1109/JSSC.2008.2007145
[19]
Fuketa H, Hashimoto M, Mitsuyama Y, et al. Adaptive performance compensation with in situ timing error predictive sensors for subthreshold circuits. IEEE Trans Very Large Scale Integr Syst, 2012, 20(2): 333 doi: 10.1109/TVLSI.2010.2101089
[20]
Zhou J, Liu X, Lam Y H, et al. HEPP: a new in situ timing-error prediction and prevention technique for variation-tolerant ultra-low-voltage designs. IEEE Asian Solid-State Circuits Conference, 2013: 129
[21]
Bluetooth Core Specification v5.0. https://www.bluetooth. org/en-us/specification/adopted-specifications
[22]
ZigBee Alliance. http://www.zigbee.org
[23]
SIGFOX Technology. http://www.sigfox.com/en/#!/technology
[24]
LoRaWANTM For Developers. https://www.lora-alliance. org/For-Developers/LoRaWANDevelopers
[25]
IEEE 802.15TM: WIRELESS PERSONAL AREA NETWORKS (PANs). https://standards.ieee.org/about/get/ 802/802.15.html
[26]
Shelby Z, Bormann C. 6LoWPAN: The Embedded Internet. Wiley, 2009
[27]
Aust S, Prasad R V, Niemegeers I. G. M. M. IEEE 802.11ah: Advantages in standards and further challenges for sub 1 GHz Wi-Fi. IEEE International Conference on Communications. 2012: 6885
[28]
IEEE WLAN. http://www.ieee802.org/11/
[29]
Kwak K S, Ullah S, Ullah N. An overview of IEEE 802.15.6 standard. International Symposium on Applied Sciences in Biomedical and Communication Technologies, 2010: 1
[30]
Zimmerman T G. Personal area networks: near-field intrabody communication. IBM Syst J, 1996, 35(3): 609
[31]
I. Poole I. SIGFOX for M2M & IoT. http://www.radio-electronics.com/info/wireless/sigfox/basics-tutorial.php
[32]
A Cellular-type Protocol Innovation for the Internet of Things. http://www.theinternetofthings.eu/sites/default/files/%5Buser-name%5D/M2C%20Whitepaper%20for%20IoT%20Connectivity.pdf
[33]
3GPP The Mobile Broadband Standard. Standardization of NB-IOT completed. http://www.3gpp.org/news-events/3gpp-news/1785-nb_iot_complete
[34]
Roberts N E, Craig K, Shrivastava A, et al. 26.8 A 236 nW -56.5 dBm-sensitivity bluetooth low-energy wakeup receiver with energy harvesting in 65nm CMOS. IEEE International Solid-State Circuits Conference, 2016: 450
[35]
Roberts N E, Wentzloff D D. A 98 nW wake-up radio for wireless body area networks. IEEE Radio Frequency Integrated Circuits Symposium, 2012: 373
[36]
Huang X, Ba A, Harpe P, et al. A 915 MHz, Ultra-low power 2-tone transceiver with enhanced interference resilience. IEEE J Solid-State Circuits, 2012, 47(12): 3197 doi: 10.1109/JSSC.2012.2216706
[37]
Ye D, van der Zee R, Nauta B. An ultra-low-power receiver using transmitted-reference and shifted limiters for in-band interference resilience. IEEE International Solid-State Circuits Conference, 2016: 438
[38]
Pletcher N M, Gambini S, Member S, et al. A 52 μW wake-up receiver with -72 dBm sensitivity using an uncertain-if architecture. IEEE J Solid-State Circuits, 2009, 44(1): 269 doi: 10.1109/JSSC.2008.2007438
[39]
Huang X, Harpe P, Dolmans G, et al. A 780-950 MHz, 64-146 μW power-scalable synchronized-switching OOK receiver for wireless event-driven applications. IEEE J Solid-State Circuits, 2014, 49(5): 1135 doi: 10.1109/JSSC.2014.2307056
[40]
Vidojkovic M, Huang X, Harpe P, et al. A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications. IEEE Trans Biomed Circuits Syste 2011, 5(6): 523 doi: 10.1109/TBCAS.2011.2173340
[41]
Otis B, Chee Y H, Rabaey J. A 400 μW-RX, 1.6 mW-TX superregenerative transceiver for wireless sensor networks. IEEE International Solid-State Circuits Conference, 2005: 396
[42]
Cook B W, Berny A, Molnar A, et al. Low-power 2.4-GHz transceiver with passive RX front-end and 400-mV supply. IEEE J Solid-State Circuits, 2006, 41(12): 2757 doi: 10.1109/JSSC.2006.884801
[43]
Lont M, Milosevic D, Dolmans G, et al. Mixer-first FSK receiver with automatic frequency control for body area networks. IEEE Trans Circuits Syst I, 2013, 60(8): 2051 doi: 10.1109/TCSI.2013.2239179
[44]
Vidojkovic M, Huang X C, Wang X Y, et al. A 0.33 nJ/b IEEE802.15.6/proprietary-MICS/ISM-band transceiver with scalable data-rate from 11kb/s to 4.5Mb/s for medical applications. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014: 170
[45]
Pandey J, Shi J, Otis B. A 120 μW MICS/ISM-band FSK receiver with a 44 μW low-power mode based on injection-locking and 9x frequency multiplication. IEEE International Solid-State Circuits Conference, 2011: 460
[46]
Pandey J, Otis B P. A sub-100 μW MICS/ISM band transmitter based on injection-locking and frequency multiplication. IEEE J Solid-State Circuits, 2011, 46(5): 1049 doi: 10.1109/JSSC.2011.2118030
[47]
Mak P I, U S P, Martins R. Transceiver architecture selection: review, state-of-the-art survey and case study. IEEE Circuits Syst Mag, 2007, 7(2): 6 doi: 10.1109/MCAS.2007.4299439
Fig. 1.  Wireless sensor node system.

Fig. 2.  (Color online) Ultra-low voltage level shifters.

Fig. 3.  Proposed SRAM cell with equalized bitline[17].

Fig. 4.  (Color online) Principle of the equalized bitline[17].

Fig. 5.  (Color online) Network topologies for wireless sensing. (a) Star topology. (b) Mesh topology. (c) Combined star/mesh topology.

Fig. 6.  Low-power receiver architecture: envelope detection.

Fig. 7.  Low-power receiver architecture: super-regenerative.

Fig. 8.  Low-power receiver architecture: direct conversion.

Fig. 9.  Low-power transmitter architecture: direct conversion.

Fig. 10.  Low-power transmitter architecture: direct modulation.

[1]
Dreslinski R G, M. Wieckowski M, Blaauw D, et al. Near-threshold computing: reclaiming Moore’s law through energy efficient integrated circuits. Proc IEEE, 2010, 98(2): 253 doi: 10.1109/JPROC.2009.2034764
[2]
Calhoun B H, Wang A, Chandrakasan A. Modeling and sizing for minimum energy operation in subthreshold circuits. IEEE J Solid-State Circuits, 2005, 40(9): 1778 doi: 10.1109/JSSC.2005.852162
[3]
Kim T, Zhou J, Lian Y. Opportunities and challenges: ultra-low voltage digital IC design techniques. IEEE International Conference on ASIC, 2015: 1
[4]
Kwong J, Chandrakasan A. Variation-driven device sizing for minimum energy sub-threshold circuits. International Symposium on Low Power Electronics and Design, 2006: 8
[5]
Kim T, Eom H, Keane J, et al. Utilizing reverse short channel effect for optimal subthreshold circuit design. International Symposium on Low Power Electronics and Design, 2006: 127
[6]
Zhou J, Jayapal S, Busze B, et al. A 40 nm inverse-narrow-width-effect-aware sub-threshold standard cell library. Design Automation Conference, 2011: 441
[7]
Zhou J, Jayapal S, Busze B, et al. A 40 nm dual-width standard cell library for near/sub-threshold operation. IEEE Trans Circuits Syst I , 2012, 59(11): 2569 doi: 10.1109/TCSI.2012.2190674
[8]
Lin Y S, Sylvester D M. Single stage static level shifter design for subthreshold to I/O voltage conversion. International Symposium on Low Power Electronics and Design, 2008: 197
[9]
Chang I J, Kim J J, Kim K, et al. Robust level converter for subthreshold/super-threshold operation: 100 mV to 2.5 V. IEEE Trans Very Large Scale Integr Syst, 2011, 19(8): 1429 doi: 10.1109/TVLSI.2010.2051240
[10]
Zhai B, Pant S L. Nazhandali L, et al. Energy efficient subthreshold processor design. IEEE Trans Very Large Scale Integr Syst, 2009, 17(8): 1127 doi: 10.1109/TVLSI.2008.2007564
[11]
Wooters S N, Calhoun B H, Blalock T N. An energy-efficient subthreshold level converter in 130-nm CMOS. IEEE Trans Circuits Syst II, 2010, 57(4): 290 doi: 10.1109/TCSII.2010.2043471
[12]
Level shifter circuit. US Patent 7924080, 2011, Toshiba
[13]
Osaki Y, Hirose T, Kuroki N, et al. A low-power level shifter with logic error correction for extremely low-voltage digital CMOS LSIs. IEEE J Solid-State Circuits, 2012, 47(7): 1776 doi: 10.1109/JSSC.2012.2191320
[14]
Lutkemeier S, Ruckert U. A subthreshold to above-threshold level shifter comprising a wilson current mirror. IEEE Trans Circuits Syst II, 2010, 57(9): 721 doi: 10.1109/TCSII.2010.2056110
[15]
Zhou J, Wang C, Liu X, et al. An ultra-low voltage level shifter using revised wilson current mirror for fast and energy-efficient wide-range voltage conversion from sub-threshold to I/O voltage. IEEE Trans Circuits Syst I , 2015, 62(3): 697 doi: 10.1109/TCSI.2014.2380691
[16]
Verma N, Chandrakasan A P. A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE J Solid-State Circuits, 2008, 43(1): 141 doi: 10.1109/JSSC.2007.908005
[17]
Li Q, Wang B, Kim T T. A 5.61 pJ, 16 kb 9T SRAM with single-ended equalized bitlines and fast local write-back for cell stability improvement. IEEE European Solid-State Device Research Conference, 2012: 201
[18]
Das S, Tokunaga C, Pant S, et al. Razor II: in situ error detection and correction for PVT and SER tolerance. IEEE J Solid-State Circuits, 2009, 44(1): 32 doi: 10.1109/JSSC.2008.2007145
[19]
Fuketa H, Hashimoto M, Mitsuyama Y, et al. Adaptive performance compensation with in situ timing error predictive sensors for subthreshold circuits. IEEE Trans Very Large Scale Integr Syst, 2012, 20(2): 333 doi: 10.1109/TVLSI.2010.2101089
[20]
Zhou J, Liu X, Lam Y H, et al. HEPP: a new in situ timing-error prediction and prevention technique for variation-tolerant ultra-low-voltage designs. IEEE Asian Solid-State Circuits Conference, 2013: 129
[21]
Bluetooth Core Specification v5.0. https://www.bluetooth. org/en-us/specification/adopted-specifications
[22]
ZigBee Alliance. http://www.zigbee.org
[23]
SIGFOX Technology. http://www.sigfox.com/en/#!/technology
[24]
LoRaWANTM For Developers. https://www.lora-alliance. org/For-Developers/LoRaWANDevelopers
[25]
IEEE 802.15TM: WIRELESS PERSONAL AREA NETWORKS (PANs). https://standards.ieee.org/about/get/ 802/802.15.html
[26]
Shelby Z, Bormann C. 6LoWPAN: The Embedded Internet. Wiley, 2009
[27]
Aust S, Prasad R V, Niemegeers I. G. M. M. IEEE 802.11ah: Advantages in standards and further challenges for sub 1 GHz Wi-Fi. IEEE International Conference on Communications. 2012: 6885
[28]
IEEE WLAN. http://www.ieee802.org/11/
[29]
Kwak K S, Ullah S, Ullah N. An overview of IEEE 802.15.6 standard. International Symposium on Applied Sciences in Biomedical and Communication Technologies, 2010: 1
[30]
Zimmerman T G. Personal area networks: near-field intrabody communication. IBM Syst J, 1996, 35(3): 609
[31]
I. Poole I. SIGFOX for M2M & IoT. http://www.radio-electronics.com/info/wireless/sigfox/basics-tutorial.php
[32]
A Cellular-type Protocol Innovation for the Internet of Things. http://www.theinternetofthings.eu/sites/default/files/%5Buser-name%5D/M2C%20Whitepaper%20for%20IoT%20Connectivity.pdf
[33]
3GPP The Mobile Broadband Standard. Standardization of NB-IOT completed. http://www.3gpp.org/news-events/3gpp-news/1785-nb_iot_complete
[34]
Roberts N E, Craig K, Shrivastava A, et al. 26.8 A 236 nW -56.5 dBm-sensitivity bluetooth low-energy wakeup receiver with energy harvesting in 65nm CMOS. IEEE International Solid-State Circuits Conference, 2016: 450
[35]
Roberts N E, Wentzloff D D. A 98 nW wake-up radio for wireless body area networks. IEEE Radio Frequency Integrated Circuits Symposium, 2012: 373
[36]
Huang X, Ba A, Harpe P, et al. A 915 MHz, Ultra-low power 2-tone transceiver with enhanced interference resilience. IEEE J Solid-State Circuits, 2012, 47(12): 3197 doi: 10.1109/JSSC.2012.2216706
[37]
Ye D, van der Zee R, Nauta B. An ultra-low-power receiver using transmitted-reference and shifted limiters for in-band interference resilience. IEEE International Solid-State Circuits Conference, 2016: 438
[38]
Pletcher N M, Gambini S, Member S, et al. A 52 μW wake-up receiver with -72 dBm sensitivity using an uncertain-if architecture. IEEE J Solid-State Circuits, 2009, 44(1): 269 doi: 10.1109/JSSC.2008.2007438
[39]
Huang X, Harpe P, Dolmans G, et al. A 780-950 MHz, 64-146 μW power-scalable synchronized-switching OOK receiver for wireless event-driven applications. IEEE J Solid-State Circuits, 2014, 49(5): 1135 doi: 10.1109/JSSC.2014.2307056
[40]
Vidojkovic M, Huang X, Harpe P, et al. A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications. IEEE Trans Biomed Circuits Syste 2011, 5(6): 523 doi: 10.1109/TBCAS.2011.2173340
[41]
Otis B, Chee Y H, Rabaey J. A 400 μW-RX, 1.6 mW-TX superregenerative transceiver for wireless sensor networks. IEEE International Solid-State Circuits Conference, 2005: 396
[42]
Cook B W, Berny A, Molnar A, et al. Low-power 2.4-GHz transceiver with passive RX front-end and 400-mV supply. IEEE J Solid-State Circuits, 2006, 41(12): 2757 doi: 10.1109/JSSC.2006.884801
[43]
Lont M, Milosevic D, Dolmans G, et al. Mixer-first FSK receiver with automatic frequency control for body area networks. IEEE Trans Circuits Syst I, 2013, 60(8): 2051 doi: 10.1109/TCSI.2013.2239179
[44]
Vidojkovic M, Huang X C, Wang X Y, et al. A 0.33 nJ/b IEEE802.15.6/proprietary-MICS/ISM-band transceiver with scalable data-rate from 11kb/s to 4.5Mb/s for medical applications. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014: 170
[45]
Pandey J, Shi J, Otis B. A 120 μW MICS/ISM-band FSK receiver with a 44 μW low-power mode based on injection-locking and 9x frequency multiplication. IEEE International Solid-State Circuits Conference, 2011: 460
[46]
Pandey J, Otis B P. A sub-100 μW MICS/ISM band transmitter based on injection-locking and frequency multiplication. IEEE J Solid-State Circuits, 2011, 46(5): 1049 doi: 10.1109/JSSC.2011.2118030
[47]
Mak P I, U S P, Martins R. Transceiver architecture selection: review, state-of-the-art survey and case study. IEEE Circuits Syst Mag, 2007, 7(2): 6 doi: 10.1109/MCAS.2007.4299439
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4116 Times PDF downloads: 47 Times Cited by: 0 Times

    History

    Received: 28 March 2017 Revised: 02 May 2017 Online: Accepted Manuscript: 13 November 2017Published: 01 October 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jun Zhou, Xiongchuan Huang, Chao Wang, Tony Tae-Hyoung Kim, Yong Lian. Energy-efficient digital and wireless IC design for wireless smart sensing[J]. Journal of Semiconductors, 2017, 38(10): 105005. doi: 10.1088/1674-4926/38/10/105005 J Zhou, X C Huang, C Wang, T T H Kim, Y Lian. Energy-efficient digital and wireless IC design for wireless smart sensing[J]. J. Semicond., 2017, 38(10): 105005. doi:  10.1088/1674-4926/38/10/105005.Export: BibTex EndNote
      Citation:
      Jun Zhou, Xiongchuan Huang, Chao Wang, Tony Tae-Hyoung Kim, Yong Lian. Energy-efficient digital and wireless IC design for wireless smart sensing[J]. Journal of Semiconductors, 2017, 38(10): 105005. doi: 10.1088/1674-4926/38/10/105005

      J Zhou, X C Huang, C Wang, T T H Kim, Y Lian. Energy-efficient digital and wireless IC design for wireless smart sensing[J]. J. Semicond., 2017, 38(10): 105005. doi:  10.1088/1674-4926/38/10/105005.
      Export: BibTex EndNote

      Energy-efficient digital and wireless IC design for wireless smart sensing

      doi: 10.1088/1674-4926/38/10/105005
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return