Visible-to-near-infrared photodetectors based on SnS/SnSe₂ and SnSe/SnSe₂ p–n heterostructures with a fast response speed and high normalized detectivity

Xinfa Zhu¹, Weishuai Duan¹, Xiancheng Meng¹, Biao He¹, Yonghui Zhang¹, Pengyu Zhou^{2, \square}, Mengjun Wang¹, Hongxing Zheng¹, and Chao Fan^{1, \square}

¹ School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China

² School of Science, Northeast Electric Power University, Jilin, 132012, China

[™]Correspondence to: Pengyu Zhou, <u>20162715@neepu.edu.cn</u>; Chao Fan, fanch@hebut.edu.cn

Fig. S1 (a) Diagram of the photodetector based on SnS/SnSe₂ heterostructure.

Fig. S1 (a) shows the diagram of the photodetector and the size of the device is nearly 550 \times 550 μ m².

Fig. S2. Output curves of photodetectors based on SnSe₂ (a), SnS (b), and SnSe (c). Transfer curves of photodetectors based on SnSe₂ (d), SnS (e), and SnSe (f). Schematic images are shown in the insets.

The electrical characteristics of the photodetectors based on individual materials were investigated. Figs. S2 (a–c) shows the output curves of photodetectors based on SnSe₂, SnS, and SnSe, respectively. The output curves show good linearity, implying a good ohmic contact between samples and Au electrodes. The transfer curves of photodetectors based on SnSe₂, SnS, and SnSe are shown in Figs. S2 (d–f). For SnSe₂, the drain–source current (I_{ds}) increases with the increase of V_{gs} , indicating that SnSe₂ thin films show n–type behavior. Additionally, SnS and SnSe thin films exhibit p–type behaviors. The mobility values of photodetectors based on SnSe₂, SnS, and SnSe were estimated to be 10, 5.29, and 6.84 cm² V⁻¹ s⁻¹.

Fig. S3. photodetection performance of photodetectors based individual materials under the illumination of 405 nm. Current–voltage curves of photodetectors based on SnSe₂ (a), SnS (b), and SnSe (c). Transient photoresponse of photodetectors based on SnSe₂ (d), SnS (e), and SnSe (f). Response time of photodetectors based on SnSe₂ (g), SnS (h), and SnSe (i).

The photodetection performance of photodetectors based on SnSe₂, SnS, and SnSe under the illumination of 405 nm were detected. Figs. S3 (a–c) shows the current–voltage ($I_{ds}-V_{ds}$) curves of photodetectors based on individual materials with different power densities of 17.8, 35.7, 75.3 µW mm⁻². As the light power density increased, I_{ds} increased simultaneously. Figs. S2 (d–f) presents the current–time (I_{ds} –T) curves of such photodetectors at $V_{ds} = 5$ V. As photodetectors were exposed to illumination, the current increased to saturation. While the laser was turned off, the current decayed immediately to the initial state. The response time of such photodetectors was shown in Figs. S3 (g–i). The response time including the rise time τ_r and fall time τ_f were estimated as 17.97/19.43 ms (SnSe₂), 31.96/34.89 ms (SnS), and 53.65/60.88 ms (SnSe).

Fig. S4. Photocurrent as a function of optical power density under the illumination of 405 (a) and 850 nm (b).

Fig. S4 depicts the relationship between photocurrent and optical power density. Under the 405 nm illumination, the α values were estimated to be 0.69 and 0.60 for the SnSe₂/SnS and SnSe₂/SnSe photodetector, which are larger than that of the photodetector based on the SnSe₂ thin layers (0.32). Similarly, under the 850 nm illumination, the α values of SnSe₂/SnS (0.97) and SnSe₂/SnSe (0.95) photodetector are also larger than that of SnSe₂—based photodetectors (0.77), revealing the enhanced photocurrent conversion efficiency.

Fig. S5. photodetection performance of SnS/SnSe₂ photodetectors under the illumination of different wavelengths. Current–voltage curves of SnS/SnSe₂ photodetectors to 532 (a), 650 (b), and 850 nm (c). Transient photoresponse of SnS/SnSe₂ photodetectors to 532 (d), 650 (e), and 850 nm (f).

The photodetection performance of SnS/SnSe₂ photodetectors under the illumination of different wavelengths were detected. Figs. S5 (a–c) shows the current–voltage ($I_{ds}-V_{ds}$) curves of SnS/SnSe₂ photodetectors under the illumination of 532, 650, and 850 nm. The photodetectors exhibited an excellent broad–spectrum photodetection performance in the region from 532 nm to 850 nm. Figs. S5 (d–f) presents the current–time ($I_{ds}-T$) curves of SnS/SnSe₂ photodetectors with different wavelength. The bias voltage was set at 5 V. As can be seen that currents could alternate between saturation and initial state rapidly. And photocurrents increased multiplicatively as the light power density increased.

Fig. S6. photodetection performance of SnSe/SnSe₂ photodetectors under the illumination of different wavelengths. $I_{ds}-V_{ds}$ curves of SnSe/SnSe₂ photodetectors to 532 (a), 650 (b), and 850 nm (c). $I_{ds}-T$ curves of SnSe/SnSe₂ photodetectors to 532 (d), 650 (e), and 850 nm (f).

The photodetection performance of SnSe/SnSe₂ photodetectors under the illumination of different wavelengths were detected. Figs. S6 (a–c) presents the $I_{ds}-V_{ds}$ curves of SnSe/SnSe₂ photodetectors under the illumination of 532, 650, and 850 nm. The SnSe/SnSe₂ photodetectors also showed an excellent photodetection performance in the region from 532 nm to 850 nm. Figs. S6 (d–f) plots the $I_{ds}-T$ curves of SnS/SnSe₂ photodetectors with different wavelength. The photodetectors based on SnS/SnSe₂ also exhibit an instant response to the broad–spectrum illumination.

As shown in Figs. S7 (a) and (b), the noise currents of the $SnS/SnSe_2$ and $SnSe/SnSe_2$ photodetectors can be derived from the fast Fourier transform of the dark current^[1]. In general, the photodetector noise consists of the flicker noise (1/f noise), thermal noise, and shot noise^[2]. At the frequency below 14.7 Hz (12.5 Hz), the noise current is mainly flicker noise and has a linear relationship with the frequency. At the high frequency above 14.7 Hz (12.5 Hz), the noise current is dominated by the thermal noise and shot noise dominate.

Fig. S8. Responsivity (a) and normalized detectivity (b) as a function of the power intensity of the 405 nm illumination.

Figs. S8 (a) and (b) show the responsivity (*R*) and normalized detectivity (D^*) as a function of the power intensity of the 405 nm illumination. The responsivity and normalized detectivity decrease with the increase of the light power intensity. The maximum *R* values of the SnS/SnSe₂ and SnSe/SnSe₂ photodetectors were determined to be 4.99 × 10³ and 5.91 × 10³ A W⁻¹, respectively, which are significantly higher than that of photodetectors based on individual SnSe₂ (2.46 × 10³ A W⁻¹), SnS (1.19 × 10³ A W⁻¹), and SnSe (1.37 × 10³ A W⁻¹). The *D*^{*} values of the SnS/SnSe₂ and SnSe/SnSe₂ photodetectors were determined to be 5.78 × 10¹² and 7.03 × 10¹² cm Hz^{1/2} W⁻¹, which are one order of magnitude higher than that of photodetectors based on individual SnSe₂ (8.79 × 10¹¹ cm Hz^{1/2} W⁻¹), SnS (5.69 × 10¹¹ cm Hz^{1/2} W⁻¹), and SnSe (9.82 × 10¹¹ cm Hz^{1/2} W⁻¹).

Fig. S9. External quantum efficiency (a) and noise equivalent power (b) as a function of the wavelength.

Fig. S9 (a) shows the external quantum efficiency (*EQE*) as a function of the wavelength. The external quantum efficiency decreased with the increase of the wavelength. The maximum *EQE* values of the SnS/SnSe₂ and SnSe/SnSe₂ photodetectors were determined to be $1.53 \times 10^{4\%}$ and $1.81 \times 10^{4\%}$, respectively. Fig. S9 (b) presents the noise equivalent power (*NEP*) as a function of the wavelength. The noise equivalent power increased with the increase of the wavelength. The minimum *NEP* values of the SnS/SnSe₂ and SnSe/SnSe₂ and SnSe/SnSe₂ photodetectors were determined to be 8.02×10^{-5} and 7.29×10^{-5} pW Hz^{1/2}, respectively.

Fig. S10. Band structures of the SnSe₂ (a), SnS (b), and SnSe (c).

Furthermore, first–principles calculations based on the density function theory (DFT) were performed using the Vienna Ab–initio Simulation Package (VASP)^[3]. The generalized gradient approximation (GGA) in the form of Perdew–Burke–Ernzerhof (PBE) was used to illustrate the exchanged–related effects. A vacuum space of 15 Å were used to avoid artificial interactions. The cut–off energy was set to 400 eV for all calculations. The Grimme DFT-D3 scheme was adopted to account for the van der Waals (vdW) interactions ^{[4][5]}. Energy and force convergence criteria was set to 10^{-5} eV and 10^{-3} eV/Å for the structural optimization. The work function difference between SnSe₂ and SnS is 1.67 eV, which is less than that between SnSe₂ and SnSe (1.73 eV). As shown in Figs. 10 (a–c), the bandgap of SnSe₂, SnS, and SnSe were calculated to be 0.88, 1.39, and 1.07 eV, respectively.

	$\lambda(nm)$	R (A W ⁻¹)	D^* (cm Hz ^{1/2} W)	$\tau_r / \tau_f(\mathrm{ms})$	Reference
SnSe ₂	405	2460.3	8.79×10 ¹¹	17.97	This work
SnS	405	1390.0	5.69×10 ¹¹	31.96	This work
SnSe	405	1371.8	9.82×10 ¹¹	53.65	This work
SnS/SnSe ₂	405	4990.3	5.80×10^{12}	3.13	This work
	532	4230.2	4.84×10^{12}	4.98	
	650	1750.1	1.73×10^{12}	7.22	
	850	939.3	1.02×10^{12}	8.76	
SnSe/SnSe ₂	405	5912.3	7.03×10^{12}	4.74	This work
	532	5451.8	5.81×10^{12}	6.12	
	650	1890.2	1.63×10^{12}	8.49	
	850	1102.4	8.38×10^{11}	10.37	
WSe_2/MoS_2	532	2700	5.00×10^{11}	17	ref.[6]
SnTe/Ge	808	0.62	2.33×10^{10}	206	ref.[7]
$SnSe_2/MoS_2$	500	9100	9.3×10^{10}	200	ref.[8]
$SnSe_2/WSe_2$	532	588	4.4×10^{10}	16	ref.[9]
PbSe/MoS ₂	808	19.7	2.65×10^{10}	720	ref.[10]
Gr/SnSe ₂ /Gr	532	1300	1.48×10^{12}	30.2	ref.[11]
PbSe QDs/ZnO	808	0.97	1.86×10 ¹¹	340	ref.[12]
ZnIn ₂ S ₄ /Si	808	0.50	2.00×10^{12}	29	ref.[13]
Bi ₂ Te ₃ /Si	635	1	2.50×10 ¹¹	100	ref.[14]
MoS ₂ /SiNWs	450	2.98	2.70×10^{11}	450	ref.[15]
$MoS_{2/}CuPc$	500	3000	2×10^{10}	0.44	ref.[16]

Tab. S1. A comparison of the photodetecting performance

Reference:

- [1] Wang W, Zhao D, Zhang F, et al. Highly sensitive low-bandgap perovskite photodetectors with response from ultraviolet to the near-infrared region. Adv. Funct. Mater, 2017, 27(42): 1703953
- [2] Gong X, Tong M, Xia Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325(5948): 1665
- [3] P.-F. Loos, Exchange functionals based on finite uniform electron gases. J.Chem. Phys, 2017, 146(11): 114108
- [4] Qin X Q, Dai L, Li H B, et al. Enhanced HER catalysis based on MXene/N-doped graphene heterostructures: A first-principles study. Int. J. Hydrog. Energy, 2022, 47(35): 15775
- [5] Grimme S, Antony J, Ehrlich S, et al. consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010, 132:154104
- [6] Shin G H, Park C, Lee K J, et al. Ultrasensitive phototransistor based on WSe₂-MoS₂ van der Waals heterojunction. Nano Letters, 2020, 20(8): 5741
- [7] Song L, Tang L, Hao Q, et al. Broadband photodetector based on SnTe nanofilm/n-Ge heterostructure. Nanotechnology, 2022, 33(42): 425203
- [8] Zhou X, Zhou N, Li C, et al. Vertical heterostructures based on SnSe₂/MoS₂ for high performance photodetectors. 2D Mater, 2017, 4(2): 025048
- [9] Xue H, Dai Y, Kim W, et al. High photoresponsivity and broadband photodetection with a bandengineered WSe₂/SnSe₂ heterostructure. Nanoscale, 2019, 11(7): 3240
- [10] Peng M, Tao Y, Hong X, et al. One-step synthesized PbSe nanocrystal inks decorated 2D MoS₂ heterostructure for high stability photodetectors with photoresponse extending to near-infrared region. J. Mater. Chem. C, 2022, 10(6): 2236
- [11] Gao W, Zheng Z, Li Y, et al. High performance tin diselenide photodetectors dependent on thickness: a vertical graphene sandwiched device and interfacial mechanism. Nanoscale, 2019, 11(28): 13309
- [12] Peng M, Liu Y, Li F, et al. Room-temperature direct synthesis of PbSe quantum dot inks for high-detectivity near-infrared photodetectors. ACS Appl. Mater. Interfaces, 2021, 13(43): 51198
- [13] Zheng Z, Yao J, Li W, et al. Fabrication of a high performance ZnIn₂S₄/Si heterostructure photodetector array for weak signal detection. J. Mater. Chem. C, 2018, 6(47): 12928
- [14] Yao J, Shao J, Wang Y, et al. Ultra-broadband and high response of the Bi₂Te₃-Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale, 2015, 7(29): 12535
- [15] Sharmila B, Dwivedi P. MoS₂/SiNWs heterostructure based repeatable and highly responsive photodetector. Opt. Mater, 2022, 133: 112918
- [16] Xu Z H, Tang L, Zhang S W, et al. 2D MoS₂/CuPc heterojunction based highly sensitive photodetectors through ultrafast charge transfer. Mater. Today Phys, 2020, 15: 100273