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SUPPORTING INFORMATION

1.  Device fabrication and measurements

Conventional solar cells
A  30  nm  thick  PEDOT:PSS  layer  was  made  by  spin-coat-

ing an aqueous dispersion onto ITO glass (4000 rpm for 30 s).
PEDOT:PSS  substrates  were  dried  at  150  °C  for  10  min.  A
blend  solution  of  D18-Cl  (Mn:  70.5  kDa,  PDI:  2.27),  N3  and
PC61BM  in  chloroform  (13  mg/mL)  with  0.3  vol%  DPE  addit-
ive was spin-coated onto PEDOT:PSS layer. PDIN (2 mg/mL) in
MeOH:AcOH  (1000  :  3)  was  spin-coated  onto  active  layer
(5000  rpm  for  30  s).  Ag  (~80  nm)  was  evaporated  onto  PDIN
through  a  shadow  mask  (pressure  ca.  10-4 Pa).  The  device
area is 4 mm2. The thicknesses of the active layers were meas-
ured by using a KLA Tencor D-120 profilometer. The illumina-
tion  intensity  of  solar  simulator  was  determined  by  using  a
monocrystalline silicon solar cell (Enli SRC2020, 2 × 2 cm2) cal-
ibrated  by  the  National  Institute  of  Metrology  (NIM). J–V
curves  were  measured  by  using  a  computerized  Keithley
2400  SourceMeter  and  a  Xenon-lamp-based  solar  simulator
(Enli Tech, AM 1.5G, 100 mW/cm2).  When doing J–V measure-
ments,  a  metal  mask  with  an  aperture  (2.56  mm2)  was  used
to  define  the  effective  area.  The  external  quantum  efficiency
(EQE)  spectra  were  measured  by  using  a  QE-R3011  measu-
rement  system  (Enli  Tech).  The  best  cells  were  further  test-

ed  at  NIM  for  certification.  A  metal  mask  with  an  aperture
(2.580 mm2) was used to define the effective area.

Hole-only devices
The  structure  for  hole-only  devices  is  ITO/PEDOT:PSS/ac-

tive layer/MoO3/Al.  A 30 nm thick PEDOT:PSS layer was made
by  spin-coating  an  aqueous  dispersion  onto  ITO  glass
(4000  rpm  for  30  s).  PEDOT:PSS  substrates  were  dried  at
150  °C  for  10  min.  A  D18-Cl:N3:PC61BM  (or  D18-Cl:N3)  blend
in CF was spin-coated onto PEDOT:PSS. Finally, MoO3 (~6 nm)
and Al (~100 nm) were successively evaporated onto the act-
ive  layer  through  a  shadow  mask  (pressure  ca.  10–4 Pa). J–V
curves  were  measured  by  using  a  computerized  Keithley
2400 SourceMeter in the dark.

Electron-only devices
The  structure  for  electron-only  devices  is  ITO/ZnO/active

layer/PDIN/Al.  The  ZnO  precursor  solution  was  spin-coated
onto  ITO  glass  (4000  rpm  for  30  s).  The  films  were  annealed
at  200  °C  in  air  for  20  min.  ZnO  film  thickness  is  ~30  nm.  A
D18-Cl:N3:PC61BM (or D18-Cl:N3) blend in CF was spin-coated
onto  ZnO.  PDIN  (2  mg/mL)  in  MeOH:AcOH  (1000  :  3)  was
spin-coated onto active layer (5000 rpm for 30 s). Al (~100 nm)
was evaporated onto the active layer through a shadow mask
(pressure  ca.  10–4 Pa). J–V curves  were  measured  by  using  a
computerized Keithley 2400 SourceMeter in the dark.

2.  Optimization of device performance
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Table S1.   Optimization of D : A1 : A2 ratio for D18-Cl:N3:PC61BM solar cellsa.

D : A1 : A2 (w/w/w) Voc (V) Jsc (mA/cm2) FF (%) PCE (%)

1 : 1.4 : 0 0.847 27.56 76.5 17.85 (17.82)b

1 : 1.4 : 0.1 0.846 27.86 77.2 18.19 (18.14)
1 : 1.4 : 0.2 0.843 27.72 77.3 18.05 (17.90)
1 : 1.4 : 0.3 0.841 27.59 76.8 17.82 (17.71)

aBlend solution: 13 mg/mL in CF with 0.3 vol% DPE; spin-coating: 4000 rpm
for 30 s.
bData in parentheses stand for the average PCEs for 10 cells.

Table S2.   Optimization of DPE content for D18-Cl:N3:PC61BM (1 : 1.4 : 0.1) solar cellsa.

DPE (vol%) Voc (V) Jsc (mA/cm2) FF (%) PCE (%)

0 0.853 26.83 77.6 17.75 (17.69)b

0.3 0.846 27.86 77.2 18.19 (18.14)
0.6 0.842 27.77 77.0 18.00 (17.84)
0.9 0.841 27.70 76.2 17.75 (17.70)

aBlend solution: 13 mg/mL in CF; spin-coating: 4000 rpm for 30 s.
bData in parentheses stand for the average PCEs for 10 cells.
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3.   J–V

 

4.  EQE  

Table S3.   Optimization of the active layer thickness for D18-Cl:N3:PC61BM (1 : 1.4 : 0.1) solar cellsa.

Thickness (nm) Voc (V) Jsc (mA/cm2) FF (%) PCE (%)

158 0.837 27.61 76.7 17.73 (17.51)b

130 0.846 27.86 77.2 18.19 (18.14)
114 0.849 28.22 78.0 18.69 (18.47)
103 0.847 27.45 78.3 18.21 (18.17)
aBlend solution: 13 mg/mL in CF with 0.3 vol% DPE.
bData in parentheses stand for the average PCEs for 10 cells.

 

C
u

rr
e

n
t 

d
e

n
si

ty
 (

m
A

/c
m

2
)

0

−10

−20

−30

D18-Cl:N3:PC61BM

Voc: 0.849 V

Jsc: 28.22 mA cm−2

FF: 78.0%

PCE: 18.69%

Voltage (V)

−0.2 0 0.2 0.4 0.6 0.8 1.0

 

Fig. S1. The J–V curve for the best D18-Cl:N3:PC61BM cell.
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Fig. S2. The EQE spectrum for the best D18-Cl:N3:PC61BM cell.
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5.  NIM certification

 

6.  SCLC

Charge  carrier  mobility  was  measured  by  SCLC  method.
The  mobility  was  determined  by  fitting  the  dark  current  to
the model of a single carrier SCLC, which is described by: 

J = 

εεrμ

V

d
,

where J is  the  current  density, μ is  the  zero-field  mobility  of
holes  (μh)  or  electrons  (μe), ε0 is  the  permittivity  of  the  vacu-
um, εr is the relative permittivity of the material, d is the thick-
ness  of  the  blend  film,  and V is  the  effective  voltage  (V =
Vappl – Vbi,  where Vappl is  the  applied  voltage,  and Vbi is  the
built-in  potential  determined  by  electrode  work  function  dif-
ference).  Here, Vbi =  0.1  V  for  hole-only  devices, Vbi =  0  V  for
electron-only devices[1].  The mobility was calculated from the
slope of J1/2–V plot.

 

 

Fig. S3. NIM (Beijing) report for D18-Cl:N3:PC61BM solar cells.
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Table S4.   Hole and electron mobilities.

Film μh (cm2/(V·s)) μe (cm2/(V·s)) μh/μe

D18-Cl:N3 (1 : 1.4) 8.18 × 10–4 6.32 × 10–4 1.29
D18-Cl:N3:PC61BM (1 : 1.4 : 0.1) 8.34 × 10–4 7.42 × 10–4 1.12
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Fig.  S4.  (a) J –V curves  and  (b)  corresponding J1/2– V plots  for  the  hole-only  devices  (in  dark).  The  thicknesses  for  D18-Cl:N3  (1  :  1.4)  and  D18-
Cl:N3:PC61BM (1 : 1.4 : 0.1) films are 118 and 115 nm, respectively.
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Fig. S5. (a) J–V curves and (b) corresponding J1/2–V plots for the electron-only devices (in dark). The thicknesses for D18-Cl:N3 (1 : 1.4) and D18-
Cl:N3:PC61BM (1 : 1.4 : 0.1) films are 98 and 100 nm, respectively.
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