

18.69% PCE from organic solar cells

Ke Jin, Zuo Xiao[†], and Liming Ding[†]

Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China

Citation: K Jin, Z Xiao, and L M Ding, 18.69% PCE from organic solar cells[J]. J. Semicond., 2021, 42(6), 060502. http://doi.org/ 10.1088/1674-4926/42/6/060502

SUPPORTING INFORMATION

1. Device fabrication and measurements

Conventional solar cells

A 30 nm thick PEDOT:PSS layer was made by spin-coating an aqueous dispersion onto ITO glass (4000 rpm for 30 s). PEDOT:PSS substrates were dried at 150 °C for 10 min. A blend solution of D18-Cl (M_n: 70.5 kDa, PDI: 2.27), N3 and PC₆₁BM in chloroform (13 mg/mL) with 0.3 vol% DPE additive was spin-coated onto PEDOT:PSS layer. PDIN (2 mg/mL) in MeOH:AcOH (1000 : 3) was spin-coated onto active layer (5000 rpm for 30 s). Ag (~80 nm) was evaporated onto PDIN through a shadow mask (pressure ca. 10⁻⁴ Pa). The device area is 4 mm². The thicknesses of the active layers were measured by using a KLA Tencor D-120 profilometer. The illumination intensity of solar simulator was determined by using a monocrystalline silicon solar cell (Enli SRC2020, 2 × 2 cm²) calibrated by the National Institute of Metrology (NIM). J-V curves were measured by using a computerized Keithley 2400 SourceMeter and a Xenon-lamp-based solar simulator (Enli Tech, AM 1.5G, 100 mW/cm²). When doing J-V measurements, a metal mask with an aperture (2.56 mm²) was used to define the effective area. The external quantum efficiency (EQE) spectra were measured by using a QE-R3011 measurement system (Enli Tech). The best cells were further tested at NIM for certification. A metal mask with an aperture (2.580 mm²) was used to define the effective area.

Hole-only devices

The structure for hole-only devices is ITO/PEDOT:PSS/active layer/MoO₃/Al. A 30 nm thick PEDOT:PSS layer was made by spin-coating an aqueous dispersion onto ITO glass (4000 rpm for 30 s). PEDOT:PSS substrates were dried at 150 °C for 10 min. A D18-Cl:N3:PC₆₁BM (or D18-Cl:N3) blend in CF was spin-coated onto PEDOT:PSS. Finally, MoO₃ (~6 nm) and Al (~100 nm) were successively evaporated onto the active layer through a shadow mask (pressure ca. 10⁻⁴ Pa). *J–V* curves were measured by using a computerized Keithley 2400 SourceMeter in the dark.

Electron-only devices

The structure for electron-only devices is ITO/ZnO/active layer/PDIN/Al. The ZnO precursor solution was spin-coated onto ITO glass (4000 rpm for 30 s). The films were annealed at 200 °C in air for 20 min. ZnO film thickness is ~30 nm. A D18-Cl:N3:PC₆₁BM (or D18-Cl:N3) blend in CF was spin-coated onto ZnO. PDIN (2 mg/mL) in MeOH:AcOH (1000 : 3) was spin-coated onto active layer (5000 rpm for 30 s). Al (~100 nm) was evaporated onto the active layer through a shadow mask (pressure ca. 10^{-4} Pa). *J*-*V* curves were measured by using a computerized Keithley 2400 SourceMeter in the dark.

2. Optimization of device performance

Table S1. Optimization of D : A_1 : A_2 ratio for D18-Cl:N3:PC₆₁BM solar cells^a.

$D:A_1:A_2(w/w/w)$	$V_{\rm oc}$ (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)
1:1.4:0	0.847	27.56	76.5	17.85 (17.82) ^b
1:1.4:0.1	0.846	27.86	77.2	18.19 (18.14)
1:1.4:0.2	0.843	27.72	77.3	18.05 (17.90)
1:1.4:0.3	0.841	27.59	76.8	17.82 (17.71)
^a Blend solution: 13 r	na/ml_in	CF with 0.3 vol%	DPE: spin-	coating: 4000 rpm

"Blend solution: 13 mg/mL in CF with 0.3 vol% DPE; spin-coating: 4000 rj for 30 s.

^bData in parentheses stand for the average PCEs for 10 cells.

Table S2. Optimization of DPE content for D18-Cl:N3:PC₆₁BM (1:1.4:0.1) solar cells^a.

DPE (vol%)	$V_{\rm oc}(V)$	J _{sc} (mA/cm ²)	FF (%)	PCE (%)
0	0.853	26.83	77.6	17.75 (17.69) ^b
0.3	0.846	27.86	77.2	18.19 (18.14)
0.6	0.842	27.77	77.0	18.00 (17.84)
0.9	0.841	27.70	76.2	17.75 (17.70)

^aBlend solution: 13 mg/mL in CF; spin-coating: 4000 rpm for 30 s. ^bData in parentheses stand for the average PCEs for 10 cells.

Correspondence to: Z Xiao, xiaoz@nanoctr.cn; L M Ding, ding@nanoctr.cn Received 27 MARCH 2021.

Table S3. Optimization of the active layer thickness for D18-Cl:N3:PC₆₁BM (1:1.4:0.1) solar cells^a.

Thickness (nm)	$V_{\rm oc}$ (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)
158	0.837	27.61	76.7	17.73 (17.51) ^b
130	0.846	27.86	77.2	18.19 (18.14)
114	0.849	28.22	78.0	18.69 (18.47)
103	0.847	27.45	78.3	18.21 (18.17)

^aBlend solution: 13 mg/mL in CF with 0.3 vol% DPE.

^bData in parentheses stand for the average PCEs for 10 cells.

3. *J–V*

Fig. S1. The *J*–*V* curve for the best D18-Cl:N3:PC₆₁BM cell.

Fig. S2. The EQE spectrum for the best D18-Cl:N3:PC_{61}BM cell.

4. EQE

5. NIM certification

Fig. S3. NIM (Beijing) report for D18-Cl:N3:PC₆₁BM solar cells.

6. SCLC

Charge carrier mobility was measured by SCLC method. The mobility was determined by fitting the dark current to the model of a single carrier SCLC, which is described by:

$$J=\frac{9}{8}\varepsilon_0\varepsilon_{\rm r}\mu\frac{V^2}{d^3},$$

where *J* is the current density, μ is the zero-field mobility of holes (μ_h) or electrons (μ_e), ε_0 is the permittivity of the vacuum, ε_r is the relative permittivity of the material, *d* is the thickness of the blend film, and *V* is the effective voltage ($V = V_{appl} - V_{bi}$, where V_{appl} is the applied voltage, and V_{bi} is the built-in potential determined by electrode work function difference). Here, $V_{bi} = 0.1$ V for hole-only devices, $V_{bi} = 0$ V for electron-only devices^[1]. The mobility was calculated from the slope of $J^{1/2}-V$ plot.

Fig. S4. (a) J-V curves and (b) corresponding $J^{1/2}-V$ plots for the hole-only devices (in dark). The thicknesses for D18-Cl:N3 (1 : 1.4) and D18-Cl:N3:PC₆₁BM (1 : 1.4 : 0.1) films are 118 and 115 nm, respectively.

Fig. S5. (a) J-V curves and (b) corresponding $J^{1/2}-V$ plots for the electron-only devices (in dark). The thicknesses for D18-Cl:N3 (1 : 1.4) and D18-Cl:N3:PC₆₁BM (1 : 1.4 : 0.1) films are 98 and 100 nm, respectively.

Table S4. Hole and electron mobilities.						
Film	$\mu_{\rm h}$ (cm ² /(V·s))	$\mu_{\rm e}$ (cm ² /(V·s))	$\mu_{\rm h}/\mu_{\rm e}$			
D18-Cl:N3 (1 : 1.4)	8.18 × 10 ⁻⁴	6.32 × 10 ⁻⁴	1.29			
D18-CI:N3:PC ₆₁ BM (1 : 1.4 : 0.1)	$8.34 imes 10^{-4}$	7.42×10^{-4}	1.12			

References

[1] Duan C, Cai W, Hsu B, et al. Toward green solvent processable

photovoltaic materials for polymer solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic behavior. Energy Environ Sci, 2013, 6, 3022