Controlled growth of Mo$_2$C pyramids on liquid Cu surface

Yixuan Fan1, Le Huang2, Dechao Geng1,†, and Wenping Hu1

1Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

2School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

Abstract: Precise spatial control of 2D materials is the key capability of engineering their optical, electronic, and mechanical properties. However, growth of novel 2D Mo$_2$C on Cu surface by chemical vapor deposition method was revealed to be seed-induced 2D growth, limiting further synthesis of complex Mo$_2$C spatial structures. In this research, we demonstrate the controlled growth of Mo$_2$C pyramids with numerous morphologies, which are characterized with clear terraces within the structures. The whole evolution for Mo$_2$C pyramids in the course of CVD process has been detected, posing significant potential in probing growth mechanism. The formation of the Mo$_2$C pyramids arises from the supersaturation-induced nucleation and concentration-gradient driven diffused growth of a new Mo$_2$C layer on the edged areas of intrinsic ones, as supported by STEM imaging. This work provides a novel Mo$_2$C-based pyramid structure and further reveals a sliding growth mechanism, which could offer impetus for the design of new 3D spatial structures of Mo$_2$C and other 2D materials.

Key words: Mo$_2$C pyramids; liquid Cu; chemical vapor deposition

Citation: Y X Fan, L Huang, D C Geng, and W P Hu, Controlled growth of Mo$_2$C pyramids on liquid Cu surface[J]. J. Semicond., 2020, 41(8), 082001. http://doi.org/10.1088/1674-4926/41/8/082001

Supporting Information

Fig. S1. (Color online) Optical images of large-area hexagonal pyramid Mo$_2$C structures on liquid Cu surface.
Fig. S2. (Color online) Raman mapping of Mo$_2$C pyramids structure.

Fig. S3. (Color online) Optical image of left layered hexagonal profile after transferring process.

Fig. S4. (Color online) Direct observation of growth intermediates for layered Mo$_2$C pyramid structures.

Fig. S5. (Color online) (a, b) Optical images of growth intermediates for hexagonal pyramid-like structures. (c) Schematic of the diagram illustrates the growth of hexagonal Mo$_2$C pyramid structures.