ARTICLES

Tailoring molecular termination for thermally stable perovskite solar cells

Xiao Zhang^{1, 2}, Sai Ma^{1, 2}, Jingbi You^{3, 4}, Yang Bai^{1, 2}, and Qi Chen^{1, 2, †}

¹Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China

²Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China ³Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100081, China ⁴Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100081, China

Abstract: Interfacial engineering has made an outstanding contribution to the development of high-efficiency perovskite solar cells (PSCs). Here, we introduce an effective interface passivation strategy via methoxysilane molecules with different terminal groups. The power conversion efficiency (PCE) has increased from 20.97% to 21.87% after introducing a 3-isocyanatopropyltrimethoxy silane (IPTMS) molecule with carbonyl group, while a trimethoxy[3-(phenylamino)propyl] silane) (PAPMS) molecule containing aniline group deteriorates the photovoltaic performance as a consequence of decreased open circuit voltage. The improved performance after IPTMS treatment is ascribed to the suppression of non-radiative recombination and enhancement of carrier transportation. In addition, the devices with carbonyl group modification exhibit outstanding thermal stability, which maintain 90% of its initial PCE after 1500 h exposure. This work provides a guideline for the design of passivation molecules aiming to deliver the efficiency and thermal stability simultaneously.

Key words: perovskite solar cells; terminal groups; interfacial engineering; thermal stability

Citation: X Zhang, S Ma, J B You, Y Bai, and Q Chen, Tailoring molecular termination for thermally stable perovskite solar cells[J]. *J. Semicond.*, 2021, 42(11), 112201. http://doi.org/10.1088/1674-4926/42/11/112201

Supplement Materials

Fig. S1. Statistics of the device performance parameters for solar cells fabricated with different concentrations of PAPMS. (a) PCE. (b) V_{oc} . (c) J_{sc} . (d) FF.

Correspondence to: Q Chen, Qi Chen, qic@bit.edu.cn Received 25 APRIL 2021; Revised 18 MAY 2021. ©2021 Chinese Institute of Electronics

Fig. S2. Statistics of the device performance parameters for solar cells fabricated with different concentrations of IPTMS. (a) PCE. (b) V_{oc} . (c) J_{sc} . (d) FF.

Fig. S3. Statistics of the device performance parameters for solar cells fabricated with different concentrations of MPTMS. (a) PCE. (b) V_{oc} . (c) J_{sc} . (d) FF.

Fig. S4. *J*–*V* curve of IPTMS-treated and untreated device at 60%RH condition for 0 and 24 h.

Table 1. EIS parameters of the devices based on the pristine and IPTMS modification.

Parameter	R _{tr} (Ω)	$R_{\rm rec}$ (Ω)	<i>C</i> ₁ (F)	<i>C</i> ₂ (F)
Control	1.021×10^{6}	2.092×10^{6}	3.881 × 10 ⁻⁹	6.202 × 10 ⁻⁸
Target	6.413×10^{5}	$8.233 imes 10^{6}$	7.227×10^{-9}	1.529×10^{-7}