A Novel Hybrid DPWM for Digital DC-DC Converters

Chen Hua, Li Shun, Niu Qi, and Zhou Feng[†]

(State Key Laboratory of ASIC & System, Fudan University, Shanghai 201203, China)

Abstract: We present a new hybrid digital pulse-width modulator (DPWM) for digital DC-DC converters that employs a ring-oscillator/counter structure. Based on a temperature/process compensation technique and a novel digital controller, the proposed DPWM can not only offer temperature/process-independent pulse widths, but also operate at a much higher clock frequency than the existing delay-line/counter DPWM structure. Post-simulation results show that with our DPWM, the system clock frequency reaches 156.9MHz while the worst variation, in a temperature range of 0 to 100°C under all process corners, is only $\pm 9.4\%$.

Key words:DPWM; ring oscillator;DC-DC converterEEACC:1250Document code:AArticle ID:0253-4177(2008)02-0275-06

1 Introduction

Digital pulse-width modulators (DPWM) serve as the digital-to-analog (D/A) converter in a digital DC-DC converter. The resolution of the DPWM determines the achievable output voltage. If the DPWM resolution is not high enough, an undesirable limitcycle oscillation may occur^[1]. For digital DC-DC converters, the design of high resolution, high frequency DPWMs is of great importance.

The basic principle of a DPWM is to count a clock (generally the system clock) and compare the accumulated sum with the required duty ratio^{$[1 \sim 3]}$.</sup> This solution is the easiest to think of. However, it requires a system clock of high frequency (to achieve an *n*-bit resolution at the switching frequency f_s , the required clock frequency will be $2^n f_s$.) and can easily result in difficult timing constraints and high power consumption for the circuits. A DPWM of the tapped delay-line structure^[4~5] involves a long line of delayunits, with the delay of every unit equal to the LSB of the pulse width. By selecting the output of a delayunit according to the required duty ratio, a proper pulse width is generated. This solution reduces the clock frequency to the switching frequency f_s at the cost of a large digital multiplexer and a large delayline (a 2^n : 1 multiplexer and at least 2^n delay units for an *n*-bit resolution). In recent years, DPWMs of the hybrid delay-line/counter structure^[6~7]</sup> have been reported that make trade-offs between the system clock frequency and the scale of the multiplexers (as well as the delay-line). In the hybrid structures, the

system clock frequency is still higher than the switching frequency but much lower than $2^n f_s$. The pulse width corresponding to the least n_d bits of the duty ratio is achieved with the DPWM, whereas that corresponding to the remaining $(n - n_d)$ bits is constructed by counting the system clock.

There are some severe problems for delay-linebased DPWMs. First, the pulse width's LSB generated by the delay-unit is susceptible to the temperature/ process variations, resulting in uncertainty about the DC-DC converter's performance. Meanwhile, the smallest pulse width used in the digital circuits is T_{sys} / 2^{n_d} (for generating the non-overlapped sequent pulses^[6]), making this type of DPWM not suitable for high-frequency applications, such as an f_{sys} of 156. 9MHz in this paper.

In this paper, we present a new hybrid DPWM implementation called the ring-oscillator/counter structure. In our DPWM, a ring-oscillator is used to generate the system clock, and the delay of the inner differential stages acts as the LSB of the pulse width. A sensing circuit is designed to get information about the temperature/process variations and accordingly a controlling voltage is generated and imposed on the ring-oscillator. When the frequency of the ring-oscillator begins to deviate from the designed value due to the temperature/process variation, the controlling voltage will act in the opposite direction and pull the frequency back. Thus, the pulse width generated by our DPWM is also temperature/process-independent, ensuring the stability of the DC-DC's performance. Meanwhile, the smallest pulse width used in our digital circuits is only $T_{sys}/2$, thus our DPWM can work at

[†] Corresponding author. Email: fengzhou@fudan.edu.cn

Received 19 August 2007, revised manuscript received 6 October 2007

Fig. 1 Block diagram of the proposed DPWM structure

a higher system clock frequency.

2 System architecture

Figure 1 shows the block diagram of the proposed DPWM. It consists of a sensing circuit, a ring-oscillator and a digital synthesizer. The system frequency is $f_{\rm sys}$ and the switching frequency is $f_{\rm s} = f_{\rm sys}/2^{n_{\rm c}}$ ($n_{\rm c} =$ $n - n_{\rm d}$). In addition to the system clock, the ringoscillator offers 2^{n_d} outputs for generating the pulse widths between $(1/2^{n_d}) T_{sys}$ and $(2^{n_d} - 1/2^{n_d}) T_{sys}$. d [n - 1:0] is the digitalized required duty ratio, in which $d [n_d - 1:0]$ controls a $2^{n_d}:1$ multiplexer to select an output from the ring-oscillator and d [n-1]: $n_{\rm d}$ set the stopping condition for the system-clock counter. The sensing circuit senses the variations of the temperature and the process, and generates a controlling voltage, V_{ctrl} . Compensated with V_{ctrl} , f_{sys} and the LSB of the pulse width are nearly temperature/ process independent.

3 Multi-phase ring-oscillator with sensing circuit (analog block)

3.1 Multi-phase ring oscillator

Figure 2 shows a 16-phase ring-oscillator, which is based on an 8-stage differential ring-oscillator. Buffers are added to drive the digital circuits. The structure of the individual delay unit is shown in Fig. 3^[8]. The frequency of the oscillator is given by^[9]:

Fig.3 Schematic of the delay cell in Fig.2

where N is the number of delay stages, and t_d is the delay time of a delay cell. We have^[10]:

$$t_{\rm d} = \frac{C_{\rm L} V_{\rm SW}}{I_{\rm SS}} \tag{2}$$

where $C_{\rm L}$ is the output capacitor, $I_{\rm ss}$ is the biasing current of the delay cell, and $V_{\rm sw}$ is the output swing. Here, $V_{\rm sw}$ approximately equals the supply voltage $V_{\rm DD}$. $I_{\rm ss}$ can be calculated by:

$$I_{\rm ss} = \frac{1}{2} \mu_{\rm p} C_{\rm OX} \left(\frac{W}{L} \right)_{\rm c} (V_{\rm DD} - V_{\rm CTRL} - V_{\rm TP})^2 \quad (3)$$

Substituting Eqs. (2) and (3) into Eq. (1), we obtain:

$$f = \frac{\mu_{\rm p} C_{\rm OX} \left(\frac{W}{L}\right)_{\rm c} (V_{\rm DD} - V_{\rm CTRL} - V_{\rm TP})^2}{4NC_{\rm L} V_{\rm DD}} \qquad (4)$$

Because the parameters such as the threshold voltage and the mobility of charge carriers are temperature/process dependent, the frequency of the ring-oscillator is unstable for a fixed $V_{\rm CTRL}$. We change the $V_{\rm CTRL}$ according to the temperature/ process to keep the frequency constant.

Expression (4) can be rewritten as:

$$V_{\text{CTRL}} = V_{\text{DD}} - V_{\text{TP}} - \sqrt{\frac{4NV_{\text{DD}}C_{\text{L}}f}{\sqrt{\mu_{\text{P}}C_{\text{OX}}\left(\frac{W}{L}\right)_{c}}}}$$
(5)

where $\mu_{\rm p}$, $C_{\rm OX}$, and $V_{\rm TP}$ are the temperature-dependent parameters^[11]:

$$\mu_{\rm p} = \mu_{\rm p0} \left(\frac{T}{T_{\rm o}}\right)^{-m} \tag{6}$$

$$V_{\rm TP} = V_{\rm TP0} \begin{bmatrix} 1 + \alpha_{V_{\rm T}} (T - T_0) \end{bmatrix}$$
(7)
$$C_{\rm c} = C_{\rm co} \begin{bmatrix} 1 + \alpha_{\rm c} (T - T_0) \end{bmatrix}$$
(8)

By substituting Eqs. (6) ~ (8) into Eq. (5), and using the first-order approximation of the Taylor series expansion: $[1 + \alpha_{C_{\text{OX}}} (T - T_0)]^{-1} \approx 1 - \alpha_{C_{\text{OX}}} (T - T_0)$, the temperature characteristic of V_{CTRL} can be obtained:

$$V_{\rm CTRL} \approx V_{\rm DD} - V_{\rm TP0} [1 + \alpha_{V_{\rm T}} (T - T_{\rm 0})] - \sqrt{\frac{4NV_{\rm DD} C_{\rm L0} f [1 + (\alpha_{C_{\rm L}} - \alpha_{C_{\rm OX}})(T - T_{\rm 0})]}{\mu_{\rm p0} C_{\rm OX0} (\frac{W}{L})_{\rm c} T_{\rm 0}^{m}}} T^{\frac{m}{2}}$$
(9)

(16)

Fig. 4 Required V_{CTRL} under three process corners

Because $m \approx 2$ and $\alpha_{C_{\rm L}} \approx \alpha_{C_{\rm OX}}$, the above expression can be simplified as:

$$V_{\rm CTRL} = A - BT \tag{10}$$

where

$$A = V_{\rm DD} - V_{\rm TP0} + \alpha_{V_{\rm T}} T_{\rm 0}$$
(11)

$$B = V_{\rm TP0} \alpha_{V_{\rm T}} + \sqrt{\frac{4NV_{\rm DD}C_{\rm L0}f}{\mu_{\rm P0}C_{\rm OX0}\left(\frac{W}{L}\right)_{\rm c}T_{\rm 0}^{m}}}$$
(12)

In Eq. (12), the second term is positive and at least 10^3 times larger than the first one for f =157MHz, N = 8, and the typical 0.35 μ m CMOS process (i. e., Charted). Therefore, to keep f a constant, V_{CTRL} should have a negative temperature coefficient, which can be obtained by $V_{\rm BE}$ of a BJT transistor. Meanwhile, since the value of V_{TP} in Eq. (9) depends on a specific process, different process conditions may lead to different $V_{\rm TP}$, and ultimately different required V_{CTRL} curves. Thus, V_{CTRL} is also designed to compensate process variations.

Figure 4 gives an example of the required compensating curves. Here the V_{CTRL} curves under different process corners are shown. It is required that the compensation should be done well at all three process corners.

3.2 Sensing circuit (control-voltage generator)

A temperature/process-sensing circuit, called a basic control-voltage generator, shown in Fig. 5, can offer the temperature/process compensation curves shown in Fig. 4. V_{CTRL} is given by:

$$V_{\text{CTRL}} = \frac{R_2 + R_3}{R_3} (V_{\text{DD}} - V_{\text{TP1}} - V_{\text{TN1}} + D) - \frac{R_2 + R_3}{R_3} \sqrt{2D(V_{\text{DD}} - V_{\text{TP1}} - V_{\text{TN1}} - V_{\text{BE}}) + D^2}$$
(13)

where

$$D = \frac{1}{R_1} \left(\frac{1}{\sqrt{\mu_p C_{\text{OX}} \left(\frac{W}{L}\right)_{\text{Pl}}}} + \frac{1}{\sqrt{\mu_n C_{\text{OX}} \left(\frac{W}{L}\right)_{\text{Nl}}}} \right)^2 (14)$$

The negative temperature coefficient of V_{CTRL} is

Fig. 5 Basic process-sensing control-voltage generator

achieved through $V_{\rm BE}$ and can be tuned by R_1 , $(W/L)_{P1}$, and $(W/L)_{N1}$. Meanwhile, due to V_{TP1} and V_{TN1} , V_{CTRL} also accounts for information from the process variation.

The larger the variation of V_{CTRL} under different process corners is, the better the compensation that can be obtained^[12]. Based on this relationship, we propose an enhanced control-voltage generator, shown in Fig. 6. It is a cascade of the basic control-voltage generators. The output of the former stage is the supply voltage of the latter. The expression of V_{CTRL} is similar to Eq. (13) except that V_{DD} in Eq. (13) is replaced with V_{su} . Then, we have:

$$\frac{\partial V_{\text{CTRL}}}{\partial (V_{\text{TP}} + V_{\text{TN}})} \bigg|_{\text{basic}} = \frac{R_2 + R_3}{R_3} \left(\sqrt{\frac{D}{2(V_{\text{DD}} - V_{\text{TP1}} - V_{\text{TN1}} - V_{\text{BE}}) + D}} - 1 \right) < 0$$

$$(15)$$

$$\frac{\partial V_{\text{CTRL}}}{\partial (V_{\text{TP}} + V_{\text{TN}})} \bigg|_{\text{enhanced}} \approx \frac{\partial V_{\text{CTRL}}}{\partial (V_{\text{TP}} + V_{\text{TN}})} \bigg|_{\text{basic}} + \frac{\partial V_{\text{CTRL}}}{\partial V_{\text{Su}}} \times \frac{\partial V_{\text{Su}}}{\partial V(V_{\text{TP}} + V_{\text{TN}})}$$

$$(16)$$

where

$$\frac{\partial V_{\text{CTRL}}}{\partial V_{\text{su}}} \times \frac{\partial V_{\text{su}}}{\partial V(V_{\text{TP}} + V_{\text{TN}})} = \frac{R_2 + R_3}{R_3} \times \frac{R_5 + R_6}{R_6} \left(1 - \sqrt{\frac{D}{2(V_{\text{su}} - V_{\text{TP1}} - V_{\text{TN1}} - V_{\text{BE}}) + D}}\right) \times \left(\sqrt{\frac{E}{2(V_{\text{DD}} - V_{\text{TP2}} - V_{\text{TN2}} - V_{\text{BE}}) + E}} - 1\right) < 0$$
$$E = \frac{1}{R_4} \left(\frac{1}{\sqrt{\mu_p C_{\text{OX}}\left(\frac{W}{L}\right)_{\text{P2}}}} + \frac{1}{\sqrt{\mu_n C_{\text{OX}}\left(\frac{W}{L}\right)_{\text{N2}}}}\right)^2 (17)$$
We can derive:

$$\left| \frac{\partial V_{\text{CTRL}}}{\partial V(V_{\text{TP}} + V_{\text{TN}})} \right|_{\text{basic}} \right| < \left| \frac{\partial V_{\text{CTRL}}}{\partial V(V_{\text{TP}} + V_{\text{TN}})} \right|_{\text{enhanced}}$$
(18)

Thus, with the proposed enhanced controlvoltage generator, V_{CTRL} varies more greatly with respect to the process corners. Figure 7 shows the required V_{CTRL} as well as the V_{CTRL} realized with the

Fig. 6 Enhanced control-voltage generator

basic generator and the enhanced generator, respectively. The proposed enhanced control-voltage generator provides a better fit $V_{\rm CTRL}$ for all process corners than the basic one.

Equation (4) demonstrates that f changes with $V_{\rm DD}$, making the system susceptible to the power supply. However, a voltage regulator can resolve this by providing the system a temperature and supply independent reference voltage.

4 Digital controller

Figure 8 shows the simplified diagram of the digital controller in Fig. 1 (n = 11, $n_d = 4$, $2^{n_d} = 16$) as well as the key waveforms. The upper half is a general counter to form the pulse width corresponding to

Fig.7 Required V_{CTRL} under three process corners and the realized curves obtained using the basic (a) and enhanced (b) control-voltage generator

Fig. 8 Digital controller in an 11bit DPWM using hybrid ringoscillator/counter structure with its operating waveforms

 $d[n-1:n_d]$, while the lower half generates the pulse width corresponding to $d[n_d-1:0]$.

The frequencies of the 16 outputs of the ring oscillator, $C[0] \sim C[15]$, are half-divided into $P[0] \sim$ P[15]. Then, one of $P[0] \sim P[15]$ is selected by a 2^{n_d} : 1 multiplexer to perform an XOR operation with P[0], so that a pulse width between 0 and (15/16) × T_{sys} , with the resolution of (1/16) T_{sys} , is generated on the node X_{out} . Meanwhile, pulse C[0] serves as the clock for an n_c -bit counter. When the output of the counter matches $d[n-1:n_d]$, the most significant n_c bits of the *n*-bit digital input d ($n = n_c + n_d$), the output of the 2: 1 multiplexer changes from C_s to X_{out} . Therefore, the n_c -bit counter realizes the high n_c -bit of the *n*-bit resolution, and X_{out} gives the low n_d -bit of the *n*-bit resolution.

The delay of the 2^{n_d} :1 multiplexer may influence the low n_d -bit of the resolution due to the fact that P[0] and the signal selected from $P[0] \sim P[15]$ may have different delay times at the XOR gate. To minimize the skew, a buffer can be added on the path from P[0] to the XOR gate, as marked in Fig. 8. In addition, the jitters on the 16-phase clocks may affect the precision of frequency and phase, and ultimately deteriorate the resolution of X_{out} . Thus, a fast-transition on the delay-cells should be ensured to reduce jit-

Fig.9 Simulation results obtained using the basic control-volt-age generator

ters^[13], as fulfilled in our scheme.

The waveforms in Fig. 8 give an example with $d = 43 \ (11' b0000101011 = 0000010_0000 + 0000000_1011)$, the pulse width on the node out is constructed with $2T_{sys}$ (realized by the counter) and a $(11/16) \times T_{sys}$.

The smallest required pulse width in the delayline-based DPWM^[6] is $(1/2^{n_d}) T_{sys}$, while ours is $(1/2) T_{sys}$ (appearing at C[0] to C[15]). Thus, the set-up-time constraint of the D-flip-flops is greatly reduced in our DPWM and the working frequency greatly enhanced. Simulations show that the delayline-based DPWM^[6] fails to generate the necessary small pulse width at the system frequency of 156. 9MHz, which is used in this paper. A typical highperformance digital DC-DC chip, ISL6592^[14] requires the system clock frequency of 156. 25MHz ± 10%.

5 Simulation results

5.1 Ring oscillator

Simulations were done under different temperature and process corners with charted 0.35μ m CMOS mixed signal technology. Figure 9 shows the results

Fig. 10 Post-simulation results of our DPWM, using the enhanced control-voltage generator

Fig. 11 Layout of the designed 11bit DPWM

when $V_{\rm CTR}$ is generated with the basic control-voltage generator and Figure 10 is the post-simulation results of our DPWM, which employs the enhanced controlvoltage generator. The largest variation of $f_{\rm sys}$ in Fig. 9 is \pm 19% at the clock frequency of 156. 9MHz while it is \pm 9.4% in Fig. 10 (compared to ISL6592's 156. 25MHz \pm 10%), in a temperature range of 0 to 100°C.

5.2 11bit DPWM

An 11bit DPWM is designed and post-simulated. Figure 11 shows the layout, which consists of a fullcustom design of the ring-oscillator (analog part) and a semi-custom design of the digital controller (digital part). The area of the whole DPWM is approximately 0.24mm².

Figure 12 shows the pulse widths corresponding to d[n-1:0] constructed with a fixed $d[n-1:n_d]$ and a changed $d[n_d - 1:0]$. Here, n = 11, $n_d = 4$, $d[n-1:n_d] = 7$ 'b0000010 (2 T_{sys}), and $d[n_d - 1:0]$ are assigned to 4'b0000 ~ 4'b1111, corresponding to (0/16) $T_{sys} \sim (15/16) T_{sys}$ respectively. The LSB of the pulse width reveals that the resolution of our DPWM achieves $1/(16 \times 156.9 \text{MHz}) = 1/(2.51 \text{GHz})$, at a high system frequency of $f_{sys} \approx 156.9 \text{MHz}$. The rising time and the falling time of the clock are only 88 and 106ps, respectiely.

Fig. 12 Pulse widths corresponding a fixed $d [n - 1; n_d] = 2T_{sys}$ and a changed $d [n_d - 1; 0] = (0/16) T_{sys} \sim (15/16) T_{sys}$

Fig. 13 Pulse widths corresponding a changed $d[n-1:n_d] = AT_{sys}$, A = 0, 1, 2, 125, 126, 127, and a fixed $d[n_d - 1:0] = (11/16)T_{sys}$.

Figure 13 verifies that our pulse width is seamlessly constructed with $d [n - 1: n_d]$ (realized with the counter) and $d [n_d - 1: 0]$ (realized with X_{out}). Here, $d [n_d - 1: 0] = 4$ ' b1011 ((11/16) T_{sys}) and $d [n - 1: n_d]$ are assigned to 0,1,2,125,126, and 127, respectively.

6 Conclusion

This paper presents a new hybrid DPWM structure: the ring-oscillator/counter structure. Based on an enhanced control-voltage generator, the ring-oscillator can provide a stable clock against the temperature/process variations. This ensures the stability of the DPWM output. Also, due to the employment of a novel digital controller, the proposed structure can operate at a higher clock frequency (156.9MHz in this paper) than the delay-line/counter structure, an

existing hybrid DPWM structure.

References

- [1] Wu A M, Xiao J, Markovic D, et al. Digital PWM control: application in voltage regulator models. IEEE PESC Conference, 1999;7
- [2] Wei G, Horowitz M. A low power switching power supply for selfclocked systems. International Symposium on Low Power Electronics Design, 1996;313
- [3] Henze C P. Power converter with duty ratio quantization. US Patent,4630187,1986
- [4] Dancy A P, Chandrakasan A P. Ultra low power control circuits for PWM converters. IEEE PESC Conference, 1997;21
- [5] Xiao J, Peterchev A V, Sanders S R. Architecture and IC implementation of a digital VRM controller. IEEE PESC Conference, 2001:38
- [6] Patella B J, Prodic A, Zirger A, et al. High-frequency digital PWM contoller IC for DC-DC converters. IEEE Trans Power Electron, 2003,18(1):438
- [7] Dancy A P, Amirtharajah R, Chandrakasan A P. High-efficiency multiple-output DC-DC conversion for low-voltage systems. IEEE Trans VLSI System, 2000,8(6):252
- [8] Yan W, Luong H C. A 900-MHz CMOS low-phase-noise voltagecontrolled ring oscillator. IEEE Trans Circuits Syst II: Analog and Digital Signal Processing, 2001, 48(2):216
- [9] Razavi B. Design of analog CMOS integrated circuits. New York: Mc-Graw-Hill, 2001
- [10] Weigandt T. Low-phase-noise, low-timing-jitter design techniques for delay cell based VCOs and frequency sythesizers. PhD Dissertation, Univiersity of California, Berkeley, 1998
- [11] Cheng Y, Hu C. MOSFET modeling & BSIM3 user's guide. Boston: Kluwer Academic Publishers, 1999
- [12] Sundaresan K, Allen P E, Ayazi F. Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J Solid-State Circuits, 2006, 41(2): 433
- [13] Dai L, Harjani R. Design of low-phase-noise CMOS ring oscillators. IEEE Trans Circuits Syst II: Analog and Digital Signal Processing, 2002, 49(5):328
- [14] ISL6592 Data Sheet. Intersil, Jan 2006:10

一种适用于 DC-DC 变换器的新型混合式数字脉宽调制器

陈华李舜牛祺周锋*

(复旦大学专用集成电路与系统国家重点实验室,上海 201203)

摘要:提出了一种新型的适用于 DC-DC 变换器的混合式数字脉宽调制器.该脉宽调制器基于混合环路振荡器/计数器的结构.与已 有的延迟线/计数器结构相比,由于该数字脉宽调制器采用了温度/工艺补偿技术和一种新型的数字控制器,使其不仅可为 DC-DC 变 换器提供一个不随温度/工艺角变化的时钟,而且可以工作在更高的时钟频率,适用于高频应用场合.后仿结果表明该混合式数字脉 宽调制器工作的时钟频率可达到 156.9MHz,并且在 0~100℃的温度范围内及所有工艺角下的最大偏移只有±9.4%.

关键词:数字脉宽调制器;环路振荡器;DC-DC变换器 EEACC:1250 中图分类号:TN432 文献标识码:A 文章编号:0253-4177(2008)02-0275-06

^{*} 通信作者.Email:fengzhou@fudan.edu.cn 2007-08-19 收到,2007-10-06 定稿