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Abstract: We report a new method for calculating transmission coefficients across arbitrary potential barriers based on the

Runge-Kutta method. A numerical solution of the Schrodinger equation is calculated using the Runge-Kutta method,and a

new model is established to analyze the numerical results to find the transmission coefficient. This technique is applied to

various cases,such as parabolic potential barrier and double-barrier structures. Transmission probability with high precision

is obtained and discussed. The tunnelling current density through a MOS structure is also explored and the result coincides

with the Fowler-Nordheim model, which indicates the applicability of our method.
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1 Introduction

With recent advances in the fabrication of semi-
conductor quantum structures, the tunnelling effect
deserves attention because of its key role in devices
such as light emitting devices with MOS structures

based on silicont'*

.In order to understand the physi-
cal properties of these devices,the transmission coef-
ficient has to be investigated. For decades, several
methods have been developed for calculating the
transmission coefficient. The WKB approximation
method is the most conventional method for most ca-
ses. However, it is not suitable for some complicated
cases because its accuracy is insufficient. The transfer-
matrix method has been widely used for studying
quantum structures and methods based on transfer-
matrix method have been developed” ™. However,
there are also limitations on these methods, such as
the continuous turning points problem, which is en-
countered when a continuous potential energy equals
the energy of the tunnelling particle. Many other
methods,like the Monte Carlo method and the finite
element method,are complicated to implement.

In this paper, we report a numerical method to
calculate transmission coefficients across arbitrary po-
tential barriers in the one dimensional case. A numeri-
cal solution of the Schrédinger equation based on the
Runge-Kutta method™ is obtained,and the transmis-
sion coefficient is deduced from analysis of the nu-
merical solution by applying our new model. This
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method can be easily used for any potential distribu-
tion and the results are credible with high accuracy.

2  Theory

The time-independent Schrodinger equation in
one dimension is given by
- L _h’ o d Vo [t = Eweo
dx 2m(x) dx

where m (x) is the effective mass of the particle, V
(x) is the potential energy variation,and E and ¥(x)
represent the energy and wave function,respectively.
The Runge-Kutta method™ is used to calculate the
numerical solution. In this case, Equation (1) is

changed into first order equations,
Lyco =y 2
[_ d _h°
dx 2m(x)

Given the value of ¥(x) and y(x) at a specified posi-

y(x) + V(x)}\lf(x) = EW(x) (3)

tion,we can get the value of ¥(x) everywhere by u-
sing the Runge-Kutta method.

Consider a potential barrier with an arbitrary po-
tential distribution in the middle region,but with con-
stant potential on both sides.in other words,

Vi, X<X1
V(x) =< Arbitrary value, x;<<x<x,
Vie x=x,

where V, and V, are constants and can be different,
as shown in Fig. 1. If the particle is tunneling from
the left and the transmitted wave is a unit amplitude
plane wave.the wave function can be described as

(©2008 Chinese Institute of Electronics
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Fig.1 Schematic representation of the potential barrier being 0z 4 6 x/nr% 101214
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W, =aexplilk,x + ¢) ] + bexp[ — i(k,x + ¢;) |
4)

T, = expliCksx)] (5

where ¥; and ¥y are the wave functions in regions |
and [[[ respectively,and a and b represent the ampli-
tude coefficients to be determined. k;

«/2}’7’1{x (E_ V})/h ’ k3 :«/ng" (E_ V\g)/h 9mf and

my are the particle’s effective mass in regions | and

Il . The real and imaginary part of ¥, can be ob-
tained from Eq. (4),which are:

Re(¥;) =+/[a + bcos(Ag) ]* + b’sin” (Agp)
Sin(kgx+501+§0p1) (6)
Im(¥;) =+/[a — bcos(Ap) |* + b’sin’ (Ag)
Sin(k3X + @1 JFgﬁ)pz)
where
_ o (_ a * bcos(Ap)
on = tan”!( bsin(Ag) )
_ .. 1 (_ _ bsin(Ag)
¢ = tan ( a - bcos(Ago))

and Ap= ¢, — ¢; . On the other hand, with the initial
condition in region [I[ , which can be easily decided ac-
cording to Eq. (5), the wave function values can be
deduced by the Runge-Kutta method. Thus, the ampli-
tudes of the real and imaginary part of ¥ are defi-
nitely described as

[a + becos(Ap) ]* + b’sin’ (Ap) = A, (1)
La — becos(Ap) |* + b’sin’ (Ap) = Ay, €©))
where A, and A;, are the numerical values deduced

from fitting the values of the wave function in region
I with sine functions. Meanwhile the phase informa-
tion of the wave function is also obtained from nu-
merical calculation,but we do not take it into account
because a little deviation of the phase leads to huge
mistakes. The probability conservation law is used in-
stead to determine the transmission coefficient,
h k h k;

* *

my ms

(a* —b") = (M

By solving Egs. (7) ~(9) , we obtain the amplitude of
the incident wave, a. Thus, the transmission coeffi-
cient is obtained as

Fig.2 Schematic representation of the potential distribution
The dotted curve refers to n =1 and the solid curve refers to n
=2.
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3 Applications

In this section we first apply our method to a
parabolic potential distribution. The parabolic poten-
tial is widely encountered in heterostructures, metal-
semiconductor contacts, and MIS structures, etc.
Methods have been developed to deal with different
791 For general consideration, the following
case is investigated,

:Jw@iiy,o<x<a

10, others
where V| is the height of the potential barrier and a
represents the barrier width, which is illustrated in
Fig. 2. For the parabolic potential barrier, n = 2.
Sometimes a linear potential barrier is considered for
an approximation,where n =1,and in this case other
methods can be applied such as Airy’s function based
methods. We have calculated the transmission coeffi-
cient of the two cases and compared the differences
between them.

cases

V{x) (100

For numerical calculation, V, = 1eV and a =
5nm. The tunnelling particle is an electron with an ef-
fective mass of m, =9.1 X 10~* kg. Transmission co-
efficients are shown in Fig. 3. It is hard for an elec-
tron with energy below 0. 8¢V to pass through the po-
tential barrier. After the electron energy reaches
0. 8eV,the transmission coefficient increases rapidly.
While having little difference between the two cases,
the transmission coefficient through the parabolic po-
tential barrier is always larger than that of the linear
case because the integration of the parabolic potential
is smaller. Another interesting feature is the oscilla-
tory behavior of the linear potential case, which is
shown in the inset of Fig. 3. This behavior is due to
quantum mechanical reflection, which is similar to the
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Fig.3
dent electron energy for the potential in Fig.1;(b) Differential

(a) Transmission coefficient as a function of the inci-

coefficient of the two curves in Fig.3 (a)

rectangle barrier (n =0).But in the parabolic poten-
tial case,this behavior fades away and the curve is to-
tally smooth. We confirmed this by calculating the
differential coefficient,which is also shown in Fig. 3.
The abrupt fluctuations are due to miscalculation.
However,we are not sure if n =2 is the critical point
at which the oscillatory behavior disappears.

Double-barrier resonant tunneling nanostructures
have attracted great research interest because of their
potential for device applications, and their signifi-
cance in study of the physics of confined structures.
The physics of resonant tunneling in symmetric doub-
le barrier systems is well understood. Asymmetric sys-
tems, especially in the presence of a constant field,
have also been widely investigated. In this work, we
calculate the transmission coefficient for an incident
electron in double-barrier systems, and compare our
results with those of Allen et al." to show the appli-
cability of our method. We therefore make calcula-
tions on the same structures in Ref.[ 9], which is illus-
trated in Fig. 4.

Table 1 Parameters for calculation
V./eV Ug/eV Up/eV b /nm ¢ /nm d/nm
Curve 1 0.16 0.5 0.5 2 5 2
Curve 2 0.16 0.5 0.5 2 5 4
Curve 3 0.16 0.5 0.5 4 5 2
Curve 4 0.16 0.5 0.5 2 5 3

U(x)

=y

| — |

Fig.4 Schematic representation of potential distribution™’

Figure 5 (a) shows the transmission coefficient
InT and the parameters are listed in Table 1. The ef-
fective mass of the electron is 0. 1087m, in the barrier
region and 0. 067m, elsewhere. In Allen’s work, a
problem due to use of exact Airy functions is encoun-
tered when the incident electron energy is very low,
and a resonance in the low energy region has been de-
clared but not obtained. Our method overcomes this
problem and achieves extremely accurate results in
the low energy region. Indeed, there are two reso-
nances for each curve, which indicates that there are
two quasi-bond states in the quantum wells. For curve
2,the first resonant peak is much sharper than other
curves. In this case,the width of the second barrier (d
=4nm) is thicker,so it is hard for an electron to es-
cape from the well, giving the electron a long lifetime
and narrowing the width of the quasi-bond state.

Comparing curves 2 and 1, we find although the
second peak of curve 2 is higher, the first peak is op-
posite. Therefore, we do not think this is a sufficient

Transmission In7'
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Fig.5 Transmission coefficient as a function of incident elec-

tron energy for double barrier structures
listed in Table 1.

The parameters are
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Fig.6 Potential distribution for a MOS structure simulation F

represents the electric field.

proof for Mendez’ s concept of an cffective-barrier
symmetry'® . In order to find a more appropriate ap-
plication of this concept, we have considered some
other situations. When d =3nm (curve 4),both peaks
are higher than those of curve 1 and the peak values
are close to 1 as shown in Fig.5 (b). This case may be
a more credible certification of Mendez’s concept.
We have also applied our method to MOS struc-
tures. In recent years, light emitting devices based on
silicon have attracted much attention due to their pro-
spective application in optical integration. Several re-
search groups have reported the light emitting devices
based on silicon with MOS structures in which the
tunneling effect is a key factor™?.
study, the tunnel current through a linearly varying

For technical

potential has been calculated. In order to use our
model, the potential configuration is modified as
shown in Fig. 6. The barrier height is 1. 0eV,and Fer-
mi level of the incident side is E; =0. 3eV. The effec-
tive mass is considered to be m, = 9.1 X 107" kg eve-
rywhere.

To avoid infinite integration, the temperature is
fixed at OK. Thus, the current density can be deduced

from.
* E;
J = %J dE, (E, - E O)T(E ) (12)
2n° hJo
where E | represents the vertical part of the incident

energy to the interface. The relationship of the tunne-
ling current density and the applied electric field is
shown in Fig. 7. We can clearly find:

JocAFZexp<*g) (13)

which is the well-known Fowler-Nordheim tunneling
effect. Fowler-Nordheim tunnelling is a critical injec-
tion process for some light emitting devices™' . These
results indicate the accuracy and possible application
of our method.

4 Conclusion

In conclusion, we have presented a new method
for calculating transmission coefficient by using a
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Fig.7 Relationship of tunnelling current and the applied elec-
tric field for the potential distribution in Fig. 6 The line is a
guideline for eyes.

Runge-Kutta method to solve the Schrodinger equa-
tion and we analyzed the numerical results. Arbitrary
potential distribution with constant sides can be trea-
ted by this method and the results are quite accurate.
Tunnelling probability through a parabolic potential
barrier is obtained and discussed. A double barrier
case is investigated and the results show some detailed
features in addition to partial agreement with conclu-
sions deduced from other methods. A modified MOS
structure is also surveyed and the results agree with
the Fowler-Nordheim tunneling model. All these cal-
culations show the applicability and accuracy of our
method.which is expected to be explored for further
application.
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