Ohmic Contacts to n-Type Al_{0.6}Ga_{0.4}N for Solar-Blind Detectors

Zhu Yanling^{1,†}, Du Jiangfeng¹, Luo Muchang², Zhao Hong², Zhao Wenbo², Huang Lieyun², Ji Hong¹, Yu Qi¹, and Yang Mohua¹

(1 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China)

(2 Chongqing Optoelectronics Research Institute, Chongqing 400060, China)

Abstract: We investigate the contact characteristics of bi-layer thin films, Ti (20nm)/Al (200nm) on Si-doped n-type Al_{0.6} Ga_{0.4} N films grown on sapphire substrate. The surface treatment was aqua regia boiling before metallization and annealing after metallization at different conditions in N₂ ambient. High resolution X-ray diffractometery analysis was carried out on the contacts and the surface interfaces of these conditions were compared. A specific contact resistivity ρ_c was determined using the circular transmission line method via current-voltage measurements. A ρ_c of 3. 42×10⁻⁴ $\Omega \cdot$ cm² was achieved when annealed at 670°C for 90s. Then, this ideal ohmic contact was used in back-illuminated solar-blind AlGaN p-i-n detectors and the detectors' performances, such as spectral responsivity, dark-current, and breakdown voltage were optimized.

Key words: high-Al content n-AlGaN; ohmic contact; anneal; back-illumination; solar-blind p-i-n detectorPACC: 2940P; 6150CEEACC: 4250CLC number: O47Document code: AArticle ID: 0253-4177(2008)09-1661-05

1 Introduction

At present, ultraviolet photodetectors have received much attention for their importance in solar-UV monitoring, space communications, missile detection, as well as flame and heat sensing applications. Al_xGa_{1-x} N is the optimum choice for fabricating these photodetectors owing to its wide bandgap. For the fabrication of photodetectors with a sharp transmission cut off wavelength at $\lambda < 280$ nm, an Al mole fraction > 0.4 is required. Until now, not much research has been done on ohmic contacts to n-type Al_xGa_{1-x}N with x > 0.3. Adivarahan *et al*.^[1] reported that the specific contact resistivity of Ti/Al/Ti/ Au ohmic contacts on n-type Al_{0.4}Ga_{0.6} N was 2.5 × $10^{-3}\Omega \cdot \text{cm}^2$.

The most widely used ohmic contact to n-type GaN is based on Al/Ti^[2,3]. The Ti-layer can significantly improve the contact resistance^[4]. The advantage of a Ti layer has been attributed to either the degenerate n^+ -surface layer resulting from the N-vacancy donor for the formation of the TiN compound or the Ti acting to reduce the surface oxide^[5]. In either case, the Al overlayer is superior to an Au overlayer, which suggests that Al/Ti alloy may play a role in the contact formation^[6]. Analogously, ohmic contacts to n-AlGaN usually use the Ti/Al or Ti/Al/Ti/Au metal-lisation. Cao *et al*.^[2] reported the specific contact re-

sistivity of Ti/Al/Ti/Au ohmic contacts on n-Al_{0.3}Ga_{0.7}N was $7 \times 10^{-5} \ \Omega \cdot cm^2$. Chen *et al*.^[7] reported the specific contact resistivity of Ti/Al/Ni/Au ohmic contacts on n-Al_{0.45}Ga_{0.55}N was 2. $75 \times 10^{-4} \ \Omega \cdot cm^2$.

In this paper, we report a low resistance ohmic metallization for an $Al_{0.6}Ga_{0.4}N$ layer by pre-metallization treatment in the surface using aqua regia and annealing after metallization. Additionally, we study the influence of the ohmic contacts on solar-blind detectors.

2 Experiments

The samples used in this study were grown on cplane (0001) sapphire substrates by a low-pressure Aixtron 200 RF horizontal flow reactor metal organic chemical vapor deposition (MOCVD) system. Trimethylgallium (TMGa), Trimethyllalumium (TMAl), and ammonia (NH₃) were used as Ga,Al,and N precursors, respectively. Silane was used as the n-type dopant and H₂ was the carrier gas.

Figure 1 shows the schematic cross-section structure of the $Al_{0.6} Ga_{0.4} N$ sample. A 500nm-thick hightemperature AlN template layer was initially grown at 1180°C. Afterward, a 60nm-thick super lattice (SL) layer (5 periods $Al_{0.7} Ga_{0.3} N/AlN$) was grown at 1120°C to weaken the stress during the material growth. This layer was followed by a Si-doped n-Al-GaN layer grown at 1120°C. The Si-doped AlGaN

[†] Corresponding author. Email: yanlz83@163.com

Received 26 March 2008, revised manuscript received 7 May 2008

Fig. 1 Schematic structure of Al_{0.6}Ga_{0.4}N sample

consisted of two AlGaN layers with Al contents of 0.6 and 0.7, respectively. The thickness of the Al_{0.7}Ga_{0.3}N layer and Al_{0.6}Ga_{0.4}N layer are 400 and 750nm. The sample is a part of back-illuminated solar- $Al_x Ga_{1-x} N$ p-i-n photodiodes. blind So the Al_{0.7}Ga_{0.3}N window layer was grown as the short wavelength cutoff region and Al_{0.6} Ga_{0.4} N layer was used as the buffer layer. The Al mole fraction of 60% was established by Rutherford backscattering spectrometry (RBS). Room temperature Hall measurements exhibited the carrier concentration of 2.77 \times 10^{18} cm⁻³ and the mobility of 45. 1 cm²/(V • s).

In-situ optical reflectometry measurement was used to monitor the growth process. As shown in Fig. 2, the indicated region corresponds to: (1) the growth of HT-AlN; (2) the growth of the $Al_{0.7}Ga_{0.3}N/AlN$ super lattice layer; (3) the growth of the $Al_{0.7}Ga_{0.3}N$ layer; and (4) the growth of the $Al_{0.6}$ - $Ga_{0.4}N$ layer. That the peak values of the in-situ optical reflectance monitoring curves remain constant shows that the epitaxial layers are very smooth and have good quality.

The ohmic metallisation consisting of Ti (20nm)/Al (200nm) were deposited in a circular transmission line model (CTLM) pattern. Prior to the fabrication of the patterns, the layers were degreased using acetone and ethanol in 5min steps and were rinsed with de-ionized (DI) water. Thereafter, they were boiled in aqua regia for 20min to remove the

Fig. 2 In-situ reflectance measurement of the sample

Fig. 3 Pattern of CTLM etching mask

native oxide. Figure 3 illustrates the actual etching mask imaged by microscopy. The CTLM ohmic pads were delineated using a lift-off process. The inner radius (R_{in}) of the pads is 120μ m and the gap spacing (d) between the inner and outer contact pads are 5, 10,15,20,25,and 30μ m, respectively.

The As-deposited samples were annealed at 450, 550,600,650,670,700,750, and 850° C for 90s in an N₂ ambient using a rapid thermal annealing furnace (RTP-500). Then, the samples were annealed at 670° C for 30, 60, 90, 120, 300, and 600s, respectively. To extract the specific contact resistance using the CTLM, a current was supplied by one pair of probes, and another pair was used to measure the voltage between contacts. The X-ray diffractometer (XRD) analysis was carried out by D1-type high resolution X-ray diffractometer (HRXRD) measurements of Bede to study the contact formation mechanism.

3 Results and discussion

Current-voltage (*I-V*) measurements were made at room temperature using a Keithley 4200-SCS semiconductor characterization system. The *I-V* characteristics of the annealed ohmic contacts at different temperatures (450,550,670,750°C) for gap spacing of 15μ m are shown in Fig. 4. The ohmic contacts an-

Fig. 4 (a) I-V curve of the annealed ohmic contact at 450°C for 90s; (b) I-V curves of the annealed ohmic contacts at 550, 670, and 750°C for 90s

Table 1 Specific contact resistivity ρ_c at different annealing temperatures

Annealing temperature	Annealing time	ρ_{c}
/°C	/ s	$/(\Omega \cdot cm^2)$
550	90	1.21×10^{-3}
600	90	1.09×10^{-3}
650	90	5.75×10^{-4}
670	90	3.42×10^{-4}
700	90	7. 34×10^{-4}
750	90	6.91×10^{-4}
850	90	9.40×10^{-4}

nealed over 550°C exhibit ohmic behaviour, while the 450°C annealing ohmic contact exhibits rectifying behaviour. This phenomenon indicates that the annealing temperature is an important factor for the mechanism of the ohmic contacts and that there is a limiting temperature in the formation of an ohmic contact. However, for different material and device structures, the temperature will be different. Chen *et al*.^[7] studied the contact of Ti/Al/Ni/Au to n-AlGaN and they reported it was 400°C. In our experiment, the limiting temperature is about 550°C.

The values of the specific contact resistivity of the annealed ohmic contacts on pre-metallization treated surfaces are listed in Table 1. The CTLM results revealed that the contact resistance of the ohmic contacts decreased from 450 to 670°C, and thereafter increased as the annealing temperature increased to 850°C. The specific contact resistivity of the Ti/Al ohmic contact exhibited a minimum value of $3.42 \times 10^{-4} \Omega \cdot cm^2$ when the sample was annealed at 670°C for 90s.

In addition, we performed a comparison of different annealing times at 670°C. The annealing time was changed in the range of 30 to 600s, and included 30,60,90,120,300, and 600s. Figure 5 shows the specific contact resistivity ρ_c of the Ti/Al ohmic contacts. The minimum value of ρ_c was still 3. $42 \times 10^{-4} \Omega$ \cdot cm² when the sample was treated under 670°C an-

Fig. 5 Specific contact resistivity ρ_c for different annealing times

Fig.6 XRD spectrums of the annealed ohmic contacts at different annealing temperatures

nealing for 90s. So, for this sample structure, the best annealing condition was about 670° C for 90s.

To characterize the chemical states of the samples, XRD examination was made of the Ti/Al contacts on n-Al_{0.6} Ga_{0.4} N before and after annealing. Figure 6 shows the XRD spectra obtained from the metals/AlGaN interface regions of the sample. The figure reveals that the peak of Ti lowered a certain amount after annealing and reached the lowest level at 670°C, and the peak of Al is barely observable. Meanwhile, a new phase peak-AlTi₃ at 79. 983° was detected after annealing and reached its highest level at 670°C. This indicated that annealing caused Al atoms to diffuse through the Ti layer to form Al-Ti intermetallic phases with low work functions. These Al-Ti intermetallic phases can promote the formation of an ohmic contact in the AlGaN surface^[6]. So, the higher the peak of Ti-Al alloy is, the better the ohmic contact that can be formed. This is in good agreement with the *I-V* results.

In addition, the peak of $Ti_3Al_2N_2$ was found to be 66. 772° after 670°C annealing. The formation of $Ti_3Al_2N_2$ at the interface region indicates the outdiffusion of N atoms from the AlGaN layer surface and hence the generation of N vacancies near the surface region of AlGaN. These N vacancies are known to serve as donors in n-AlGaN. Therefore, the annealinginduced improvement of the *I-V* characteristics of Ti/ Al contacts could be attributed to the formation of $Ti_3Al_2N_2$ and as well as an Al-Ti intermetallic phase.

For solar-blind detectors, it is necessary to develop good ohmic contacts to improve the detectors' performances, such as small dark-current, large breakdown voltage, and high spectral responsivity. We fabricated back-illuminated solar-blind AlGaN p-i-n detectors with the same structures but different ohmic contacts at 670°C annealing for 90s and with no annealing, respectively. Reverse bias *I-V* characteristics

Fig. 7 I-V curves of p-i-n detectors at reverse bias in the dark

of the p-i-n detectors in the dark are given in Fig. 7. The dark-current decreased after the 670°C annealing and its breakdown voltage improved.

In addition, spectral responsivity measurements of the two photodiodes were carried out in the $230 \sim$ 340nm spectral range at -1.5V reverse bias. Figure 8 shows the results of spectral responsivity measurements. The peak responsivities of the two samples all appeared at about 272nm. The annealed sample reached a maximum responsivity of 0.0764A/W at -1.5V bias and the non-annealed sample was only 0.0696A/W. Thus, the treatments on ohmic contacts

Fig. 8 Spectral responsivity versus wavelength curves at -1.5V bias for back-illuminated solar-blind AlGaN p-i-n photodiode

can enhance the performances of the solar-blind p-i-n detectors.

4 Conclusion

To summarize, we have investigated the Ti/Al metallization scheme for the formation of ohmic contact on high-Al content $Al_{0.6}Ga_{0.4}N$ for solar-blind detectors. We show that the electrical properties of the Ti/Al contacts improved as the annealing temperature increased. In particular, the contact produced a very low specific contact resistivity, $3.42 \times 10^{-4} \Omega \cdot cm^2$, when annealed at 670°C for 90s. By X-ray diffraction measurement analysis, we found that the annealinginduced improvement of the *I-V* characteristics of Ti/ Al contacts could be attributed to the formation of Ti₃Al₂N₂ and as well as an Al-Ti intermetallic phase. Using the ideal contact on back-illuminated solarblind AlGaN p-i-n detectors improved the spectral responsivity, dark-current, and breakdown voltage.

References

- [1] Adivarahan V, Simm G, Tamulaitis G, et al. Indium-silicon co-doping of high-aluminum-content AlGaN for solar blind photodetectors. Appl Phys Lett, 2001, 79, 1903
- [2] Cao X A, Piao H, LeBoeuf S F, et al. Effects of plasma treatment on the ohmic characteristics of Ti/Al/Ti/Au contacts to n-Al-GaN. Appl Phys Lett, 2006, 89:082109
- [3] Zhou H M, Shen B, Zhou Y G, et al. Metal/n-AlGaN ohmic contact. Chinese Journal of Semiconductors, 2002, 23:153 (in Chinese)[周慧梅,沈波,周玉刚,等. 金属/n型 AlGaN 欧姆接触. 半导 体学报,2002,23:153]
- [4] Lin M E, Ma Z, Huang F Y, et al. Low resistance ohmic contacts on wide band-gap GaN. Appl Phys Lett, 1994, 64, 1003
- [5] Ruvimov S, Liliental-Weber Z, Washburn J, et al. Microstructure of Ti/Al and Ti/Al/Ni/Au ohmic contacts for n-GaN. Appl Phys Lett, 1996, 69; 1556
- [6] Luther B P, Mohney S E, Jackson T N, et al. Investigation of the mechanism for ohmic contact formation in Al and Ti/Al contacts to n-type GaN. Appl Phys Lett, 1997, 70:57
- [7] Chen Jun, Li Xue, Li Xiangyang. Effect of rapid thermal annealing on Ti/Al/Ni/Au ohmic contact to n-Al_{0.45} Ga_{0.55} N. International Workshop on Junction Technology, 2006;262

日盲探测器高 Al 组分 n-Al_{0.6}Ga_{0.4}N 欧姆接触

朱雁翎1," 杜江锋1 罗木昌2 赵 红2 赵文伯2 黄烈云2 姬 洪1 于 奇1 杨谟华1

(1电子科技大学电子薄膜与集成器件国家重点实验室,成都 610054)(2重庆光电技术研究所,重庆 400060)

摘要:研究了应用于日盲探测器的高 Al 组分 Si 掺杂 n 型 Al_{0.6}Ga_{0.4}N 与两层金属层 Ti(20nm)/Al(100nm)之间的欧姆接触.在制作 金属电极前用煮沸王水对样片进行表面预处理,金属制作后再在 N₂ 氛围中做快速热退火处理.使用高精度 XRD 测试样品表面特性,并对不同温度下的情况进行比较.样品的比接触电阻率是用环形传输线模型通过 *I-V* 测试得到.670℃下 90s 退火得到最优 ρ_c 为 3.42 × 10⁻⁴ Ω • cm².将该处理方法应用到实际的背照式 AlGaN p-i-n 日盲探测器中,探测器的光谱响应度和反向特性等参数得到很大的 优化.

关键词:高铝 n-AlGaN; 欧姆接触;退火;背光照; pin 日盲探测器
PACC: 2940P; 6150C EEACC: 4250
中图分类号: O47 文献标识码: A 文章编号: 0253-4177(2008)09-1661-05

[†] 通信作者.Email:yanlz83@163.com 2008-03-26 收到,2008-05-07 定稿