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Abstract: A surface potential based non-charge-sheet core model for cylindrical undoped surrounding-gate (SRG)
MOSFETs is presented. It is based on the exact surface potential solution of Poisson’s equation and Pao-Sah’s
dual integral without the charge-sheet approximation, allowing the SRG-MOSFET characteristics to be adequately
described by a single set of the analytic drain current equation in terms of the surface potential evaluated at the source
and drain ends. It is valid for all operation regions and traces the transition from the linear to saturation and from the
sub-threshold to strong inversion region without fitting-parameters, and verified by the 3-D numerical simulation.
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1. Introduction

Extensive studies on surrounding-gate (SRG) metal-
oxide-semiconductor field effect transistor (MOSFET) mod-
elling have been performed in recent years and the related
device physics have been well described by many different
models[1−6]. In the channel potential-based SRG-MOSFET
models, the closed form current models are presented in
terms of the intermediate variables or the potentials of the
surface and centre point at the source and drain ends[3−5].
In the charge-based SRG-MOSFET model[6], semi-empirical
charge expression is developed for SRG-MOSFETs based on a
smooth function and interpolation. In Ref.[7], a unified charge-
based model, valid for both heavily doped and intrinsic chan-
nel, is proposed. In addition, a carrier-based approach is found
to be useful in developing generic compact model for SRG-
MOSFETs[8]. However, considerable attention has been fo-
cused on developing surface potential-based models in recent
compact model formulations[9, 10]. At present, there is a gen-
eral consensus that the surface potential approach not only in-
cludes as much device physics as possible but also retains high
accuracy and model continuity.

In this paper, we propose an analytical surface potential-
based non-charge-sheet core model for obtaining the Ids(Vgs,
Vds) characteristics of the SRG-MOSFET, based on closed-
form solutions of Poisson’s equation, and Pao-Sah’s dual in-
tegral equation. We demonstrate that an analogous formula-

tion proposed by Brews et al. for the single-gate (SG) Bulk
MOSFET[11], can be carried out for the SRG-MOSFETs. The
model has three distinctive features: (i) A single set of the
surface potential voltage equation is obtained from the ex-
act Poisson equation solution in the undoped SRG-MOSFET
structure, analogous to that of the bulk MOSFETs, for which
the complete surface potential equation is the beginning to
develop a continuous model; (ii) The drain current, obtained
from Pao-Sah’s dual integral, is described by one continuous
function in terms of the surface potentials at the source and
drain, tracing properly the transition between different SRG-
MOSFET operation regions without resorting to non-physical
fitting-parameters; (iii) The charge-sheet approximation, typi-
cally used in bulk MOSFET models to simplify the Pao-Sah’s
equation for the current[11, 12], is not invoked, properly cap-
turing SRG-MOSFET’s volume inversion effect[6]. The pre-
sented core model is ideally suited for being a base of SRG-
MOSFET compact model development. In order to complete
the model, short-channel effects, quantum effects, low and
high field transport, and more, will be added in near future.

2. Model derivation

Let us consider an ideal long channel undoped n-type
SRG-MOSFET, also note that only the electron term is con-
sidered. This simplification applies when qϕ/kT ≫ 1, being
the hole density negligible. Figure 1 shows the SRG-MOSFET
structure, coordinate and energy band diagrams. Following
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Fig.1. (a) Schematic cross section of an SRG MOSFET showing the coordinate system and relate variables; (b) Energy band diagram of an
SRG MOSFET under certain Vgs and Vds. Efp is the hole quasi-Fermi level; Efn is the electron quasi-Fermi level, and Ei is the intrinsic Fermi
level.

the gradual-channel-approximation (GCA), Poisson’s equa-
tion takes the one-dimensional (1-D) form[3−5]:

d2ϕ

dr2 +
1
r

dϕ
dr
=

kT
qL2

D

exp
q (ϕ − V)

kT
, (1)

where all symbols have common physics meanings. V is the
quasi-Fermi-potential with V = 0 at the source end and V =
Vds at the drain end. L−2

D = q2ni/kTεsi is the reciprocal of the
square of the intrinsic silicon Debye length. kT

q is the thermal
voltage and r is the spatial coordinate

Equation (1) must satisfy the following boundary condi-
tions:

dϕ
dr

(r = 0) = 0, ϕ(r = 0) = ϕ0, ϕ(r = R) = ϕs. (2)

Equation (1) can be analytically solved yielding[4, 5]:
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From Gauss’s law, the following relation must hold:

Cox(Vgs − ∆φ − ϕs) = Q = εSi
dϕ
dr

∣∣∣∣∣
r=R
, (5)

where Cox = εox/[Rln(1 + tox/R)] and ∆φ is the work-function
difference. In the following discussion the mid-gap gate mate-
rial, i.e., ∆φ = 0, is assumed.

Substituting Eqs.(3) and (4) into Eq.(5) leads to
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]
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(6)

Again, substituting Eq.(3) into Eq.(6) leads to

Cox
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Vgs − ∆φ − ϕs

)
=

RεsikT 2

2qL2
i

exp
q (ϕs + ϕ0 − 2V)

2kT
. (7)

From Eq.(7), we obtain the centric potential expression:

ϕ0 = 2V − ϕs +
2kT

q
ln

2L2
i Coxq

(
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)
RεsikT

. (8)

Equation (8) is submitted to Eq.(3), we have
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(9)

Equation (9) is a fully rigorous surface potential-voltage
equation of the SRG MOSFETs, which can be solved by a
Newton–Raphson (NR) method to get the accurate surface
potential value. In order to test the analytic surface potential
model, we have compared the Eq.(9) prediction result of long-
channel SRG-MOSFETs with the numerical simulations from
DESSIS-ISE R⃝. We have assumed a channel length (L) of 1
µm, silicon oxide thickness (tox) of 2 nm, and a mid-gap gate
structure. A constant effective mobility of 400 cm2/(V·s) has
been used for both calculations.

To apply Eq.(9) to current and charge modelling, ϕs needs
to be evaluated at the source (y = 0) and drain (y = L) ends
with V = 0 and V = Vds, respectively. The results are sepa-
rately labelled as ϕs = ϕSS and ϕs = ϕSL. Figure 2 shows the
surface potential versus gate voltage curves calculated from
Eq.(9) for the source and drain ends, compared with the 3-D
simulation. The solution, given by Eq.(9), is continuously and
smoothly valid for all regions of the SRG-MOSFET operation.
It is found that the results from Eq.(9) agree with the 3-D in
all operation regions for both the source and drain potentials.

024001-2



J. Semicond. 30 (2) He Jin et al.

Fig.2. Comparison of source and drain end surface potential obtained
from Eq. (9) (solid lines) with the 3-D numerical result (points).

Fig.3. Inversion charge characteristics obtained from Eq. (5) (solid
and dash lines) based on calculated surface potential, compared with
the 3-D numerical simulation (points).

Figure 3 compares the inversion charge density between
the model prediction and the 3-D simulation for different sil-
icon body radii. It is observed from Fig.3 that the model and
simulation agree well. In addition, the sub-threshold charge in-
creases as the silicon radius increases, and a unique “volume
inversion effect” is also predicted from the presented model,
coinciding with non-classical MOSFET device physics.

For a given Vgs, ϕs can be solved from Eq.(9) as a
function of V . Note that V varies from the source to the
drain. The functional dependence of V(y) and ϕs(y) is deter-
mined by the current continuity equation, which requires the
SRG-MOSFET drain current Ids = µ(2πR)QdV/dy = con-
stant, independent of V or y. The parameter µ is the effective
mobility. Following Pao–Sah’s dual integral[11], integrating

Fig.4. Transfer characteristics obtained from the surface potential-
based model for two silicon film radius (solid and dashed lines), com-
pared with numerical simulations from DESSIS-ISE R⃝ (points).

Fig.5. Output characteristics obtained from the surface potential
model (solid lines) compared with numerical simulations from
DESSIS-ISE R⃝(points).

Idsdy from the source to the drain and expressing dV/dy as
(dV/dϕs)(dϕs/dy), the non-charge-sheet drain current is writ-
ten as

Ids = µ
2πR

L

∫ Vds

0
Q(V)dV =µ

2πR
L

∫ ϕSL

ϕSS

Q(ϕs)
dV
dϕs

dϕs,

(10)
where ϕSS, ϕSL are solutions to Eq.(9) corresponding to V =0
and V = Vds, respectively. By using Eq.(9) and replacing it into
Q = Cox(Vgs − ϕs), the total mobile charge per unit gate area
expressed in terms of ϕs yields Q(ϕs). Note that dV/dϕs can
also be expressed as a function of ϕs by differentiating Eq.(9).
Substituting these factors in Eq.(10), we have
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The integration of Eq.(11) is performed analytically to yield:
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3. Result and discussion

From Eq.(12), the SRG-MOSFET drain current can be
easily computed. In the following, the SRG-MOSFET opera-
tion regions are derived from this continuous surface potential
based analytical model:

(i) Linear region above threshold. In this region the drift
current component dominates the device performance. Hence,
we observe that the total drain current can be approximated by
first two terms only above the threshold as shown in Eq.(13).

Ids ≈
2πRµCox

L

[(
Vgs − ∆φ

)
(ϕSL − ϕSS) − 1

2

(
ϕ2

SL − ϕ2
SS

)]
.

(13)
This current expression is just drift component of the tra-
ditional surface-potential-based bulk MOSFET models, thus
dominates in the strong inversion region;

(ii) Sub-threshold region: Below threshold the SRG
MOSFET current picture has a little difference from the bulk
MOSFET model. Here, the first two components are negligi-
ble and the negative fourth component cancels a half of third
component in this region. As a result, the total drain current is
described by

Ids ≈
2πRµCox

L

[
2kT

q
(ϕSL − ϕSS)+(

kT
q

)2 4εsi
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ln
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(
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This drain expression can be simplified into

IDS = µ
πR2

L
nikT exp

q(Vgs − ∆φ)
kT

(
1 − exp

−qVds

kT

)
. (15)

The sub-threshold current in Eq.(15) is proportional to the
cross-sectional area of the SRG-MOSFET and independent of
tox. This is a characteristic of the volume inversion effect that
cannot be captured by standard charge-sheet based models;

(iii) Saturation region. This regime occurs when the con-
tribution of the drain end to the drain current is a little. Hence,
the drain current is expressed as

Ids = µ
πR
L

(Qs +
CoxkT

q
) (ϕSL − ϕSS) . (16)

The saturation current mainly depends on the source inversion
charge density as expected for an MOSFET.

In order to verify the presented drain current model, the
drain current curves between the model prediction and the 3-
D simulation are also compared as done for the surface and
inversion charge. Figure 4 shows the SRG-MOSFET transfer
curves, and Figure 5 plots the SRG-MOSFET output curves,

calculated from the surface potential-based model and the 3-
D numerical simulation. Again, good agreement is observed
without using any fitting parameter in both figures. Especially,
the volume inversion effect of SRG-MOSFET demonstrated in
Fig.4 is well described by the presented model, matching the
3-D numerical simulation.

4. Conclusion

In summary, we have presented an analytical surface
potential-based current-voltage model suitable for compact
modeling of undoped (lightly doped) SRG-MOSFETs. All the
operation regions and the transitions are correctly described
by preserving the physics. In particular, the volume inversion
effect, that cannot be captured by using the traditional charge-
sheet approximation, is well accounted of in this model.
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