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Effects of electron– and impurity-ion–LO phonon couples on the impurity states
in cylindrical quantum wires∗
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Abstract: The variational method and the effective mass approximation are used to calculate the phonon effects on
the hydrogenic impurity states in a cylindrical quantum wire with finite deep potential by taking both the couplings
of the electron-confined bulk longitudinal optical (LO) phonons and the impurity-ion–LO phonons into account.
The binding energies and the phonon contributions are calculated as functions of the transverse dimension of the
quantum wire. The results show that the polaronic effect induced by the electron–LO phonon coupling and the
screening effect induced by the impurity-ion–LO phonon coupling tend to compensate each other and the total
effects reduce the impurity binding energies.
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1. Introduction

Recently, there has been an increasing interest in in-
vestigating quantum well wires (QWWs) both theoretically
and experimentally due to the fact of their physical nature
and their technological applications in electronics devices[1].
Many works are devoted to the study of the hydrogenic im-
purity states in both infinite[2−4] and finite deep potential[5−8]

quantum wires with different geometries. It is found that
the impurity binding energy in a quantum wire is much
larger than that in a three-dimensional semiconductor. The
phonon effects in low-dimension systems are important in
determining the physical properties and have attracted much
attention[9−19]. Buonocore et al.[9] and Xie[10] studied the po-
laron self-energies by considering both the volume and the sur-
face phonon modes in cylindrical quantum wires with infinite
potential. Moukhliss[11] chose infinitely deep potential wells
to check the effect of the electron-confined bulk longitudinal
optical (LO) phonon interaction on the ground bound state of
the shallow donor impurity in a rectangular quantum wire. The
impurity states in a quantum wire with a rectangular cross sec-
tion and a finite barrier potential were also discussed by Osório
et al.[12, 13]. The polar effects on the donor impurity binding
energy in a cylindrical quantum wire with infinite[14] poten-
tial and finite[15] potential were analyzed by Xie et al. How-
ever, they missed the ion-phonon coupling when discussing
the phonon effects. Recently, we[16] calculated the impurity
ion–phonon coupling effect in a quantum wire, as pointed out
by Platzman[17], and concluded that the screening of the impu-
rity potential by the ion–phonon coupling reduces the binding
energy and is much more important than the polaronic effect
of the electron–phonon coupling. To the best of our knowl-
edge, the phonon effect, taking both electron–phonon and ion–

phonon coupling into account in a cylindrical quantum wire
having a finite potential, has rarely been reported. Therefore,
a detailed analysis is needed.

In this paper, we will study the binding energies of impu-
rity states in polar cylindrical quantum wires with finite high
potential by taking the LO phonon couplings with both, elec-
trons and impurity ions, into account. The numerical results
for the GaAs quantum wire will be shown and discussed.

2. Hamiltonian

Consider the GaAs QWW having a circular cross sec-
tion of radius R and the wire axis along the z-direction em-
bedded in a dielectric matrix. An electron is bound to a hydro-
genic donor impurity center in the wire. The Hamiltonian of
the bound electron–LO phonon system can be expressed as

H = He + HLO + He−LO. (1)

In Eq. (1), He is the Hamiltonian of the bare bound electron
and can be written as

He = −
~2

2m∗
∇2 − e2

ε∞
√

z2 + |r − ri|2
+ V (r) , (2)

where V(r) is the confining potential given by

V (r) =

0, r 6 R,
Vb, r > R.

(3)

In Eq. (2), the r direction is perpendicular to the axis of the
wire, and ri gives the impurity’s location along this direc-
tion. ε∞ is the high frequency dielectric constant and m∗ is
the electron-band effective mass.
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HLO in Eq. (1) is the Hamiltonian of the free phonon field
of a confined LO phonon:

HLO =
∑
mlkz

~ωLOa†ml(kz)aml (kz) , (4)

where ωLO is the LO phonon frequency, and a†ml and aml are
the corresponding creation and annihilation operators with the
wave-vector kz, respectively.

For the electron–LO interaction, we use the Hamiltonian
derived by Wang and Lei[18] and take both the electron– and
impurity ion–LO phonon couplings into account[17]. The last
term in Eq. (1) can then be written as

He−LO =
∑
mlkz

[(
V∗LO (r) eimφeikzz − V∗LO (ri)

)
a†ml (kz) + h.c.

]
.

(5)
Here, the impurity ion is assumed to be at rest and contributes
the −V∗LO (ri) term to He−LO. The coupling parameter in
Eq. (5) is expressed as

V∗LO (r) = Γ∗ml
LO (kz) Jm

(
χl

m

R
r
)
, r 6 R, (6)

where

Γ∗ml
LO =

i
√

2e (~ωLO)1/2

√
L
√
χl2

m + k2
z R2Jm+1

(
χl

m

) (
1
ε0
− 1
ε∞

)1/2

. (7)

Jm is the m-order Bessel function, and χl
m is the l-th root of Jm.

L is the length of the quantum wire. ε0 is the static dielectric
constant of the wire material.

We first treat the ion–phonon coupling term by perform-
ing the following canonical transformation, similarly to
Ref. [17]:

U0 = exp

∑mlkz

(a†mlkz
+ amlkz )V

∗
LO (ri)/~ωLO

 . (8)

The transformed Hamiltonian is given by

H∗ = He +
∑
mlkz

~ωLOa†mlkz
amlkz +

∑
mlkz

{
V∗LO(r)eikzzeimφa†mlkz

+ h.c.
}

−
∑
mlkz

{
VLO (r) VLO (ri) eikzzeimφ

~ωLO
+ h.c.

}
.

(9)
Here, we have dropped the infinite constant self-energy term
related to the positive point charge, − ∑

mlkz

|VLO(ri)|2/~ωLO, for

convenience.

3. Binding energy of impurity states

To calculate the binding energy of impurity states, we
perform Lee-Low-Pines(LLP)-like unitary transformations,

U1 = exp

−i

∑
mlkz

kzza†mlkz
amlkz +

∑
mlkz

mφa†mlkz
amlkz


 , (10)

and

U2 = exp

∑
mlkz

[
f ∗ml (kz) aml (kz) − h.c.

] , (11)

where the variational parameters f ∗ml and fml can be determined
by minimizing the expectation of the bound polaron Hamilto-
nian. The trial wave function is chosen as

|Φ⟩ = Ψ (r) U0U1U2 |0⟩ , (12)

where |0⟩ is the phonon vacuum state, and Ψ (r) the impurity
state wave function chosen as

Ψ (r) = N exp
(
−λ

√
z2 + |r − ri|2

) 
J0 (αr) , r 6 R,

J0 (αR)
K0 (βR)

K0 (βr) , r > R,

(13)
where λ is the variational parameter, and N the normalization
constant of Ψ (r). α and β in Eq. (13) are determined by

~2α2

2m∗
= Vb −

~2β2

2m∗
, (14)

and the boundary condition on the wave function

α
dJ0(αr)
d(αr)

∣∣∣∣∣
r=R
= β

J0(αR)dK0(βr)
K0(βR)d(βr)

∣∣∣∣∣
r=R
. (15)

Minimizing ⟨Φ|H|Φ⟩ with respect to f ∗ml (kz), one can ob-
tain

fml (kz) = −
⟨Ψ |Γml

LOJm

(
χl

m

R
r
)
|Ψ⟩

~ωLO +
~2

2m∗
⟨Ψ |

(
k2

z +
m2

r2

)
|Ψ⟩ − ~kzPz

m∗
(1 − η)

.

(16)
The variational energy of the ground state of the impurity
states is then calculated by

⟨Φ|H |Φ⟩ = ⟨Ψ | P2
r

2m∗
|Ψ⟩ + ⟨Ψ |

P2
z

2m∗∗
|Ψ⟩ + V(r)

− ⟨Ψ | e2

ε∞
√

z2 + |r − ri|2
|Ψ⟩

−
∑
mlkz

∣∣∣∣∣∣⟨Ψ |Γml
LO (kz) Jm

(
χl

m

R
r
)
|Ψ⟩

∣∣∣∣∣∣2
~ωLO +

~2

2m∗
⟨Ψ |

(
k2

z +
m2

r2

)
|Ψ⟩

−
∑
mlkz

{
⟨Ψ | VLO (r) VLO (ri) eikzzeimφ

~ωLO
+ h.c. |Ψ⟩

}
,

(17)
where m∗∗ is the renormalization mass of the electron in the
direction along the wire:

m∗∗ =
m∗

1 − η , (18)

with

η =
∆mLO

1 + ∆mLO
, (19)
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Fig. 1. Binding energies of the donor impurity states as a function
of the wire radius with (solid lines) and without (dashed lines) the
phonon contributions.

where ∆mLO is a dimensionless constant given by

∆mLO =
2~2

m∗
∑
mlkz

k2
z

∣∣∣∣∣∣⟨Ψ |Γml
LO (kz) Jm

(
χl

m

R
r
)
|Ψ⟩

∣∣∣∣∣∣2[
~ωLO +

~2

2m∗
⟨Ψ |

(
k2

z +
m2

r2

)
|Ψ⟩

]3 . (20)

The ground state energy of the bound polaron can be calcu-
lated by

Eg = min
λ
⟨Φ|H |Φ⟩ . (21)

Denoting the free polaron energy in the quantum wire as E0,
the binding energy can be calculated as

Eb = E0 − Eg. (22)

The Hamiltonian of a free polaron in this system can be written
as

Hfree = H0
e + H0

LO + H0
e−LO

= − ~
2

2m∗

(
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂φ2

)
− ~

2

2m∗
∂2

∂z2 + V (r)

+
∑
mlkz

~ωLOa†ml(kz)aml (kz)

+
∑
mlkz

[
Γml

LO (kz) Jm

(
χl

m

R
r
)

eimφeikzza†ml (kz) + h.c.
]
.

(23)
Using the LLP-like unitary transformation equations (10) and
(11), the free polaronic energy can be variationally calculated
as

E0 = ⟨Φ0 (r)|Hfree |Φ0 (r)⟩

= ⟨Ψ0|H0
e |Ψ0⟩ −

∑
mlkz

∣∣∣∣∣∣⟨Ψ0|Γml
LO (kz) Jm

(
χl

m

R
r
)
|Ψ0⟩

∣∣∣∣∣∣2
~ωLO +

~2

2m∗
⟨Ψ0|

(
k2

z +
m2

r2

)
|Ψ0⟩
,

(24)

Fig. 2. Energy shifts of impurity states as a function of the wire, in-
duced only by the electron–LO coupling (dashed line), only by the
impurity-ion–LO coupling (dotted line), and both the electron– and
ion–LO couples (solid line).

whereΨ0 is the wave function of the bare electron in the cylin-
drical quantum wire:

Ψ (r) = N0


J0 (αr) , r 6 R,

J0 (αR)
K0 (βR)

K0 (βr) , r > R,
(25)

where N0 is the normalization constant.

4. Numerical results and discussion

Calculations for the binding energies of impurity states
are performed for the GaAs quantum wire. The parameters
used in the calculations are ε0 = 13.18, ε∞ = 10.89, m∗ =
0.067m0 (m0 is the free-electron mass), ~ωLO = 36.25 meV,
and Vb = 20Rg (Rg is the effective Rydberg constant, Rg =

m∗e4/2~2ε2
0).

We have plotted the binding energies of the impurity
states in the GaAs quantum wires as a function of the wire
radius with (solid lines) and without (dashed lines) phonon
contributions for different barrier height potentials, Vb = 10Rg,

20Rg, and ∞, in Fig. 1. It is found that the binding energies
of impurity states strongly depend on the size of the quantum
wire. The binding energies increase starting at the values of
the bulk GaAs material at large radii and reach a maximum at
a radius, which is less than half the bound radius. It then de-
creases rapidly to the bulk values of the barrier material, when
further decreasing the wire radius. One can clearly see that the
binding energies in the infinite well are higher than those in a
finite well. The effect of the barrier height is more significant
for a smaller radius and less important in a wire with a bigger
radius. When the barrier height is increased, the correspond-
ing radius for the electron to leak to the barrier is becoming
smaller. That is to say, when enhancing the barrier height, it
is more difficult for an electron to leak to the barrier material;
the probability to find the electron in the barrier material
decreases. Consequently, the binding energy increases. For a
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Fig. 3. Binding energies of impurity states as a function of the im-
purity position with (solid line) and without (dashed line) phonon
contributions for R = 10 nm.

large quantum wire, all the curves will asymptotically ap-
proach the limit of the bulk value. One can also find that the
binding energy with the phonon contributions (solid lines) is
obviously lower than that without it (dashed lines).

To clearly see the influences of the electron– and ion–
LO phonon couples on the binding energy of impurity states,
we have plotted in Fig. 2 the shifts of the binding energies
as functions of the wire radius, induced only by the electron–
LO phonon coupling (dashed line), only the impurity-ion–LO
phonon coupling (dotted line), and both the electron– and ion–
LO phonon couples (solid line). One can see that the shifts of
the binding energies with only the electron–LO phonon cou-
pling (dashed line) and with only the impurity-ion–LO phonon
coupling (dotted line) go into different directions. The former
one is positive, and its absolute value is small; and the lat-
ter one is negative, and its absolute value is large. This means
that the polaronic effect slightly enhances the impurity bind-
ing energy due to the increase in the effective mass of the
electron induced by electron-phonon interaction. The energy
shift induced by ion–LO phonon couples is significant (dotted
line) because the ion–phonon interaction strongly screens the
Coulomb potential and decreases the binding energy. When
taking both the electron–phonon and the ion–phonon cou-
pling into account (solid line), the binding energy is obviously
changed. That is to say, the screening effect of the impurity
center’s potential is much stronger than the polaronic effect.
The contrary effect of the two factors finally reduces the bind-
ing energy.

The binding energies of the impurity states as functions
of the impurity position with (solid line) and without (dashed
line) phonon contributions for R = 10 nm are plotted in Fig. 3.
The figure shows that the binding energies decrease rapidly
when moving the impurity away from the center, which is due
to the fact that the probability density of the electron around
the impurity center is reduced. It is also seen that the phonon
effect on the binding energy is larger when the impurity is lo-
cated in the center and decreases as the impurity shifts away

Fig. 4. Renormalization masses of the electron by LO phonons as
functions of the wire radius in the GaAs quantum wire for Vb = 10Rg

and 20Rg.

from the center because the phonon screening on the impu-
rity’s Coulomb potential is weakened.

In Fig. 4, we plot the renormalization masses of the elec-
tron by LO phonons as functions of the wire radius in the GaAs
quantum wire for Vb = 10Rg and 20Rg. It is seen that the renor-
malization masses increase, reach a maximum, and then de-
crease rapidly, as the wire radius decrease. The phonon mod-
ification to the electron effective mass is still weak; though, it
is larger when the barrier potential is higher (for Vb = 20Rg).
Therefore, the correction of the binding energy induced by the
renormalization mass is also weak.

5. Conclusion

In summary, we have investigated the impurity states in
a cylindrical quantum wire with a finite high potential by tak-
ing both the electron–LO and ion–LO phonon coupling into
account. The results show that the polaronic effect induced
by the electron–LO phonon coupling and screen impurity po-
tential effect induced by the impurity-ion–LO phonon cou-
pling partially cancel each other. The shift of the binding en-
ergy induced by the ion–phonon coupling is significant. The
polaronic effect is less important compared with the ion–LO
phonon coupling.
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