
Vol. 30, No. 7 Journal of Semiconductors July 2009

Optimization design of a full asynchronous pipeline circuit based on
null convention logic∗

Guan Xuguang(管旭光)†, Zhou Duan(周端), and Yang Yintang(杨银堂)

(Institute of Microelectronics, Xidian University, Xi’an 710071, China)

Abstract: This paper proposes a new optimization method to improve the performance of a null convention logic
asynchronous pipeline. Parallel combinational logic modules in the pipelines can work alternately in null and data
cycles by using a parallel processing mode. The complete waiting time for both null and data signals of combi-
national logic output in previous asynchronous register stage is reduced by decoupling the output from combina-
tional logic modules. Performance penalty brought by null cycle is reduced while the data processing capacity is
increased. The novel asynchronous pipeline based on asynchronous full adders with different bit widths as asyn-
chronous combination logic modules is simulated using 0.18-µm CMOS technology. Based on 6 bits asynchronous
adder as asynchronous combination logic modules, the simulation result of this new pipeline proposal demonstrates
a high throughput up to 72.4% improvement with appropriate power consumption. This indicates the new design
proposal is preferable for high-speed asynchronous designs due to its high throughput and delay-insensitivity.

Key words: threshold gate; asynchronous circuit; self-timed circuit; high-speed asynchronous pipeline; parallel
processing

DOI: 10.1088/1674-4926/30/7/075010 EEACC: 1265B

1. Introduction

With the continuous development of semiconductor tech-
nology, billions of transistors can be integrated into a single
chip. The conventional globally synchronous design is easily
affected by problems, such as clock skew, clock jitter, high
clock tree power consumption, and EMI. The emergence of the
asynchronous design has greatly relieved these problems. Ow-
ing to the clockless nature of the asynchronous design, a series
of problems can be avoided. As asynchronous circuits are data
driven, the circuit goes into operation when data arrives; oth-
erwise it keeps its present state. So, an asynchronous design
has the advantages of low-power, anti-EMI, high-robustness,
and reusability[1−3].

Among various asynchronous design methods, the NCL
(null convention logic)[4] self-timed design method has the
most potential. It works under Seitz’s “weak condition” delay-
insensitive manner[5]. NCL circuits use a four-phase dual-rail
protocol where the control signals are integrated into data sig-
nals, which can reduce the complexity of the control system.

This paper analyzes principles and performance restric-
tions of NCL full asynchronous pipelines, and proposes a new
design of the high-speed NCL full asynchronous pipeline. In
order to enhance the data processing speed and improve the
throughput of the whole pipeline, we adopt the parallel pro-
cessing mode, which enable the parallel combinational logic
to work alternately in the NULL mode and the DATA mode.
In addition, we decouple the computed results of the present
stage from the completion detection signal of the register in the
next stage. A comparison between the new proposed pipeline

and the conventional pipeline is made. Both theoretical anal-
ysis and simulation results show that the new design proposal
brings a great performance improvement.

2. Principles of NCL asynchronous pipelines

NCL asynchronous pipelines work under the four-phase
dual-rail encode mode. As is shown in Table 1, one dual-rail
signal D is transmitted by two mutual exclusion data lines, D0
and D1. Caution should be paid here that D turns to NULL
when D0 and D1 are zero, which is known as the return to
zero (RTZ) process. RTZ processes, namely reset processes,
are needed after every NCL operation cycle.

Threshold gates are the basic logic units of NCL. The
main type of the threshold gate is a THmn gate, where 1 6 m
6 n, as shown in Fig. 1. The THmn gate has n inputs with a

Table 1. Dual-rail encoding.

D D0 D1
DATA0 1 0
DATA1 0 1
NULL 0 0

Fig. 1. NCL THmn threshold gate with reset port.

∗ Project supported by the National Science Fund for Distinguished Young Scholars (No. 60725415) and the National Natural Science
Foundation of China (Nos. 60676009, 90407016).

† Corresponding author. Email: guanxuguang 5@126.com
Received 17 November 2008, revised manuscript received 26 February 2009 c⃝ 2009 Chinese Institute of Electronics

075010-1



J. Semicond. 30(7) Guan Xuguang et al.

Fig. 2. Structure of the basic NCL pipeline[7].

threshold m. When m out of these n inputs goes high, the out-
put goes high; only in case of all inputs become low, the output
becomes low. The hysteresis of the threshold gate guarantees
that only after the inputs and the outputs turn to NULL the
next set of data can be input into the threshold gate[6].

NCL threshold gates can also have a reset function. The
behavior of the NCL threshold gate with a reset port, shown in
Fig. 1, can be expressed by

Z = (S + (RZ∗)) × reset . (1)

S represents the set condition; R stands for the hold condition;
Z∗ represents the former state of Z; reset is the condition of
reset.

NCL systems require at least two delay-insensitive asyn-
chronous registers involved in the input and the output. Data
inputs and outputs between registers are controlled by request
and acknowledgement signals. Each input request signal of the
register comes from the completion detection of the output of
the next register. In the beginning, the whole pipeline is ini-
tialized to the NULL state with every NCL register requesting
data from previous stages, as shown in Fig. 2. To prevent the
replacement of present data by the subsequent data, a NULL
signal is inserted between two DATA signals; that is, DATA
signals and NULL signals are inputted into the asynchronous
combinational circuits alternately. An Ack signal is generated
by a completion detection circuit, which informs the previous
stage that the computation in the present stage has been com-
pleted, and it is ready for the next NULL and DATA signals.
If the previous stage can not receive the ack completion sig-
nal, the previous stage will block the next input signal until the
present stage has completed the computation and informed the
previous stage through the ack signal that it is ready for new
data.

3. Performance analysis

This paper proposes an asynchronous parallel design.
Through adding an identical asynchronous combinational
logic between two asynchronous registers, the pipelines can
work in a parallel mode, as shown in Fig. 3. The black square
represents the NCL asynchronous register, while the circle
represents asynchronous combinational logic circuits. The ar-
rowhead gives the direction of data flow.

As shown in Fig. 3(a), the data transmissions modes in
basic NCL asynchronous pipelines are “empty–full–empty–
full”. That is, the asynchronous combinational logic in each

Fig. 3. Comparisons of the two pipelines: (a) Basic NCL transmission
graph; (b) Proposed transmission graph in this paper.

stage will go through a NULL period after computation. Ev-
ery register must wait for the NULL signal to pass through
the asynchronous combinational logic and to be successfully
received by the next stage register before it can transmit the
next DATA signal. In other words, the asynchronous combina-
tional logic will spend half of the time processing NULL sig-
nals in a DATA–DATA cycle, which has a negative impact on
the throughput of the pipeline. Therefore, the design proposal
in Fig. 3(b) uses a parallel processing mode through inserting
an identical asynchronous combinational logic between every
asynchronous register and by the selection of an asynchronous
combinational logic to receive the signal at the input port.
In the beginning, the circuits are initialized to a NULL state.
When the first DATA reaches the asynchronous register, it will
be selected into the asynchronous combinational logic #1, and
will inform the present stage register that the data has been
successfully received. Then, the present stage register trans-
mits a req signal to the previous stage with a NULL signal at
the output. Once the completion detection circuits detect that
the asynchronous combination logic have completed the com-
putation, the next stage asynchronous register will receive the
computed data. Meanwhile, a NULL signal will be transmit-
ted to the asynchronous combinational circuit from the present
stage register, and a completion signal is send to the regis-
ter in the present stage. The present stage register will get a
DATA signal from the previous stage and will wait for the
completion of the NULL signal computation. After the com-
putation of the NULL signal has completed, circuit #2 is se-
lected to receive the next DATA signal with the same work-
ing procedure of circuit #1. The scheme that circuit #1 and #2
receive DATA/NULL signals alternately has greatly reduced
the processing time for the conventional one to complete the
DATA/NULL cycle. The whole asynchronous pipelines work
in the “full–semi-empty–full–semi-empty” mode with an en-
hanced throughput.

075010-2



Guan Xuguang et al. July 2009

Fig. 4. Structure of the optimized NCL asynchronous pipeline circuit.

4. Circuit implementations

The proposed NCL asynchronous pipeline circuit is
shown in Fig. 4. CL1 and CL2 are identical NCL asyn-
chronous logic modules with completion detection circuits at
inputs and outputs. Input completion detection is used to con-
trol the sequencer to select between CL1 and CL2, while out-
put completion is used to control and hold the inputs of the
combinational logic CL1 and CL2. The input completion de-
tection of the next stage register is used to control the output
of the present stage. For the circuit in Fig. 4, the outputs of
the combinational circuits and the completion detection of the
next stage register are decoupled so that it is not necessary to
wait for the ack signal coming from the next stage to start the
next DATA/NULL cycle, which is different from the scheme in
Ref. [9]. Moreover, the output selection is entirely controlled
by the completion detection circuit of the next stage, which
can reduce extra performance losses due to the sequencer.

The operation procedure of the NCL asynchronous
pipeline in Fig. 4 is as follows: In the beginning, all modules
are initialized to the NULL state. Owing to the fact that all
of the inputs of CL1 are zero, the input and output comple-
tion detections of CL1 are valid, which will make the output
of the completion detection ki high, and s1 is selected by the
sequencer. If DATA is loaded into the NCL register, the th33
gate of CL1 will reach its threshold; so, data can pass through
a0, a1, b0, and b1 into module CL1 and begin to compute.
If the input completion detection of CL1 has detected the va-
lidity of the inputs, the output of the completion detection ki
becomes zero, and s1 goes low by the sequencer. The left NCL
register will load the NULL signal after receiving the low ki,
but the NULL signal can not be transmitted through the th33
gate until receiving the completion signal of the CL1. Thus,

Table 2. Operating process of the sequencer.

Period ki s1 s2
#1 1 1 0
#2 0 0 0
#3 1 0 1
#4 0 0 0

it ensures that the previous DATA signal can not be overwrit-
ten by a NULL signal. When the outputs d0, d1, e0, and e1
of the CL1 become valid, they will go into the output holding
circuits constructed by C-elements. The CL1 circuit can begin
to compute immediately, rather than waiting for the output of
the next register to become NULL, as is done in conventional
NCL asynchronous pipelines. That is, the waiting time for the
ack signal is reduced, which makes the asynchronous combi-
national logic go into the next cycle as soon as possible. The
output of CL1 will keep in C-elements instead of receiving a
NULL from the output of CL1, until the data in d0, d1, e0,
and e1 have been transmitted to c0, c1, s0, and s1. Also, the
th23 gate is allowable to return to the NULL state, since k0
becomes low after the next asynchronous register has sent out
the data successfully. By now, a DATA/NULL cycle has been
completed. The working procedure of the CL2 circuit is the
same as that of the CL1. The right working order of CL1 and
CL2 is determined by the sequencer, and the behavior of the
sequencer can be depicted by Table 2.

The implementation circuit of the sequencer is shown
in Fig. 5. The sequencer selects the output through the input
times of ki. The last input can be preserved in the circuit due to
the hysteresis of the threshold gates until the input ki changes,
which alternately causes s1 and s2 to go to the high state.
The specific working process of the sequencer is depicted

075010-3



J. Semicond. 30(7) Guan Xuguang et al.

Fig. 5. Implementation of the sequencer circuit.

Fig. 6. Completion detection circuits[8].

in Table 2. Ki is controlled by the outputs of the completion
detections circuits of CL1 and CL2; s1 goes high when ki
becomes high first, while s1 and s2 go low after ki becomes
low. When ki becomes high afterwards, s2 goes high. The mu-
tual exclusion behavior of s1 and s2 guarantees that CL1 and
CL2 can receive data alternately, which can greatly enhance
the throughput of the pipeline.

Figure 6 shows the completion detection circuit with the
function of detecting the validness of DATA and NULL sig-
nals. The number of th12 gates here should equal to the widths
of signal to be detected. In the beginning, a0, a1, b0 and b1
are all low, which indicates requesting DATA signals. Th22
gates will go low after a and b get data, and requesting NULL
signals. With the NULL signal arrives, the output of th22 be-
comes high and requesting DATA signal, which indicates a
detection cycle has completed.

But in practical applications, congestions may often hap-
pen. So sometimes it is necessary to make some changes to
output holding module to prevent data errors. Specific circuits
are shown in Fig. 7, and this module can substitute the module
with dashed line in Fig. 4.

After the output holding module in Fig. 4 changed to the
circuit of Fig. 7, outputs of CL1 and CL2 are controlled by
completion detection module #3 and #4 respectively, only af-
ter the output of CL1 (d0, d1, e0, e1) changed to zero, namely
in the NULL cycle can output of CL2 (h0, h1, k0, k1) begin
to go through th33 gate, and vice versa. So the two output
holding module can work in a mutual exclusion manner, and
congestions in the pipeline can be removed.

5. Simulation results and analysis

A spice simulation is made based on SMIC 0.18-µm
CMOS technology with a voltage of 1.8 V. Figure 8 is a part
of the simulation waveform, in which a0, a1, b0, and b1 are

Fig. 7. Congestion immunization module.

Fig. 8. Simulation waveform of the new proposed pipeline.

inputs of the full-adder, and rs is the reset signal. The circuit
needs to reset before it can properly work. After the reset, ki is
high, which will make the output of the sequencer s1 turn high,
and CL1 is selected to process data. When the combinational
logic CL1 has completed the computation, a completion de-
tection signal will be sent to the register, and the NULL signal
begins to enter CL1. This is the RTZ (return to zero) process.
CL2 will be enabled after the ki signal rises again, and the
next data can be sent to CL2 from the register, as shown in
Fig. 8. The outputs of the sequencer s1 and s2 go high alter-
nately, which causes CL1 and CL2 to process the input data
alternately.

075010-4



Guan Xuguang et al. July 2009

Table 3. Performance comparisons of the two pipelines (five stages pipelines).

Asynchronous
CL

Conventional pipeline
DATA–DATA cycle[10] (ns)

Proposed pipeline
DATA–DATA cycle (ns)

Throughput
improvement

2 bits full-adder 1.93 1.42 35.9%
3 bits full-adder 2.21 1.54 43.6%
4 bits full-adder 2.64 1.63 62.3%
5 bits full-adder 2.92 1.75 67.1%
6 bits full-adder 3.24 1.88 72.4%

Fig. 9. Power consumption analysis of two pipelines: (a) 4 bits adder as asynchronous CL; (b) 5 bits as asynchronous CL; (c) 6 bits adder as
asynchronous CL.

A comparison between conventional NCL asynchronous
pipelines and the proposed pipelines based on different widths
of the asynchronous full-adder is made, as shown in Table 3.
Both of the two pipelines use five stages pipelining.

From Table 3, we can find that the larger asynchronous
combinational logic leads to a higher throughput and a perfor-
mance improvement of the optimized NCL pipelines. Based
on a 6 bits full-adder as the asynchronous combinational logic,
the throughput is increased by 72.4%. Since the performance
of the asynchronous circuits is decided by the average case of
the circuits, the throughput here indicates the average through-
put, i.e., the throughput arithmetic mean value of all kinds of
input combinations, which can be described as

G =

n∑
i=1

Gi

2n
, (2)

where Gi is the throughput of the pipeline under the given
combinational inputs. 2n is the number of possible combina-
tional inputs of the n-bit pipeline.

This paper applies the optimization method to the one
stage of the 10 stages asynchronous pipeline, and tests the av-
erage power consumption per stage in the pipeline, as shown
in Figs. 9(a), 9(b) and 9(c). Comparisons are made based on
4 bits, 5 bits and 6 bits adder as asynchronous combinational
logic module respectively.

It can be found that the power consumptions of two
pipelines are getting closer to each other gradually as the input
frequency and the complexity in the combinational logic in-
creases. When the 6 bits adder serves as an asynchronous com-
binational logic module and the input frequency of the pipeline
is 300 MHz, the power consumption difference is less than
0.016%. This is because the frequency of the asynchronous

Fig. 10. Area comparisons of two pipelines.

combinational logic in the proposed pipeline is one-half of that
in a traditional pipeline for the same input frequency. This re-
flects the power consumption more obviously as the increasing
complexity in the asynchronous combinational logic module.

A comparison of the transistor numbers of the two
pipelines is presented in Fig. 10.

As can be seen from Fig. 10, owing to the parallel pro-
cessing mode, the area of the proposed pipeline is about twice
than that of the traditional one.

The performance of the proposed pipeline has great ad-
vantages as compared to the traditional one under the circum-
stances of complexity in the combinational logic. So, it is suit-
able for the slower pipeline stage to enhance the throughput
of a whole pipeline in a data path. In asynchronous system
designs, a slower pipeline stage often becomes a performance
bottleneck of the whole system. Therefore, it is acceptable
to increase the area appropriately to get a tremendous perfor-
mance enhancement with little difference in power consump-
tion when applying it to high speed systems.

075010-5



J. Semicond. 30(7) Guan Xuguang et al.

Fig. 11. Layout of the proposed pipeline.

A full-custom layout is implemented using SMIC 0.18-
µm 1P6M technology, as shown in Fig. 11. The circuit has suc-
cessfully passed the post-simulation and the area of the layout
is 12783.193 µm2. The proposed pipeline has already been in-
tegrated into our NOC asynchronous routers and has lead to a
great performance enhancement with high robustness.

6. Conclusions

This paper proposes an optimized design for NCL asyn-
chronous pipelines. It resolves the performance loss of NCL
asynchronous pipelines when processing NULL signals. Two
identical asynchronous combinational logic modules are used
to realize parallel processing, and the selection of the modules
is controlled by completion detection signals. The advantage
of this method is that the asynchronous combinational logic
can go into the next computation cycle before the output com-
pletion signal of the next stage arrives. The data-hold circuits
constructed by c-elements ensure that data is stable before be-
ing successfully received by the next register, thus avoiding the
possibility of data errors. As seen from the spice simulation,
the proposed pipeline has a great advantage over the conven-
tional one. Especially under the circumstance of a 6 bits asyn-
chronous full-adder as the asynchronous combinational logic

module, the throughput of the pipeline is increased by 72.4%.
The proposed pipeline is suitable for high-speed on-chip asyn-
chronous designs.

References

[1] Shan Y, Lin B. Custom networks-on-chip architectures with
multicast routing. IEEE Trans VLSI Syst, 2009, 17(3): 342

[2] Geer D. Is it time for clockless chips. Computer, 2005, 38(3):
18

[3] Saneei M, Afzali-Kusha A, Navabi Z. A low-power high-
throughput link splitting router for NoCs. Journal of Zhejiang
University: Science A, 2008, 9(12): 1708

[4] Fant K M, Brandt S A. NULL convention logic: a complete
and consistent logic for asynchronous digital circuit synthesis.
International Conference on Application Specific Systems, Ar-
chitectures, and Processors, 1996: 261

[5] Seitz C L. System timing, in introduction to VLSI systems.
Addison-Wesley, 1980: 218

[6] Sankar R, Kadiyala V, Bonam R, et al. Implementation of static
and semi-static versions of a 24 + 8 × 8 quad-rail NULL con-
vention multiply and accumulate unit. IEEE Region 5 Technical
Conference, 2007: 53

[7] Kuang W, Yuan J S, DeMara R F, et al. Performance analy-
sis and optimization of NCL self-timed rings. IEE Proceedings
Circuits, Devices and Systems, 2003: 167

[8] Di J, Yuan J S. Energy-aware design for multi-rail encoding
using NCL. IEE Proceedings Circuits, Devices and Systems,
2006: 100

[9] Smith S C. Speedup of NULL convention digital circuits using
NULL cycle reduction. Journal of Systems Architecture, 2006,
52(7): 411

[10] Kakarla S, Al-Assadi W K. Testing of asynchronous NULL
conventional logic (NCL) circuits. IEEE Region 5 Conference,
2008: 1

075010-6


