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Prediction model for the diffusion length in silicon-based solar cells
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Abstract: A novel approach to compute diffusion lengths in solar cells is presented. Thus, a simulation is done;
it aims to give computational support to the general development of a neural networks (NNs), which is a very
powerful predictive modelling technique used to predict the diffusion length in mono-crystalline silicon solar cells.
Furthermore, the computation of the diffusion length and the comparison with measurement data, using the infrared
injection method, are presented and discussed.
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1. Introduction

The minority carrier diffusion length is one of the most
important parameters to characterize the quality of silicon so-
lar cells, because it provides a direct prediction of the conver-
sion efficiency in silicon solar cells[1, 2].

As already known, the diffusion length represents the av-
erage distance an electron can travel before recombining. The
diffusion constant of the minority carriers Dn, the more inter-
esting parameter in photovoltaics, is rather hard to detect[3].

This paper presents a comparative study of the two meth-
ods applied to silicon solar cells in determining diffusion
lengths. The experimental technique consists of an infrared in-
jection method where the infrared light was obtained by filter-
ing light from a high-intensity xenon source; the computing
method is based on a modelling technique using a neural net-
work.

2. Theory

Under short-circuit conditions, the junction acts as a sink
for minority carriers; hence[3],

n|0 = 0. (1)

Conditions at the back can be characterized by the gen-
eral relationship:

D
dn
dx

∣∣∣∣∣
w
= −Vsn|w . (2)

The parameter Vs, the surface recombination velocity, is a
measure of the recombination rate within the surface region,
while D is the minority-carrier diffusion constant. For extreme
values of Vs, Equation (2) reduces to

n|w = 0, Vs → ∞,
dn
dx

∣∣∣∣∣
w
, Vs → 0. (3)

The first condition applies to the case of strong recombi-
nation at the back, while the second condition applies to the
case of no recombination.

The steady-state distribution of minority carriers can be
represented by these boundary conditions and

D
d2n
dx2 −

n
τb
= g, (4)

where τb is the minority lifetime, D is the minority-carrier dif-
fusion constant and g is the minority-carrier generation rate.

Given a solution n(x) to Eq. (4), one can compute the
short-circuit current density Jsh using

Jsh = qD
dn
dx

∣∣∣∣∣
0
. (5)

*Infrared injection
When electron–hole pairs are generated by monochro-

matic light[4, 5], the generation profile has the form:

gv = F0α exp(−αx), (6)

where F0 is the photon flux density at the junction and α is the
optical absorption coefficient.

Referring to Eq. (4), the boundary conditions

n|x=0 = 0 (7)

and

D
dn
dx

∣∣∣∣∣
x=w
= −Vsn|x=w (8)

taken from Eqs. (1) and (2), respectively, are of interest.
In the case of monochromatic infrared light, the genera-

tion profile is given by Eq. (1). The minority-carrier distribu-
tion becomes
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Fig. 1. Quantum yield as a function of minority-carrier diffusion
length for several coefficients.

n =
L2
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{
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L
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[
exp (−w/L) − L exp (−αw)

]
+ LVs

[
exp (−w/L) − exp (−αw)

]} [
LVs sinh (w/L)

−D cosh (w/L)
]−1
+ exp (−αx) − exp (−x/L)

}
,

(9)
where L is the diffusion length, defined by

L =
√

Dτ. (10)

Using Eq. (8), the expression of the current density J be-
comes

J = qD
dn
dx

∣∣∣∣∣
x=0
. (11)

The results for extreme values of Vs are

J = J∞

(
1 − exp(−αw) − exp(−w/L)

(1 − αL) sinh(w/L)

)
, Vs → ∞, (12)

J = J∞

(
1 − exp(−w/L) − αL exp(−αL)

(1 − αL) cosh(w/L)

)
, Vs = 0, (13)

where

J∞ =
q exp(−x jα)Fi(1 − R)αL

1 + αL
, Vs → ∞. (14)

Fi is the incident photon flux, and R is the front surface reflec-
tion coefficient. J∞ is the current density for thick cells (i.e.,
w/L ≫ 1).

The number of electrons collected per absorbed photon,
Qa, where

Qa =
J

qFi(1 − R)
(15)

is plotted for several values of α in Fig. 1, where Equation (11)
is used for J.

Fig. 2. Optimized neural network.

3. Experimental

A silicon solar cell with an impurity concentration of
1015 cm−3 or more is considered in the present study.

To obtain a diffusion length measurement by using the
injection technique, the required elements are[3, 4]:

(1) a source of monochromatic infrared light,
(2) a means of measuring the front surface reflection co-

efficient,
(3) a determination of the optical power incident on the

active cell area,
(4) a measurement of the resulting short-circuit current.
The infrared light was obtained by filtering light from a

high-intensity xenon source[5−8]. The filters were Ealing mul-
tilayer filters with band-widths of 0.01 µm. The reflection co-
efficient was measured by using a Gier-Dunkle integrating
sphere and a modified Beckman DK-2A spectrophotometer.

The optical power was measured by using a thermopile,
while the shot-circuit current was obtained by measuring the
voltage across a 1 Ω shunt resistor.

Both measurements were reproducible to within about
0.2%. However, because of uncertainties in the value of the
active area, which may vary from one cell to another, the over-
all accuracy may be reduced.

From these data a value for Qa can be obtained:

Qa =
1

1 − R
hc

qPλ
ISC

Aa
, (16)

where h is Planck’s constant, c is the velocity of light, P is the
optical power, ISC is the short-circuit current, λ is the wave-
length, and Aa is the active area. Then the value of the diffusion
length can be obtained from Eqs. (11)–(13).

4. Computing calculation

Using the Matlab package, we could successfully predict
the diffusion length taking the values of the cell thickness into
account. The Neural network (NN) is a very powerful predic-
tive modeling technique. The initial stage of the program sim-
ulation involved data collection and entry (the incident photon
flux intensity, the absorption coefficient, the cell thickness, and
the optical power) (Fig. 2). In this case, we use the supervised
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Table 1. Predicted and measured values of the diffusion length in solar cells (α = 150 cm−1).

Parameter Measured parameter value
using infrared technique

Measured parameter value
using photoconductive decay method

Predicted parameter value
using a neural network

Diffusion length (µm) 200.1 198.9821 200.07

Fig. 3. Computing calculation of the diffusion length for different
numbers of neural networks.

learning, so a desired output result for each input vector is re-
quired when the network is trained; i.e. an ANN (artificial neu-
ral network) of the supervised learning type, such as the multi-
layer perceptron, uses the target result to guide the formation
of the neural parameters. It is, thus, possible to make the neural
network learn the behavior of the process under study (Fig. 2).

The askew of every layer becomes an additional input of
the layer (Fig. 2). Thus, the outputs are calculated by

y(1)
j = f

(∑n0

i=1
w ji + b j

)
= f

(∑n0

i=0
w jixi

)
, (17)

with x0 = 1 and w j0 = b j.

*Layer 1: W1 =
[
w ji

]
.

*Layer 2: W2 =
[
wk j

]
.

*Error propagation

The error expression is given by

eξ = yd
ξ − yξ = [eξ1 · · · eξn2], (18)

where yd
ξ–yξ are the desired outputs.

Figure 3 illustrates our computing calculation for differ-
ent numbers of neural network layers. The convergence to the
error goal is shown in Fig. 4. We remark that a faster conver-
gence to the error goal of 0.001 is reached for three hidden
layers. The basic flow diagram is shown in Fig. 5

Thus, the predictive errors were measured by the mean
error function (MEF) as

MEF =
1
n

n∑
i=1

|pi − ei|
emax − emin

× 100%, (19)

where ei is the experimental value of sample i, pi is the pre-
dicted value of sample i, and n is the number of the samples.
emax and emin are the maximum and minimum experimental
errors value, respectively.

Fig. 4. Error goal convergence.

Fig. 5. Basic flow diagram of the ANN.

5. Discussion

Theoretical considerations are implemented in a MAT-
LAB 7.1 environment and simulation results are presented for
the computational diffusion length.

The results in Table 1 show an excellent agreement with
experimental techniques used in measuring diffusion lengths.
Perhaps the major factor is the choice of the number of ANN
layers. The presented method demonstrates remarkable practi-
cal flexibility and efficiency optimization of the convergence.
In measuring diffusion lengths using the ANN approach, one
can remark that two things are apparent in ANN. With all neu-
ral network problems, we face the question of determining the
reasonable, if not optimum, size of the network. Let us make
the size of the network bigger. This brings in more network pa-
rameters, so we have to keep in mind that there are more data
points than network parameters. The other thing that could be
done is to improve the training algorithm performance or even
change the algorithm.

Comparing both experimental techniques, one deduces
that each method has its advantages and disadvantages[5]. Pre-
vious results can be easily reanalyzed to conclude that the pre-
dicted and measured values of diffusion lengths in solar cell
(α = 150 cm−1), using infrared technique, are more convergent
than the predicted values/measured values by a decay method.
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6. Conclusion

In summary, a new computing method of determining the
solar cell diffusion length has been proposed. From the results
above, it would be justified for a computer program using neu-
ral network to be easily adapted for the calculation of solar cell
diffusion lengths. Furthermore, the comparative analysis with
different experimental techniques shows a good agreement be-
tween theoretical calculations and experimental results.
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