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Accurate metamodels of device parameters and their applications in performance
modeling and optimization of analog integrated circuits
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Abstract: Techniques for constructing metamodels of device parameters at BSIM3v3 level accuracy are presented
to improve knowledge-based circuit sizing optimization. Based on the analysis of the prediction error of analytical
performance expressions, operating point driven (OPD) metamodels of MOSFETs are introduced to capture the cir-
cuit’s characteristics precisely. In the algorithm of metamodel construction, radial basis functions are adopted to in-
terpolate the scattered multivariate data obtained from a well tailored data sampling scheme designed for MOSFETs.
The OPD metamodels can be used to automatically bias the circuit at a specific DC operating point. Analytical-based
performance expressions composed by the OPD metamodels show obvious improvement for most small-signal per-
formances compared with simulation-based models. Both operating-point variables and transistor dimensions can be
optimized in our nesting-loop optimization formulation to maximize design flexibility. The method is successfully
applied to a low-voltage low-power amplifier.
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1. Introduction

Automatic sizing of analog circuits continues to be a
research focus for the EDA industry. Although the sizing
accuracy can be ensured by commercial transistor models,
simulation-based sizing is extremely slow due to the large
number of iterations and circuit evaluations. Therefore, many
researchers tend to speed up the optimization process by
adopting a model-based technique. During model-based cir-
cuit sizing, the circuit’s behavior is captured in a set of models
describing the specifications as functions of circuit parameters.
These models can be derived using handcrafted analysis or an
automated simulation-based method[1−4]. Model-based sizing
has the advantage of speed over simulation-based sizing but
the accuracy is inferior.

In Refs. [2, 4], simulation-based posynomial and least
squares support vector machine (LS-SVM) models are gen-
erated through parametric regression and non-parametric re-
gression techniques respectively. Circuit simulation results are
used to train the models. Both models are formulated in terms
of device voltages or currents, which in turn are expressed in
terms of device dimensions by fixing the channel length (L) of
MOSFETs. This formulation obstructs the straightforward in-
terpretation of these models especially when small-signal per-
formances are concerned[2]. In addition, not all the transistors
should be designed with fixed L when specifications cannot be
met in this case. Fixing L is equivalent to cutting away a part
of the design space. When device dimensions have to be con-
sidered simultaneously, the number of optimization variables
increases rapidly in large circuits and the model construction

cost is high since an increase of dimensionality would need
more training points for accurate models[5]. Performance mod-
els based on LS-SVM fitting are more accurate than posyno-
mial models which have to be cast in posynomial format[4]. For
some circuit characteristics, posynomial performance models
bring about large approximation errors[6].

In this paper, a novel knowledge-based circuit sizing op-
timization method is developed. The symbolic expressions for
circuit characteristics can be expressed in terms of operating-
point variables or device parameters consistent with design-
ers’ habits without simulations. Device parameters are rep-
resented by the operating point driven (OPD) metamodels at
BSIM3v3 level accuracy through radial basis functions (RBF)
interpolation. Both the models of device parameters and circuit
performances could be reused multiple times on a given sili-
con technology, which greatly reduces the model construction
cost. Optimization variables consist of operating-point vari-
ables and transistor dimensions as well to maximize design
flexibility.

2. Overview of the proposed methodology

The major sources of discrepancies between analytical
performance expressions and simulation results are two-fold.
First, since most expressions are derived based on correct bi-
asing of all the transistors in the circuit, the error in estimat-
ing the circuit biasing can result in a significant prediction
discrepancy[6]. Second, the discrepancy is inherent because
accurate device parameters are not included in the expres-
sions. To reduce the prediction discrepancies, the OPD meta-
models for device parameters are applied in the optimization
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Fig. 1. Output characteristic curves of NMOS obtained from

BSIM3v3 device models (Vgs = 0.7 V, Vsb = 0).

Fig. 2. Nesting-loop optimization formulation.

loop. Instead of estimating the circuit biasing by solving it
iteratively[7] or hierarchically[8], the operating point is spec-
ified directly[9], which brings about no iterations and no con-
vergence problems suffered by other methods. Metamodels for
various large or small signal parameters including the ratio of
width to length (W/L) of the transistor are built in terms of
operating points and the channel lengths of the transistor by
biasing the BSIM3v3 model at nearly all possible combina-
tions of port voltages with different values of the transistor di-
mensions, which is called operating point driven metamodels.
Including the channel lengths of MOSFETs into device mod-
eling, circuit performance modeling and circuit optimization
is significant because MOSFETs with the same DC operat-
ing point, the same W/L ratio and different channel lengths
may differ greatly in large or small signal behavior as shown
in Fig. 1. The output characteristic curves intersect with each
other due to short-channel phenomena such as velocity satura-
tion and drain-induced barrier lowering under deep-submicron
technology[10], which means the same DC operating point is
shared by them. Obviously, small signal parameters such as
drain–source conductance gds differ a lot in the intersection
points.

The optimization loop is depicted in Fig. 2. In the outer
loop, operating points are cast as optimization variables and
in the inner loop, the operating points are then invariable and
the L’s serve as optimization variables. In the inner loop,
analytical-based performance expressions are formulated by
the accurate OPD metamodels. Since the two major sources of

Table 1. Design variable mapping using a Latin hypercube.

Variable value

Vgs d1(Vgs,max − V̂th) + V̂th

Vds d2(Vds,max − V̂dsat + V̂dsat

Vsb d3(Vsb,max − Vsb,min) + Vsb,min

L d4(Lmax − Lmin) + Lmin

r d5(rmax − rmin) + rmin

prediction errors are eliminated, the analytical-based perfor-
mance models can be at SPICE level accuracy. This nesting-
loop optimization formulation can handle a larger number of
optimization variables and is suitable for circuit problems of
high dimensionality. From the above, we see that the OPD
metamodels play a critical role in this methodology.

3. OPD metamodel construction

A metamodel is a “model of a model” that provides an
approximation to a physics-based model that is much faster to
execute[11]. In addition, metamodels can also discover the un-
known relationship between variables that physics-based mod-
els are unable to give directly. For example, BSIM3v3 models
accept device dimensions and port voltages as the inputs and
output small and large signal parameters such as Id; the depen-
dence of W upon operating points can then be captured by a
metamodel. The creation of metamodels often uses design of
experiments (DOE) to select a limited but optimal set of sam-
ple points in the design space[12]. A well tailored DOE plan
and metamodel choice are the two key points during meta-
modeling. In this section, these two points are introduced in
detail.

3.1. Data sample strategy for the metamodeling of BSI-
M3v3 device parameters

As stated in section 2, a vast number of combinations of
operating points and channel lengths of MOSFETs are needed
for metamodel construction. Although the implementation of
all these combinations by BSIM3v3 device models is in some
sense computationally inexpensive, strategies from DOE en-
sure a uniform and unbiased representation of the sample
space. Under most cases, MOSFETs of analog circuits should
be biased in saturation. This constraint can be expressed as
Vgs > Vth and Vds > Vdsat. Vth and Vdsat are threshold volt-
age and saturation voltage respectively. Both of them are the
outputs of BSIM3v3 models. We find that Vth can be approx-
imated by linear regression of L and Vsb very accurately and
Vdsat can also be approximately expressed as the function of L,
Vgs and Vsb via response surface modeling. The ratio variable
r = W/L is used as a substitute for W in our problem. Instead
of using port voltages and device dimensions directly in DOE,
a five-factor Latin hypercube sampling (LHS) is carried out
beforehand with values uniformly distributed on [0, 1]. Then, a
set of sample points of port voltages and device dimensions are
generated according to Table 1. In Table 1, d1, d2, d3, d4 and
d5 form the original five-factor Latin hypercube, V̂th and V̂dsat
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are given by the fitted functions other than BSIM3v3 model
equations.

According to Table 1, Vsb, L and r are independent vari-
ables and the sample value of Vgs depends on them. Fur-
ther, Vds can be decided by the other 4 variables. The sample
dataset can not only represent the design space but also ensure
transistors biased in saturation during training data generation.
Lmax need not be very large because the transistor characteris-
tics of large L will be identical and close to the behavior of the
long-channel model described in Refs. [1, 13] when a thresh-
old value of L is reached. Transistors of very large dimensions
can be divided via multiplier (M) as multiple parallel MOS-
FETs. For this reason, rmax need not be very large either. After
the sample dataset of device dimensions and port voltages are
imported into BSIM3v3 models, various large and small signal
device parameters are obtained. Here the following 7 MOS pa-
rameters are modeled in terms of operating points and channel
lengths of the devices: Vdsat, gm, gds, Cgs, Cgd, Cdb and r.

Unlike the time-consuming circuit simulations during
performance metamodel construction, this process will take
seconds even though a large number of sample points is in-
volved.

3.2. Scaling of the generated training data

Data scaling is an essential step to improve the train-
ing quality during metamodeling. When the data are properly
scaled, the relationship between variables becomes weakly
nonlinear. Most equations encountered in analog circuit de-
sign have logarithmic behavior[9,10]. For example, log Id de-
pends in an asymptotically linear way on lgVgs and lgVds. The
same is valid for the small-signal parameters. Thus variables
vi ∈ [lbi, ubi] is logarithmically scaled onto xi ∈ [0, 1] as be-
low before training the dataset[2]:

xi = lg
vi

lbi

/
lg

ubi

lbi
. (1)

3.3. Metamodeling through RBF interpolation

RBF is a powerful tool for interpolating/approximating
multidimensional scattered data. The method tries to approx-
imate any amount of data samples by a linear combination of
a radially symmetric function based on Euclidean distance or
another such metric. For a set of n d-dimensional data points
x j and corresponding data values f (x j) (scattered data), an
RBF method creates an interpolant function:

s(x) = c0 + c1x +
n∑

j=1

λ jφ(‖x − x j‖2), x ∈ Rd, (2)

where φ(·) is the scalar radial basis function and c0, c1, λ j

are coefficients. The interpolation should fulfill the condition
s(x j) = f (x j) for j = 1, . . . , n. Hence, c0, c1 and λ j should
satisfy the following linear equation:

C0 + [x1, x2, . . . , xn]T cT
1 +Φλ = f , (3)

where f ,C0, λ ∈ Rn have the components f (x j), c0, λj,
j = 1, . . . , n, respectively. Φ is the n × n symmetric matrix

with elements Φi j = φ(‖xi − x j‖), 1 6 i, j 6 n. Here, we pick
the function φ(r) = r3, r > 0. Once the coefficients are found,
s(x) can be used to estimate the value of the original func-
tion f (x) at any point. A whole interpolation procedure needs
to compute the distance between multidimensional data points
and solve an n × n system. Some efficient numerical meth-
ods have been developed to make the procedure easy to imple-
ment even if huge amounts of sample points are involved[14],
whereas metamodeling by other methods such as kriging[11]

and LS-SVM[4] always needs to tune the parameters to obtain
good performances by solving a multidimensional non-linear
optimization problem, which always makes the computational
cost intolerable with a large dataset.

During the construction of the metamodels, some device
characteristics can be modeled by operating points and L ac-
curately, and others cannot. They could be modeled by adding
more parameters as explanatory variables. For example, the
variation of Cgs, Cgd and Cdb could be interpreted by operating
points, L, Vdsat, gm and gds precisely, where Vdsat, gm and gds

are certainly in the form of metamodels.
Metamodels are to be validated before being used as

a “surrogate” of the physics-based model. When additional
points are used for validation, there are a number of differ-
ent measures of model accuracy. Two of them are used here to
assess the fit quality of the generated RBF models, the quality-
of-fit parameter (q), also known as normalized root mean-
square (RSM) error, and the average relative error (ARE):

q =

√√num∑

k=1

( ŷk − yk)2

√
num

(
num
max
k=1

yk −
num
min
k=1

yk

) , (4)

ARE =
1

num

num∑

k=1

| ŷk − yk|
yk

× 100%, (5)

where num is the number of validation points. ŷk is the corre-
sponding predicted value for the observed value yk. To demon-
strate the predicting ability of the OPD metamodels, both ŷk

and yk are data values of additional confirmation samples be-
fore scaling. The smaller the values of q and ARE, the more
accurate the models.

3.4. Applications of the OPD metamodels in performance
modeling

Aided by accurate OPD metamodels of MOSFETs, both
simulation-based and analytical-based performance models
can be built easily and accurately. Seemingly rude handcrafted
performance expressions can achieve relatively high accuracy,
especially for small-signal circuit characteristics. Meanwhile,
simulation-based performance models can also be improved
by the metamodels in the generalization ability and flexibil-
ity. Therefore, different kinds of performance models can be
integrated into one optimization cycle through the OPD meta-
models. The OPD metamodels can also serve as an automatic
biasing tool during manual or automated circuit design by us-
ing the metamodels of the ratio r.
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Table 2. Validation measures of the OPD metamodels (range of data sample: Vgs 6 1 V, Vds 6 1.8 V, 0.18 µm6 L 6 2.5 µm, 1.4 6 r 6 40).

Vdsat gm gds r Cgs Cgd Cdb

NMOS ARE 0.16896 0.24082 0.37707 0.26451 0.36229 0.38245 0.29342

q 0.00139 0.00105 0.00150 0.00172 0.00073 0.00119 0.00088

PMOS ARE 0.16276 0.21775 0.39753 0.24061 0.29797 0.44898 0.27422

q 0.00227 0.00099 0.00224 0.00157 0.00070 0.01206 0.00111

Fig. 3. Model deviation histograms for (a) r and (b) gm.

4. Experimental results

4.1. Prediction ability of the OPD metamodels

The OPD metamodels are based on the technology of
the 1.8 V 0.18 µm CMOS process. According to whether the
source and bulk are shorted, 4000 samples and 5000 samples
were generated respectively to train the models. Thus the ob-
tained metamodels can be categorized in two groups. As men-
tioned in Section 3, here Lmax is no more than 2.5 µm and r is
between 1.4 and 40. Thus, the range for W is from 0.25 to 100
µm. Another 1000 sample points were generated likewise to
assess the fit quality of the metamodels. The validation mea-
sures for the 7 parameters of MOS devices when Vsb = 0 are re-
ported in Table 2. Our modeling approach brings the maximal
normalized RMS error under 1.2%. In Fig. 3, the actual error
distributions of ratio and gm are given using error histograms.
Clearly, the opportunity to produce large errors is extremely
small for RBF metamodels.

4.2. Knowledge-based circuit optimization aided by OPD
metamodels

Our methodology was applied to the low-voltage low-
power amplifier shown in Fig. 4. The specifications are given
in Table 3. First, to show the usage of the OPD metamod-
els as in the inner loop optimization, the circuit was success-
fully biased at nearly the same DC operating point with all
MOSFETs taking five different lengths by using the meta-
models of the ratio r. The simulated operating points for
these five cases are listed in Table 4 for comparison with
the assigned nominal operating points values (represented by
Vnorm, i and Inorm, i). The voltages all are transistor port volt-
ages. The currents have been indicated on the schematic. We
impose equal DC port voltages for matching transistors, input
and output node voltages are fixed by the circuits of the test

Fig. 4. Schematic of a low-voltage low-power amplifier.

Table 3. Specifications and obtained performances of the amplifier

(Vdd = 1.2 V, CL = 10 pF).

Performance Required Obtained Predicted

Av0 (dB) Max 94.63 94.82

f−3dB (Hz) 261.67 263.68

fu (MHz) > 10 13.53 14.53

PM (◦) > 60 67.81 > 60

GainCM (dB) 6 −3 −3.44 −3.10

Power (µW) 6 150 135.50 135.66

Output swing [0.2, 1] [0.197,
1.010]

[0.184,
1.005]

SR+ (V/µs) Min(SR+, SR−) > 2 2.73 3.04

SR− (V/µs) Min(SR+, SR−) > 2 11.37 9.76

bench. Several circuit performances are also listed in Table 4
for comparison. Although biased at nearly the same DC oper-
ating point, the circuit performance varies greatly with channel
length, which demonstrates the necessity to consider operating
points and channel lengths simultaneously in circuit optimiza-
tion and performance modeling. The dimensions of the tran-
sistors in these five cases are shown in Table 5.

As stated in section 2, all transistors should be biased
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Table 4. Comparison of simulated operating points for different channel lengths.

Nominal value Simulated value for different L

Vnorm, i Inorm, i 0.35 µm 0.5 µm 0.8 µm 1 µm 2 µm

Vsd,3 (V) 0.4 - 0.4010 0.4127 0.4026 0.4008 0.3996

Vds, 5 (V) 0.4 - 0.4082 0.3996 0.4014 0.4003 0.3996

Vgs, 8 (V) 0.65 - 0.6456 0.6508 0.6505 0.6498 0.6501

Vds, 9 (V) 0.65 - 0.6478 0.6527 0.6511 0.6501 0.6497

Vds, 10 (V) 0.3 - 0.3015 0.2887 0.2979 0.2997 0.3012

Vsg, 11 (V) 0.65 - 0.6491 0.6539 0.6510 0.6500 0.6496

Vsg, 14 (V) 0.65 - 0.6493 0.6506 0.6505 0.6499 0.6500

Vgs, 15 (V) 0.6 - 0.6009 0.6046 0.6000 0.5998 0.6002

Id, 5 (µA) - 20 20.34 20.99 20.04 20.05 20.03

Id, 8 (µA) - 15 14.74 14.70 15.06 14.94 15.00

Id, 10 (µA) - 10 9.98 10.30 10.04 10.01 9.97

Id, 13 (µA) - 40 39.63 41.10 40.32 40.12 39.92

Av0 (dB) 68.48 76.01 83.13 86.38 95.50

f−3dB (Hz) 4847 2099 869.93 594.05 198.64

PM (◦) 88.06 86.43 82.42 79.01 55.94

Table 5. Ratios of transistors of different channel lengths with identical circuit biasing point.

r1 = r2 r3 = r4 r5 r6 = r7 r8 = r9 r10 r11 r12 r13 r14 r15

L (µm) 0.35 8.894 19.471 6.221 11.617 2.751 3.482 7.799 15.117 6.914 7.799 3.202

0.5 7.093 19.563 5.728 10.598 2.684 3.155 7.727 15.219 6.505 7.727 2.966

0.8 6.008 19.146 5.052 9.777 2.336 2.700 7.484 15.022 5.819 7.484 2.620

1 5.614 19.031 4.854 9.441 2.210 2.547 7.457 15.039 5.629 7.457 2.488

2 4.160 17.468 3.975 8.122 1.862 2.036 6.890 13.873 4.842 6.890 2.013

M 2 1 1 8 1 1 1 2 1 1 1

properly by which the derived symbolic expressions for cir-
cuit performances are workable. For all the transistors of the
amplifier,

Vgs,i − Vth,i > Vod,min, (6)

Vds,i > Vdsat,i, (7)

rmin 6 ri 6 rmax, (8)

Lmin 6 Li 6 Lmax. (9)

Instead of deriving the expressions for phase margin to
guarantee the stability of the amplifier with unity-gain feed-
back, we set Cc = 0.22CL, and Rc =

(Cc +CL )
Cc

1
gm13

to achieve

the same goal by canceling the output pole[13]. In addition, the
high frequency pole should be placed high enough to guaran-
tee the stability of the amplifier:

fh =
gm6

2πCgs6
> 10 fu. (10)

The mirror pole of M8 and M9 also can be neglected provided
the device dimensions are small. This can be fulfilled by lim-
iting the channel lengths of M8 and M9 smaller than 1 µm.

Symbolic expressions for some circuit performances are
given for illustration. The open-loop voltage gain is:

Av0 = Av1Av2 = gm1Ro1gm13Ro2

= gm1

(
1

gds8
�

(
gm6

gds6

1
gds1 + gds3

))
gm13

gds12 + gds13
, (11)

and the 3-dB bandwidth is given by:

f−3dB =
1

2πRo1Ct
=

1
2πRo1(Av2 + 1)Cc

. (12)

The unity-gain bandwidth can be expressed as fu = Av0 f−3dB.
The positive and negative slew rates can be approximately ex-
pressed as:

SR+ =
Id,12

CL +Cc
, SR− =

Id, 5

Cc
. (13)

In order to meet the requirement for output swing, the
following two constraints should be imposed:

Vout,min > Vdsat,13, Vdd − Vout,max > Vdsat, 12. (14)

In the inner loop of the optimization problem, the con-
straint functions are added as penalty terms to the goal func-
tion which expresses the design objectives. The L’s serve as
variables for the specific operating point passing from the
outer loop. In the inner loop, the problem is solved using a pat-
tern search algorithm which will be called by the outer loop it-
eratively. To reduce the number of iterations of the outer loop,
a nearly global optimization approach is adopted by partition-
ing the variable space into several sections via DOE. For the
amplifier in Fig. 4, the supply voltage and power constraints
are relatively harsh. Consequently, operating points are sam-
pled around the nominal value of Table 4. Transistor port
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Table 6. Validation measures of analytical-based models and simulation-based models.

Av0 f−3dB fu CMRR Power SR+ SR−

Proposed method ARE 4.1196 2.0362 6.0822 3.3796 0.2514 12.1041 8.8140

q 0.0132 0.0083 0.0508 0.0125 0.0063 0.1371 0.0708

LS-SVM[4] ARE 4.5303 4.3673 2.6564 4.1307 0.2894 0.8729 4.4602

q 0.0137 0.0151 0.0206 0.0166 0.0075 0.0119 0.0323

Fig. 5. Scatter plots of (a) Av0 and (b) f−3dB for the validation data.

voltages are sampled between Vnorm, i ± 0.05 V (let Vgs,8 =

Vds,9) and drain currents are sampled between (1±20%)Inorm, i.
Two current biases IB1, IB2 are sampled between 8 and 12
µA. Twenty groups of operating points are generated by LHS.
The optimum gives the highest value of the objective func-
tion as shown in Table 3. As seen from Table 3, the optimal
design meets the specifications, simulated and predicted per-
formances are close to each other.

The quality of analytical-based circuit performance mod-
els should be checked. From the twenty groups of operating
points, two of them violate one of the constraint functions of
Ineq. (6)–(10) till the last iteration of the L’s. For each of the
remaining eighteen operating points, validation points are cho-
sen every five iterations from all the iterations satisfying the
constraints Ineq. (6)–(10). Hence, a total of 166 data points
are used to validate the models. The validation measures for
some circuit performances are given in Table 6. The scatter
plots of SPICE-simulated and model estimated Av0 and f−3dB

are shown in Fig.5̇. The data points locate near a straight line
along the diagonal axis, which demonstrates the accuracy of
the analytical-based models composed by the OPD metamod-
els of device parameters.

Finally, simulation-based performance models were con-
structed by the OPD metamodels using LS-SVM regression.
The training dataset of operating points together with channel
lengths of circuit devices are taken as follows: transistor port
voltages are sampled between Vnorm, i ± 0.05 V and drain cur-
rents are sampled between (1±20%)Inorm, i. IB1, IB2 are sam-
pled between 8 and 12 µA. Due to the matching requirement,
channel lengths of circuit devices can be simplified into seven
independent variables. The range for L is from 0.18 to 2.5 µm.
The design space is therefore X ⊂ R20. 600 groups of data
points are generated by LHS. Aided by the metamodels of
the ratio r, 600 SPICE netlists are generated and simulated.

When the simulation results are collected, LS-SVM perfor-
mance models can be built[4, 15]. Quality measures of LS-SVM
models are listed in Table 6 using the same validation points
above. As seen from Table 6, analytical-based models are su-
perior in describing DC and small-signal circuit behavior ex-
cept for fu, while simulation-based models show advantages in
capturing nonlinear large-signal circuit behavior[2]. Since fu is
expressed as the product of Av0 and f−3dB, the approximation
error of fu is bigger than the errors of both Av0 and f−3dB in our
analytical-based performance models. fu as well as SR could
be expressed more accurately if more parasitic effects were
added, which may not be necessary in this specific problem.

4.3. Discussion of different performance modeling methods

Although both analytical-based and simulation-based
performance models can be built accurately via OPD meta-
models, their generalization abilities differ a lot. The advan-
tage of using analytical-based models in circuit optimization
is that the models are adequate under different working condi-
tions, which is not the case for simulation-based models. The
simulation-based models have to be rebuilt if any working con-
dition, such as the supply voltage, changes. To demonstrate the
superiority of analytical-based models, suppose the constraint
cast upon static power can be relaxed to achieve higher fu. For
the amplifier in Fig. 4, the channel length is taken to be 0.5 µm
for each MOSFET. While all the transistor port voltages take
the value of Vnorm, i shown in Table 4, all the drain currents as
well as current biases IB1, IB2 are increased to 1.2 times, 1.5
times, 2 times and 3 times their original values respectively.
The simulated and model predicted power– fu curves are com-
pared in Fig. 6. Although the points predicted by previously
built LS-SVM models match the simulation results initially,
the predicting accuracy begins to deteriorate drastically when
branch currents are increased by 20%. Not surprisingly, the
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Fig. 6. Comparison of power– fu curves between simulation and

model-based methods.

generalization ability of LS SVM models is poor when the
values of branch currents locate near or beyond the boundary
of the dataset scope where the models were built. In contrast,
the power– fu curve given by the analytical-based method coin-
cides with the simulated one over a wide range, revealing the
relation between power and fu (constraints in Eqs. (6)–(10)
are proved to be satisfied in all these five cases). Obviously,
the analytical-based performance models can be reused in the
new optimization problems without any change.

The main limitation of the proposed method is that sym-
bolic expressions for circuit characteristics have to be derived.
Despite the progress in computer-automated symbolic analy-
sis techniques[16], these are still mainly limited to small-signal
characteristics, necessitating the manual derivation of large-
signal and transient characteristics. Although the analytical
performance models are similar in form for a certain cate-
gory of circuits, the procedure requires some user expertise in
circuit design and optimization. When transient specifications
must be described accurately, simulation-based performance
models can be a useful alternative. Different kinds of perfor-
mance models can be integrated into one optimization cycle
through the OPD metamodels. Therefore, our nesting-loop op-
timization formulation is applicable to many other CMOS cir-
cuits such as large, complex mixed-signal circuits.

5. Conclusion

In this paper, a knowledge-based circuit sizing optimiza-
tion method is presented. Analytical-based symbolic expres-
sions of circuit performance are composed by operating point
driven metamodels of MOS devices. By eliminating the two
major prediction errors of traditional analytical-based per-
formance expressions, the OPD metamodels are accurate at
BSIM3v3 level and reusable for multiple circuits on a given
technology. The OPD metamodels can also serve as an auto-
matic biasing tool during manual circuit design. The simulated
DC operating points are compared to the assigned values to
ensure their correctness. The proposed analytical-based per-
formances expressions are more generic than the simulation-
based ones and provide more physical insights. In addition,
both operating-point variables and transistor dimensions can

be optimized in the nesting-loop optimization formulation of
our paper. A low-voltage low-power amplifier was success-
fully biased and optimized using the proposed method. The
results indicate that knowledge-based circuit sizing performs
well aided by OPD metamodels of transistors. Our future work
will be devoted to expressing transient specifications more ac-
curately through reusable models.
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