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Time-delayed feedback control of chaos in a GaAs/AlGaAs heterostructure
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Abstract: A theoretical model has been developed to study nonlinear behaviors in a GaAs/AlGaAs heterostructure.
We show that the system can exhibit chaotic oscillations under transverse magnetic fields and an electric field. The
time-delayed feedback method was applied to stabilize the unstable periodic orbits (UPOs) embedded in the chaotic
attractor. A bifurcation specified by a successive decrease in the number of UPOs with delayed time and feedback
strength was revealed, indicating the stabilization of UPOs under feedback control. Noticeably, the introduction of a
feedback perturbation will sometimes induce chaotic states that do not exist in the unperturbed system.
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1. Introduction

Controlling chaos as a very active topic in nonlinear sci-
ence has received extensive attention since the pioneeringwork
of Ott, Grebogi, and Yorke (OGY)Œ1�. A variety of meth-
odsŒ1�6� have been suggested and applied to physical, chem-
ical and biological systems for chaos control and synchroniza-
tionŒ7�10�. The key of the OGY methodŒ1� is to drive a UPO
embedded in the chaotic attractors onto a stable target orbit by
imposing an external force that is switched on only when the
trajectory of the UPO moves to a sufficiently small vicinity of
the target orbit. Thus, prior knowledge concerning the location
and stability of the target orbit is required. Another famous ap-
proach was developed by PyragasŒ6�. A brief introduction to
it is given below. Consider a dynamical system that possesses
chaotic states when the external controlling signal f .t; yi / is
switched off. One can simulate the system by a set of ordinary
equations,

dy

dt
D P.y; t/ C f .t/; (1)

f .t/ D kŒyi .t � �/ � yi .t/� D kD.t/: (2)

Here y is the state vector, and yi is a component of the state
vector. Thus, the control signal (or the feedback perturbation)
f .t/ imposed on the system is proportional to the amplitude of
the selected component yi subtracted from its preceding value
y.t � �/ with a delayed time of � seconds. k is known as per-
turbation strength. Clearly, the feedback perturbation vanishes
when � was adjusted to be precisely equal to the period T of
a UPO embedded in the chaotic states, which implies that the
system is likely to be stabilized onto the UPO of period T un-
der the feedback control. That is, the stability of the preexist-
ing unstable periodic orbits would vary while the orbit itself
and its period remain unaltered with the perturbation parame-
ters. This can be understood as follows: the introduction of the
feedback perturbation in Eq. (1) expands the dimension of the
unperturbed system to infinity. These extra degrees of freedom
can be used to change the sign of the system Lyapunov expo-
nents and to stabilize the UPOs. This approach is appealing for

many workers since one does not need to know more informa-
tion about the target orbit beyond its period T . In chaos theory,
multiscroll chaotic systemsŒ11�13� and the Lorenz system fam-
ilyŒ14� are important. This method has been extended to these
systemsŒ15; 16� which show more interesting dynamical behav-
iors under feedback perturbation.

In this paper, the time-delayed feedback method is applied
to a GaAs/AlGaAs heterostructure to stabilize the orbits em-
bedded in the chaotic attractors. Two complementary cases
are considered: (1) k is fixed while � is changed; (2) � is
fixed and k is changed. Indeed, the system Lyapunov expo-
nents change sign from positive to negative when the feedback
strength k and delayed time � vary in a certain range. The se-
lected range allowed us to analyze the bifurcation of the system
and to discover some regularity showed by the Poincaré map. It
shows that “inverse-period-doubling” bifurcation firstly occurs
in these two cases, implying that the system can be stabilized
under feedback control. This was further demonstrated by in-
vestigating the response of the chaotic system to the delayed
feedback perturbation with different parameters. We showed
that the stabilized domain can be made reasonably large by
carefully arranging the feedback controlling parameters k and
� . This would be potentially useful in engineering applications.

2. Model

The nonlinear transport of a modulation-doped GaAs/
AlxGa1�xAs under a transverse magnetic field and an ac elec-
tric field is described by a set of differential equations that can
be found in Ref. [17]. In this section, we give a brief intro-
duction to the model. The sketch of the energy-band of the
GaAs/AlxGa1�xAs heterostructure and the circuit diagram are
shown in Figs. 1(a) and 1(b), respectively. The GaAs layer is
undoped, while the AlGaAs layer is heavily n-doped with the
donor density ND. �Ec is the conduction band discontinuity.
�b represents the interface potential barrier. �1 and �2 are the
mobility of electrons at zeromagnetic field in the GaAs andAl-
GaAs layers, respectively. The charge carrier density n, the in-
terface potential barrier �b between the GaAs and AlGaAs lay-
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Fig. 1. (a) Energy-band diagram of GaAs/AlGaAs heterostructure with layer widths L1 and L2, and lateral dimensions h, and d . (b) Circuit
diagram connected with the crossed magnetic fieldB and ac bias. The drift electric fieldEx is used as the feedback component with the feedback
strength k.

ers, and the electric field E are used as variables in the model.
Define the spatially averaged carrier densities in the GaAs

and AlGaAs layers as n1 D
1

L1

R 0

�L1
n.z; t/dz and n2 D

1
L2

R L2

0 n.z; t/dz, respectively. Starting with the current con-
tinuity equation r � J D �@�=@t and the conservation of the
total number of carriers, we have,

dn1

dt
D

J1!2 � J2!1

eL1

; (3)

n1L1 C n2L2 D NDL2; (4)

where

J1!2 D �en1

s
E1

3�m�
1

exp
�3�Ec

2E1

;

J2!1 D �en2

s
E2

3�m�
2

exp
�3�b

2E2

:

J1!2 (J2!1/ are the thermal emission current densities from
the GaAs to AlGaAs (AlGaAs!GaAs) layersŒ18�, respec-
tively. The effective masses in the GaAs and AlGaAs layers
are denoted as m�

i .i D 1; 2/. The mean energy as a function
of the applied electric field Ex is approximately estimated by
Ei � EL C �E e�i E

2
x , where �E is the energy relaxation time,

EL D .3=2/kBTL are the mean carrier energies, and TL is the
lattice temperature.

As for the formation of �b, an important feature is the ubiq-
uitous presence of space chargeŒ19�. This space charge induces
a further feedback between the charge carrier distribution and
the electric potential distribution via Poisson’s equation. This
mutual nonlinear interdependence is particularly pronounced
in the case of low-dimensional structures, in which junctions
between different layers on an atomic length scale cause con-
duction band discontinuities, resulting in interface potential
barriers and wells.

Choose the drift electric field Ex as the feedback compo-
nent. Dynamic equations of GaAs/ Alx Ga1�x As for the elec-
tric field readŒ20�,

�

�b D
e

"

h
� �2ND�b C �2

e2

2"
L2

1n2
1 � eL1L2

�
n1

i
; (5)

"
�

Ex D �l.Ex � Eu/ C �mEx C �nEy C F.t/; (6)

Table 1. Model parameters used in this paper.
Parameter Value
ND 1017 cm�3

�1 8000 cm2=(V� s)
�2 50 cm2/(V� s)
�Ec 250 meV
h 1 mm
�E 5:0 � 10�12 s
" 12"0

"0 8:854 � 10�12 F/m
kB 1:380 � 10�23 J·K
L1 10 nm
L2 20 nm
Tl 300 K
m�

1 0.067m0

m�
2 .0:067 C 0:083 � 0:3/m0

d 50 �m
m0 0:91 � 10�30 kg
Rl 1144 �

Vds 5:0 � 107 m/s

"
�

Ey D �mEy C �nEx ; (7)

where �l D �d=.h.L1 C L2/Rl/, �m D �.en1�1BL1 C

en2�2BL2/=.L1 C L2/, and �n D �eB.n1�1B�1L1 C

n2�2B�2L2/=.L1 C L2/. " is the permittivity. The field de-
pendences of the mobility for the two layers are given by
�iB D �i =.1 C �2

i B2/, i D 1; 2, respectively. The values
of the model parameters used in this paper are listed in Ta-
ble 1. A static magnetic field in the Z direction is expressed
as B D B OZ, and the applied electric field is denoted as
Eu D U0.1 C A sin.2�nf0t //=d . The dimensionless vari-
ables are defined as: Y1 D n1=ND, Y2 D �1Ex=Vds, Y3 D

�1Ey=Vds, Y4 D �b=.kBTl/, and T D t=�E. The fourth order
Runge–Kutta technique is used in our numerical simulations.

In this model, we have neglected the diffusive contribu-
tions that have to be included only when the GaAs/AlGaAs
layer-thickness is much larger than the mean free path of the
electrons. Quantum effects like the quantum-transmission co-
efficient or tunneling through the barrier are also ignoredŒ21�.
In addition, quantum size effects are neglected since the cur-
rent–voltage characteristic is almost independent of the quasi-
two-dimensional subbands below the barrier when the layer
thickness is greater than 100 Å.

052003-2



J. Semicond. 2010, 31(5) Yang Gui et al.

Fig. 2. Chaotic phase portrait of the unperturbed system onto the
.n1; Ey/ plane.

3. Simulations and discussions

As we set the amplitude A D 0, the system shows self-
sustained oscillations which can be understood as follows. As
the electric field increases, the electrons in the GaAs layer will
get enough kinetic energy which is higher than �Ec to tunnel
across the barrier into the AlGaAs layer, which is similar to
thermionic emission from the GaAs layer into the doped Al-
GaAs layer. This causes an increase of carrier density in the
AlGaAs layer which has several consequences. First, since the
carrier mobility �2 in the AlGaAs layer is much lower than
�1 in the undoped GaAs layer, according to the current den-
sity Jx D eEx.n1�1L1 C n2�2L2/=.L1 C L2/ and Eq. (4),
an increase of the carrier density n2 in the AlGaAs layer also
implies some decrease of the longitudinal current density. Sec-
ond, the potential barrier �b will decrease with some delay due
to the finite dielectric relaxation time, which leads then to an
increased backward current with some reduction of the car-
rier density in the AlGaAs, which, in turn, depresses the back-
ward thermionic emission current, forming complete cycles of
real-space charge transfer. Thus self-sustained oscillation oc-
curs and the frequency f0 D 90:744 GHz. As a result of the
competition between the internal signal and the external sig-
nal, the system shows different oscillating modes like chaos
frequency-locking and quasiperiodicity depending on the rela-
tive amplitude A and the driving frequency. A detailed descrip-
tion is given in Ref. [17].

In this section, we first set the feedback strength k D 0 .
We choose the magnetic field B D 0:3 T, and U0 D 39:25 V,
and the ac electric field with a relative amplitudeA D 0:08 and
the frequency of nf0 with n D 9:5 so that the system is in the
chaotic state. The corresponding chaotic phase portrait in the
.n1; Ey/ plane is shown in Fig. 2. For this nonautonomous sys-
tem, the periods of UPOs embedded into the chaotic attractor
are then measured by Ti D i=.9:5f0/; i D 1; 2; : : :.

We switch on the time-delayed feedback perturbation to
control the chaotic system. We find that sign change in the sys-
tem Lyapunov exponents occurs as the feedback strength k and
the delayed time � vary. The feedback parameter .�; k/ depen-
dences of the maximal Lyapunov exponent of the perturbed
system are shown in Fig. 3. In this figure, the shadowsmark the

Fig. 3. Maximal Lyapunov exponent of the system varying with feed-
back parameters .�; k/.

regimes where the values of the Lyapunov exponent are posi-
tive, which then means the system is in the chaotic state. The
vertical bold solid lines � D Ti .i D 1; 2; 4/ correspond to the
periods of unstable periodic states embedded into the chaotic
attractors. Indeed, the UPOs with period Ti can be stabilized,
except for a very weak feedback strength k, as expected.

The bifurcation of the system is further investigated by
varying the feedback parameters. For better visualization, we
use the Poincaré map technique and consider two complemen-
tary cases. The Ey projection of the Poincaré map orbit ob-
tained by sampling the trajectory every T D 1=.nf0/ sec-
onds is plotted in Figs. 4(a)–4(d). Panels (a) and (b) denote the
case of two fixed � values and an “inverse-period-doubling”
bifurcation come into being with the varied k. For � D T1

(Fig. 4(a)), a period-4 orbit can be stabilized for the pertur-
bation strength k in the range of 0:63 < k < 1:31. For
1:31 6 k 6 4:28, however, period-2 orbit is under control.
Note that the system is stabilized while the feedback signal
does not vanish until the feedback time � is equal to the pe-
riod of period-1. Further increasing k, period-1 orbit becomes
stable and the feedback perturbation disappears. A similar pro-
cess is shown in Fig. 4(b) for � D T2. It follows from Figs. 4(a)
and 4(b) that a large feedback strength would lead to greater
freedom in selecting the delayed time; that is, a wider region
of controlling parameters where UPOs can be stabilized.

We discuss the delay time � -dependence of the bifurcation
for fixed feedback strength. It can be seen from both panels (c)
for k D 0:6 and (d) for k D 3:0 that the dynamic behaviors
of the system become more complex. As shown in Fig. 4(c),
the system is firstly driven onto a period state as � increases
from 0 to 0.132. Then, the system undergoes a period-doubling
bifurcation from the periodic orbit to the chaotic state when
the delay time � falls in the range of .0:132; 0:33/. Similar bi-
furcation scenarios appear consecutively as the delayed time �

sweeping from small to large values. We plot the phase portrait
of the induced chaotic states onto the .n1; Ey/ plane in Fig. 5(a)
and the temporal evolution of the electric field Ey in Fig. 5(b),
respectively. The inset in Fig. 5(a) displays the chaotic states
without feedback control. Clearly, a delayed feedback with ap-
propriate parameters k and � is able to stabilize the UPOs em-
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Fig. 4. Bifurcation diagram of the Poincaré map orbit versus perturbation parameters k and � for fixed (a) � D T1 and (b) � D T2, and for (c)
k D 0:6 and (d) k D 3:0, respectively. The vertical solid lines mark the periods of some unstable periodic states, such as T1, T2, and T4.

Fig. 5. Chaotic states induced by the feedback perturbation. (a) Phase portrait in the .n1; Ey/ plane. (b) Temporal evolution of the electric field
Ey .

bedded into the chaotic attractors. Meanwhile, it would possi-
bly lead to a cascade of period-doubling bifurcation of chaos.
The same phenomenon has been reported in Refs. [22, 23].
One must be careful in selecting the perturbation parameters
for chaos control.

We show the temporal evolution of the system output in
Figs. 6(a)–6(d) for different values of the feedback strength k

and delayed time � . In each panel, the upper plot shows the
perturbation signal F.t/ together with an inset that denotes the
system phase portrait in the .n1; Ey/ plane, whereas the lower
plots the electric field Ey versus time. It is illustrated that the
feedback output became steadily weaker when the feedback
control was switched on, and it finally faded out after a short
period of transient time. Simultaneously, the system was sta-
bilized onto some UPOs. Figure 6(a) demonstrates the case
without the controlling term i.e. k D 0. The projection of the
phase portrait in the .n1; Ey/ plane shows that the system ex-
hibits chaotic oscillations. In Figs. 6(b), 6(c), and 6(d), we show
the stable period-i .i D 1; 2; 4/ orbit under different control
parameters.

4. Conclusions

We have discussed the effects of time-delayed feedback
control on the dynamic behaviors of a GaAs/AlGaAs het-
erostructure that can exhibit unstable orbits or chaotic states.
The general structure of the bifurcation diagram of the system
is discovered which is dependent upon two feedback parame-
ters. To explore the system behaviors, Lyapunov exponents are
considered as functions of feedback perturbation parameters.
The delayed time � is chosen from 0 up to 1.2 (longer than the
period of period-4 UPO in the unperturbed system), and the
feedback strength k is in the range of 1:31 6 k 6 4:28, which
is sufficiently wide for the present work. It shows that the sys-
tem Lyapunov exponents can change sign from positive to neg-
ative when the feedback strength k and delayed time � vary
in a certain range, and the system is stabilized onto some un-
stable periodic orbits under the feedback control, accordingly.
Several domains are found where stabilization of UPOs is pos-
sible, besides those in the neighborhood of � D Ti s. On the
other hand, the chaotic states may occur when � ¤ Ti , which
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Fig. 6. Dynamical behaviors of the perturbed system at different control parameters. (a) k D 0. (b) k D 4; � D T4. (c) k D 5:2; � D T2. (d)
k D 4:3; � D T1.

is in good agreement with work by other groupsŒ22�26�.
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[14] Lü J H, Chen G R. A new chaotic attractor coined. Int J Bifurca-
tion Chaos, 2002, 12(3): 659

[15] Wang L, Ni Q, Huang Y Y. Dynamical behaviors of Liu system
with time delayed feedback. Journal of Dynamics and Control,
2007, 5(3): 224 (in Chinese)

[16] Li J, Zhou J L, Wang Y, et al. Synchronization of N-scroll hyper-
chaotic attractors. Signal Processing, 2007, 23(3): 408 (in Chi-
nese)

[17] Yang G, Zhao H, Zhou S. The dynamics and hysteresis in
GaAs/AlGaAs heterostructure under the action of electric and
magnetic fields. Mod Phys Lett B, 2008, 22: 425

[18] Hess K. Advanced theory of semiconductor devices. New Jersey:
Prentice Hall, 1988
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