RF CMOS modeling: a novel empirical large-signal model for an RF-MOSFET*

Sun Lingling(孙玲玲), Lü Binyi(吕彬义)[†], Liu Jun(刘军), and Chen Lei(陈磊)

(Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China)

Abstract: A novel empirical model for large-signal modeling of an RF-MOSFET is proposed. The proposed model is validated in the DC, AC, small-signal and large-signal characteristics of a 32-finger nMOSFET fabricated in SMIC's 0.18 μ m RF CMOS technology. The power dissipation caused by self-heating is described. Excellent agreement is achieved between simulation and measurement for DC, *S*-parameters (50 MHz–40 GHz), and power characteristics, which shows that our model is accurate and reliable.

Key words: RF-MOSFET; large-signal model; self heating DOI: 10.1088/1674-4926/31/4/044009 EEACC: 1220; 1350

1. Introduction

In recent years, the rapid growth of wireless communication at radio frequencies (RF) has created a huge demand in high-performance RF components for power amplifiers (PA). Because of the good RF performance and low cost, CMOS transistors have been more and more frequently applied in PA circuit design^[1-4]. A reliable model for RF-MOSFET device is a key requirement for a successful design, simulation and evaluation of a PA. Unfortunately, RF-MOSFET models for PA design have rarely been reported so far.

A good large-signal for non-linear circuit design (such as PA) is capable of extracting and approximating third- or fifthorder derivatives of I/V and Q/V functions^[5]. However, the standard MOSFET models, such as BSIM^[6,7] and PSP^[8,9], are not developed for PA design, which emphasizes a model equation of continual high-order derivation. For example, the BSIM^[6,7] model's equation is the discontinuity of first-order derivatives. The PSP^[8,9] model is developed for describing device characteristics of nanometer dimension; the derivatives of its equation are not verified, so it is not suitable for large-signal simulation.

Some work on the CMOS large-signal model can be found in the literature, such as the Angelov–Zirth model^[10, 11]. The model developed by Angelov *et al*.^[10, 11] is capable of describing I-V characteristics at low gate voltages or in the saturation region. However, the model uses a tanh function to characterize the I_{ds} , so the curve of its first-order transconductance is symmetrical at the point of maximum transconductance, which means that the model cannot describe the trans-conductance accurately.

In this paper, we propose an accurate, well convergent large-signal model for RF CMOS transistors, whose equation is continuous and high-order differentiable. The power dissipation caused by self-heating is described. Wonderful results were achieved in the comparison between measurements and simulation of DC, AC, small-signal, large-signal and power characteristics for 0.18 μ m CMOS FETs.

2. Model topological structure

Figure 1 gives the topology of the equivalent circuit employed in this work. R_g , R_d and R_s are the gate, drain and source resistances respectively. C_{gs} and C_{gd} are gate–source and gate–drain capacitances, respectively. R_{gs} and R_{gd} are in series with C_{gs} , C_{gd} , respectively, used to improve the prediction of S_{11} and S_{22} at high frequencies. I_{ds} is the channel current, while I_{db} is used to capture the frequency distribution effect of trans-conductance. The value of I_{db} is αI_{ds} , where α is a constant. R_{db} and C_{db} generate a critical frequency for the frequency distribution effect of trans-conductance. A sub-circuit constructed with R_{th} , C_{th} and P_{dev} is used to predict the power dissipation caused by the self-heating effect and P_{dev} , is calculated as $I_{ds}V_{ds}$, represents the average power level. In this work, C_{gs} , C_{gd} , I_{ds} and I_{db} are bias-dependent components, while the others are bias-independent components.

3. Current equation

For non-linear simulation, a continuity and high-order differentiable channel model is of the utmost importance. The channel current model (I_{ds}) proposed in this work is as follows:

Fig. 1. Equivalent circuit of CMOS.

© 2010 Chinese Institute of Electronics

^{*} Project supported by the National Natural Science Foundation of China (No. 60706002) and the Scientific and Technologic Cooperation Foundation of Yangtze River Delta Area of China (Nos. 08515810103, 2008C16017).

[†] Corresponding author. Email: lby1986@126.com

Received 19 September 2009, revised manuscript received 9 December 2009

vgs1n =
$$P_1\{1 + B_1[\cosh(B_0 V_{ds})]\}^{-2})(V_{gdi} - V_{th} - P_{n0} V_{ds}),$$
(2)

$$vgs2p = 0.5vgs1p + 0.5 \left[\sqrt{(vgs1p - V_k)^2 + D_{elta}^2} -0.5\sqrt{V_k^2 + D_{elta}^2} \right],$$
(3)

$$vgs2n = 0.5vgs1n + 0.5 \left[\sqrt{(vgs1n - V_k)^2 + D_{elta}^2} \right]$$

$$-0.5\sqrt{V_{\rm k}^2 + D_{\rm elta}^2} \right],\tag{4}$$

$$vgs3p = V_{st} \left[ln(1 + e^{vgs2p/V_{st}}) \right],$$
 (5)

$$\operatorname{vgs3n} = V_{\operatorname{st}} \left[\ln(1 + e^{\operatorname{vgs2n}/V_{\operatorname{st}}}) \right], \tag{6}$$

$$idspp = B_{eta} (vgs3p)^2 / \left[1 + V_1 (vgs3p)^{P_{lin}} \right], \qquad (7)$$

$$\operatorname{idspn} = B_{\operatorname{etar}} \left(\operatorname{vgs3n} \right)^2 / \left[1 + V_1 \left(\operatorname{vgs3n} \right)^{P_{\operatorname{linr}}} \right], \quad (8)$$

$$a_0 = (H_1 V_{\rm ds}) \ln \left[H_2 + H_3 ({\rm vgs} 3{\rm p})^{H_4} \right],$$
 (9)

$$a = \tanh\left\{A_{\text{lphas}}a_0\left[1 + \tanh(\text{vgs1p})\right]\right\},\qquad(10)$$

$$b_0 = (H_{11}V_{\rm ds})\ln\left[H_{21} + H_{31}({\rm vgs3n})^{H_{41}}\right], \qquad (11)$$

$$b = \tanh \left\{ A_{\text{lphar}} b_0 \left[1 + \tanh(\text{vgs1n}) \right] \right\}, \qquad (12)$$

$$\lambda p = L_{\text{ambda}} V_{\text{ds}} (1 + V_{\text{klambda}} \tanh(K_{\text{lambda}} (V_{\text{gsi}} - V_{\text{llambda}}))),$$
(13)

$$\lambda n = L_{\text{ambda}} V_{\text{ds}} \left(1 + V_{\text{klambda}} \tanh(K_{\text{lambda}}(V_{\text{gdi}} - V_{\text{llambda}}))), \right)$$
(14)

$$I_{\rm dsp} = {\rm idspp} \left(1 + a\right) \left(1 + \lambda p V_{\rm ds}\right) \tag{15}$$

$$I_{\rm dsn} = \rm{idspn}\,(1+b)\,(1-\lambda n V_{\rm ds}) \tag{16}$$

$$I_{\rm dsi} = 0.5 \left(I_{\rm dsp} - I_{\rm dsn} \right) \tag{17}$$

where P_1 , V_{th} , V_k , V_l , D_{elta} , V_{st} , P_{lin} , P_{linr} , B_{eta} , B_{etar} , P_{n0} , H_1 , H_2 , H_3 , H_4 , H_{11} , H_{21} , H_{31} , H_{41} , A_{lphas} , A_{lphar} , B_0 , B_1 ,

 V_{klambda} , K_{lambda} and L_{ambda} are model parameters. V_{th} is the threshold voltage.

The components idspp and idspn and those relevant parameters determine the fitting precision of model equations on trans-conductance, whereas the following components and the related parameters play a great part in fitting the drain conductance within the linear region. Thus, the drain conductance in the linear region can be fitted. The continuity and high-order differentiability are both realized; meanwhile, the drain conductance G_{ds} , trans-conductance G_m , G_{m2} , G_{m3} and even higher order trans-conductance characteristics can be accurately fitted, which satisfies the need for high order harmonic simulation for non-linear current model equations^[5].

In this model, we only consider the self-heating effect of core parameters such as B_{eta} , which are extracted by curve-fitting. The scaling equation of model parameters is stated as follows:

$$K_{\text{ey-}}P_{\text{arameter-}}T = P_{\text{arameter}}\left[\left(rT^{T_1}\exp(E_t\frac{1-rT}{V_{\text{tv}}})\right)\right]^{T_2},$$
(18)

where P_{arameter} is the initial model parameter to be scaled, while T_1 , T_2 and E_t are the fitting parameters. B_{eta} and B_{etar} in the current equations can be temperature scaled by applying Eq. (18).

4. Capacitance equations

In the implementation in CAD tools, a capacitance formulation was used directly. Here, we use the effective gate voltage formulations which we used in the current equations to construct the relationship between C_{gs} (C_{gd}) and gate voltage. This capacitance model can give the high-order differentiability of bias, and satisfy the charge conservation law.

$$vgs1 = P_{c1}(V_{gsi} - V_{th}),$$
 (19)

$$vgs2 = 0.5vgs1 + 0.5\sqrt{(vgs1 - V_{kc})^2 + D_{eltac}^2}$$

$$-0.5\sqrt{V_{\rm kc}^2 + D_{\rm eltac}^2},\tag{20}$$

$$vgs3 = V_{stc} ln \left(1 + e^{vgs2/V_{stc}} \right),$$
(21)

$$a_{10} = (\text{vgs3})^{P_{\text{linc0}}} - (V_{\text{stc}} \ln 2)^{P_{\text{linc0}}}, \qquad (22)$$

$$a_{12} = (\text{vgs3})^{P_{\text{lincl}}}, \qquad (23)$$

$$a_{11} = 1/(1 + a_{12}V_{\rm lc}) - 1/\left[1 + V_{\rm lc} \left(V_{\rm stc} \ln 2\right)^{P_{\rm lincl}}\right], \quad (24)$$

$$C_{\rm s} = C_{\rm beta} a_{11} a_{10}, \tag{25}$$

$$X_{\rm gs} = 1 + \tanh \left[K_{\rm gs} \left(V_{\rm gsi} - V_{\rm t2gs} \right) \right] - \tanh \left[K_{\rm gs} \left(-V_{\rm t2gs} \right) \right],$$
(26)

Fig. 2. Comparison of capacitances: C_{gs} of V_{gs} (V_{gs} : 0–2 V, step: 0.4 V).

dvgs =
$$M_{gs}C_{gs0} (1 + \sinh(B_{C0}V_{ds})) + (1 - M_{gs})C_{gs0}X_{gs},$$
(27)

$$X_{\rm gd} = 1 + \tanh[K_{\rm gd}(V_{\rm gdi} - V_{\rm t2gd})] - \tanh[K_{\rm gd}(-V_{\rm t2gd})], (28)$$

 $dvgd = M_{gd}C_{gd0} (1 + \sinh(B_{C1}V_{ds}) + (1 - M_{gd})C_{gd0}X_{gd},$ (29)

$$f_2 = C_{\rm s} \left[1 + \tanh \left(K_{\rm cc} \left(V_{\rm ds} - V_{\rm t4} \right) \right) \right]$$
$$- \frac{\partial C_{\rm s}}{\partial V_{\rm gs}} \left[V_{\rm gdi} - \ln \left(\cosh \left(K_{\rm cc} \left(V_{\rm ds} - V_{\rm t4} \right) \right) \right) / K_{\rm cc} \right], \qquad (30)$$

$$g_2 = -C_s \left[1 + \tanh \left(K_{\rm cc} \left(V_{\rm ds} - V_{\rm t4} \right) \right) \right], \tag{31}$$

$$C_{\rm gsi} = \rm dvgs + f_2, \tag{32}$$

$$C_{\rm gdi} = \rm dvgd + g_2, \tag{33}$$

where P_{c1} , V_{kc} , V_{lc} , D_{eltac} , V_{stc} , P_{linc0} , P_{linc1} , C_{beta} , V_{t2gs} , K_{gs} , M_{gs} , B_{c0} , C_{gs0} , K_{gd} , M_{gd} , B_{c1} , C_{gd0} , K_{cc} and V_{t4} are model parameters. C_{gs0} and C_{gd0} are the gate–source and gate–drain capacitance when the channel is cut off, respectively.

5. Experimental evaluation of the model

To verify and validate the accuracy of the proposed model, a 32-finger RF MOSFET, in which the width and length of each finger is 7.5 μ m and 0.18 μ m respectively, is fabricated by employing SMIC 0.18 μ m RF-CMOS technology. The DC characteristics of this device were measured using an Agilent 4156C LCR-meter. Two-port *S*-parameters were measured and de-embedded (Open + Short) for parasitics introduced by GSG PAD using an Agilent E8363B network analyzer and a CAS-CADE Summit probe station, while the parameter value extraction was implemented in Agilent IC-CAP2008. Verilog-AMS technology was used to describe, compile and link this model into the Agilent advanced design system for simulation.

S-parameters are de-embedded, so pad parasitic effects are not considered in this work. The bias-independent components

Fig. 3. Comparison of capacitances: C_{gd} of V_{gs} (V_{gs} : 0–2 V, step: 0.4 V).

Fig. 4. Comparison of capacitances: C_{gs} of V_{gd} (V_{ds} : 0, 0.8, 1.2, 1.6 and 2 V).

Fig. 5. Comparison of capacitances: C_{gd} of V_{gd} (V_{ds} : 0, 0.8, 1.2, 1.6 and 2 V).

are extracted from the Z-parameter in the linear area ($V_{gs} \gg V_{th}$, $V_{ds} = 0$ V) and the Y-parameter in the zero-bias condition ($V_{gs} = 0$ V, $V_{ds} = 0$ V). They are then optimized with the measured S-parameters at a large range of V_{ds} and V_{gs} . The parameters of the current equations are extracted by fitting the measured I-V curve, while the parameters of the capacitance equations are extracted by fitting the C-V curve which is extracted from the measured S-parameters.

The extracted and modeled C_{gs} versus V_{ds} (V_{gs} : 0–2 V, step: 0.4 V), C_{gd} versus V_{ds} (V_{gs} : 0–2 V, step: 0.4 V), C_{gs} versus V_{gs} (V_{ds} : 0, 0.8, 1.2, 1.6 and 2 V) and C_{gd} versus V_{gs} (V_{ds} : 0, 0.8, 1.2, 1.6 and 2 V) characteristics of the 32-finger RF MOSFET are plotted in Figs. 2–5. Considering measurement errors and capacitance differences at different measured fre-

Fig. 7. Comparison of S_{11} .

quency points, the fitting results in the plots indicate that the charge/capacitance model proposed in section 4 can predict the C-V characteristics of the MOSFET accurately.

Figure 6 shows the measured and simulated data under the condition of V_{ds} : 0–3.5 V, step 70 mV, V_{gs} : 0–1.8 V, step 300 mV. It can be seen that this model has a good fitting precision for DC characteristics, as well as the self-heating effect.

Measured and modeled S-parameters, V_{gs} : 0–2 V, step 250 mV, V_{ds} : 0–2 V, step 1 V are compared with frequency up to 40 GHz and shown in Figs. 7–10. It is observed from the comparison results that our model can accurately describe the MOS-FET's small-signal characteristic.

For large-signal models, a common validation method is the comparison between measured and modeled load-pull data. Hence, the power characterization measurement has been implemented on a focus microwave multi-harmonic passive loadpull bench based on automated tuners. The optimal source and load impedances are $Z_s = 49.93 + j0.70$ and $Z_1 = 50.12 + j0.42$. The fundamental frequency, gate-source, and drain-source voltage have been set to 2 GHz, 1.5 V, 4.5 V, respectively. The input power swept from -8.76 to 13.32 dBm. The comparison results for P_{out} , gain and PAE are plotted in Fig. 11. It can be observed from Fig. 11 that the power characteristics of our model are accurately, continuous and conver-

Fig. 10. Comparison of S_{22} .

Fig. 11. Comparison of Pout, Gain and PAE.

gent. The computer setup used in the simulation is CPU: Pentium (R) 4, 3 GHz and EMS memory: 1 GB, the software of simulation: ADS2008, simulation time: 1.65 s.

6. Conclusions

A novel large-signal empirical model for high frequency CMOS transistors has been proposed. The model's current equations and bias-dependent charge equations are continuous and high-order differentiable. This model also takes the heat power dissipation induced by the self-heating effect into account. The model exhibits excellent prediction for the experimental evaluation through DC, AC, small-signal, large-signal and power measurements.

References

 Palaskas Y, Taylor S S, Pellerano S, et al. A 5 GHz class-AB power amplifier in 90 nm CMOS with digitally-assisted AM-PM correction. IEEE Custom Integrated Circuits Conference, 2005: [2] Zimmermann N, Johansson T, Heinen S. Power amplifiers in 0.13 μm CMOS for DECT: a comparison between two different architectures. IEEE International Workshop on Radio-Frequency Integration Technology, 2007: 333

813

- [3] Komijani A, Natarajan A, Hajimiri A. A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18 μm-CMOS. IEEE J Solid-State Circuit, 2005, 40: 1901
- [4] LaRocca T, Chang M C F. 60 GHz CMOS differential and transformer-coupled power amplifier for compact design. IEEE Radio Frequency Integrated Circuits Symposium, 2008: 65
- [5] Cabral P M, Pedro J C, Carvalho N B. Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design. IEEE Trans Microw Theory Tech, 1995, 52: 2585
- [6] Cheng Y, Chan M, Hui K, et al. BSIM3v3 manual. 1995
- [7] Vandamme E P, Schreurs D, van Dinther C. Accuracy assessment of the BSIM3v3 MOSFET compact model for large signal RF applications. Silicon Monolithic Integrated Circuits in RF systems, 2000: 152
- [8] Joardar K, Gullapalli K K, Mcandrew C C, et al. An improved MOSFET model for circuit simulation. IEEE Trans Electron Devices, 1998, 45: 134
- [9] He J, Chan M, Zhang X, et al. A Physics-based analytic solution to the MOSFET surface potential from accumulation to stronginversion region. IEEE Trans Electron Devices, 2006, 53: 2008
- [10] Angelov I, Fernhdal M, Ingvarson F, et al. CMOS large signal model for CAD. IEEE MTT-S Digest, 2003: 643
- [11] Angelov I, Fernhdal M, Ingvarson F, et al. CMOS large signal and RF noise model for CAD. Proceedings of 1st European Microwave Integrated Circuits Conference, 2006: 217
- [12] Je M, Kwon I, Han J, et al. On the large-signal CMOS modeling and parameter extraction for RF applications. Simulation of Semiconductor of Processes and Devices, 2002: 67
- [13] Liu Jun, Sun Lingling, Xu Xiaojun et al. RF-CMOS modeling: RF-MOSFET modeling for low power application. Chinese Journal of Semiconductors, 2007, 28(1): 131