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Properties of the two- and three-dimensional quantum dot qubit�
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Abstract: On the condition of electric-longitudinal-optical (LO) phonon strong coupling in both two- and three-
dimensional parabolic quantum dots (QDs), we obtain the eigenenergies of the ground state (GS) and the first excited
state (ES), the eigenfunctions of the GS and the first ES by using a variational method of Pekar type. This system in
QD may be employed as a quantum system–quantum bit (qubit). When the electron is in the superposition state of
the GS and the first ES, we obtain the time evolution of the electron density. The relations of both the electron proba-
bility density and the period of oscillation with the electric-LO phonon coupling strength and confinement length are
discussed.
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1. Introduction

Quantum computers (QCs) have attracted considerable at-
tention in the information science field recently. A QC was in-
troduced by BenioffŒ1� in 1980. In 1982, FeynmanŒ2� pointed
out that in order to simulate a quantum system, the computer
has to operate quantum mechanically, i.e., one needs a QC. A
proposal for the practical implementation of a QC was pre-
sented in 1993. The elementary unit of quantum information
in a QC is the quantum bit (qubit). A single qubit can be en-
visaged as a two-state system such as a spin-half particle or a
two-level atom. The potential power of a QC is based on the
ability of quantum systems to be in a superposition of its basic
states. In order to perform quantum computations, one should
have the following basic conditions: (a) a two-level system j0i

and j1i as a qubit; (b) the ability to prepare the qubit in a given
state, say j0i; (c) the capability of measuring each qubit; (d)
the ability to perform basic gate operations such as a condi-
tional logic gate (the control-not gate); and (e) a sufficiently
long decoherence time. Several schemes have been proposed
for realizing QCs in recent yearsŒ3�5�. In order to show the ad-
vantage of QCs over the most classical computers, QCs need
to be composed of at least thousands of qubits to be feasible.
Consequently, it is clear that a QC with a significant number of
qubits would be more realizable in solid-state systems. How-
ever, self-assembled quantum dots (QDs) have attracted sub-
stantial attention due to their perfect crystal structures. There-
fore, it is one of the most popular solid-state quantum informa-
tion research fields that qubits can be realized by solid-state
devices. Many schemes have been proposed for researching
QD and have many kinds of contents, but they are in the ini-
tial research stage at present. The two-level QD system can be
employed as a single qubit. For such a qubit, Li et al:Œ6; 7� pre-
sented a kind of parameter-phase diagram scheme and defined
the parameter region for the use of InAs/GaAs as a two-level
quantum system. Wang et al:Œ8; 9� recently studied the prop-
erties of a two-level qubit in two-dimensions (2D) parabolic

QD. The phonon spontaneous emission causes the decoherence
of the qubit. The relations between the decoherence time and
the coupling strength and confinement length in both 2D and
3D parabolic QDs were discussed in our previous workŒ10�. In
those works, however, the electron probability density and the
period of oscillation for a qubit in both 2D and 3D QDs with
parabolic confinement have never been studied.

In this article, the eigenenergies and their relevant eigen-
wavefunctions of the ground state (GS) and the first excited
state (ES) of an electron have been obtained in both 2D and
3D QDs with parabolic confinement using the Pekar varia-
tional method in the electron–LO-phonon strong-coupling re-
gion. We have obtained the electron probability density oscil-
lating with a period when the electron is in a superposition
state of the GS and first ES. We discuss the relations of both
the electron probability density and the period of oscillation
with the electron–LO-phonon coupling strength and the con-
finement length in this paper. Our results should be meaningful
for designing the solid-state implementation of quantum com-
puting both theoretically and experimentally.

2. Theoretical model

The system under study consists of an electron interact-
ing with the longitudinal optical (LO) phonons of an N -
dimensional (ND) polar semiconductor QD. Theoretically one
can simulate the ND QD geometry approximately by consid-
ering the electron’s motion in an ND box. This model is, how-
ever, not very realistic since the force experienced by the elec-
tron within the dot is not really zero. The Hamiltonian for an
electron moving in an ND parabolic QD and interacting with
LO phonons of the system can be written as
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where all vectors are ND and the units have been chosen such
that „ D m D !LO D 1 (Feynman units), m being the Bloch
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effective mass of the electron, and !LO is the LO-phonon fre-
quency which is assumed to be dispersionless. In Eq. (1), r

refers to the position vector of the electron, bC
q .bq/ is the cre-

ation (annihilation) operator for an LO-phonon of wave vector
q and �q is given byŒ11�
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where VN is the volume of the ND dot and ˛ is the elec-
tron–phonon coupling constant.

By using the well-known Lee–Low–Pines (LLP) transfor-
mation
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where fq.f �
q / is the variational function, we obtain
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The variational energy is now written as
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where �.r/ is the electronic function to be chosen variationally
and j0i is the unperturbed zero phonon state. The variational
energy then simplifies to
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Minimizing E with respect to f �
q now yields

fq D ��q��
q ; (8)

and thus Equation (6) reduces to
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2.1. Ground state

For the GS we may choose the electronic wavefunction as

�0.r/ D
�N=2

�N=4
e��2r2=2; (10)

with a variational parameter �. Hence the GS energy becomes
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where l is the dimensionless confinement length given by l D
1p
!
; variation of Eq. (11) with respect to � gives
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2.2. First excited state

Assuming the electron is excited in the z-direction (� is the
angle of the electron coordinate vector and z-direction), and
then according to the standard quantum transition theory, the
first ES trial wavefunction of the system is given by

�1.r/ D
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which satisfies the following orthonormal relations.

h�0j�1i D 0; (14)

h�1j�1i D 1: (15)

Hence the first ES energy becomes
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Variation of Eq.(16) with respect to � gives

N C 2

2
�4

�
.2N C 1/2� Œ.N � 1/=2�

16.N C 2/� Œ.N=2/ C 1�
˛�3

�
N C 2

2l4
D 0:

(17)
Then we can get the eigen level and the eigen wavefunction.
Then, we obtain the two-level system needed by a single qubit.
The superposition state of the electron can be expressed as

j�01i D
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where j0i D �0 and j1i D �1. The time evolution of the quan-
tum state of the electron can be written as
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The probability density is in the following form,
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3. Results and discussions

To prevent the transition of the electron from higher en-
ergy, the discussions in the following are carried out at a tem-
perature of near 0 K, and Feynman units are adopted in this
section. The numerical results of the electron probability den-
sity and the period of oscillation versus the electron–phonon
coupling strength and confinement length in a symmetric QD
with parabolic confinement in both 2D and 3D are presented
in Figs. 1–3.
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Fig. 1. Time evolution of the electron probability density in superposition of j0i and j1i in 2D QD. (a) t D 0. (b) t D 0:25 T0. (c) t D 0:5 T0.
(d) t D 0:75 T0. (e) t D T0.

Fig. 2. Time evolution of the electron probability density in superposition of j0i and j1i in 3D QD. (a) t D 0. (b) t D 0:25 T0. (c) t D 0:5 T0.
(d) t D 0:75 T0. (e) t D T0.

Figures 1 and 2 show the time evolution of the electron
probability density when the electron is in the superposition
state of .1=

p
2/.j0i C j1i/ for electron–LO-phonon coupling

constant ˛ D 6, the confinement length l D 0:5 in a symmet-
ric QD with parabolic confinement in both 2D (Fig. 1) and 3D
(Fig. 2). We find that the electron probability density oscillates
with the period of oscillation T0 D h=.E1 � E0/ for the above
material and shape parameters in both 2D and 3D parabolic

QD. The time t in Figs. 1(a), 1(b), 1(c), 1(d), and 1(e) is 0,
0.25 T0, 0.5 T0, 0.75 T0, and 1 T0, respectively. The time t in
Figs. 2(a), 2(b), 2(c), 2(d), and 2(e) is also 0, 0.25 T0, 0.5 T0,
0.75 T0, and 1 T0, respectively. Because of the use of Feynman
units, the normalized result of the electron probability density
cannot be obtained directly. But it can be seen that the quan-
tum coherence of the system is obvious. When the electron is
excited in the direction of � D 0, the maximum value of the
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Fig. 3. Period of oscillation as a function of the confinement length l

(in Feynman units) with three coupling strengths. The solid line and
the dashed line represent the 2D and 3D, respectively.

probability density mainly appears in the direction of � D 0 or
� and oscillates periodically. At the same time, as the value of
the probability density is not equal to 0, the quantum tunneling
probability exists. Certainly, we can adopt a deep energy po-
tential barrier to prevent the occurrence of the tunneling possi-
bility. Figures 1 and 2 also show that the electron probability
density is larger in a 3D dot than in a 2D dot, which can be eas-
ily understood since one of the dimensions is strongly confined
in the 2D QD.

Figure 3 presents the period of oscillation as a function of
the confinement length with the different coupling strengths
(˛ D 3; 6; 9) in 2D (solid line) and 3D (dashed line) parabolic
QDs. It is shown that the period of oscillation increases with
increasing confinement length in both 2D and 3D QDs. The
reason for this is that the energy spacing between the GS and
the first ES decreases with increasing confinement length in
both 2D and 3D QDs. Figure 3 also shows that the confine-
ment length effect is stronger in a 3D dot than in a 2D dot. The
reason for this is that the energy difference (E1 –E0/ is larger in
a 2D dot than in a 3D dot, which can also be easily understood
since one of the dimensions is strongly confined in 2D. From
Fig. 3 we can also find that the period of oscillation decreases
with increasing electron–phonon coupling strength because the
coupling strength of the electron–phonon interaction is weaker
in the first ES than that in the GS; the energy spacing increases
with increasing coupling strength. The increase in energy spac-
ing causes a decrease in the period of oscillation. A qubit can-
not be independent of the environment and must interact with
the heat bath. As a result, the interaction destroys the superpo-
sition state of a qubit, which is decoherenceŒ12�. The period of

oscillation T0 decreases, that is, the life time of a qubit reduces,
so the process of decoherence is sped up. It is very harmful to
store information whichmakes the QD its elementary unit. But,
in principle, this effect can beminimized by amore precise fab-
rication technology, by cooling the crystal and by choosing the
state and the physical parameters properlyŒ13�.

4. Summary

The eigenenergies and the relevant eigenwavefunctions of
the GS and the first ES of electron have been obtained in both
2D and 3D QD with parabolic confinement using the Pekar
type variational method in the electron–LO-phonon strong-
coupling region. The single qubit can be envisaged as this kind
of two-level quantum system in a QD. The electron probabil-
ity density oscillates with a period when the electron is in the
superposition state of the GS and the first ES. The results also
indicate that this effect becomes much more pronounced with
decreasing dimensionality.
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