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Abstract: A continuous surface potential versus voltage equation is proposed and then its solution is further discussed
for a long channel intrinsic surrounding-gate (SRG) MOSFET from the accumulation to strong inversion region. The
original equation is derived from the exact solution of a simplified Poisson equation and then the empirical correction
is performed from the mathematical condition required by the continuity of the solution, which results in a continuous
surface potential versus voltage equation, allowing the surface potential and the related derivatives to be described by
an analytic solution from the accumulation to strong inversion region and from linear to the saturation region accurately
and continuously. From these results, the dependences of surface potential and centric potential characteristics on device
geometry are analyzed and the results are also verified with the 3-D numerical simulation from the aspect of accuracy
and continuity tests.
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1. Introduction

According to ITRS the traditional single-gate bulk CMOS
will hit its scaling limit in several years due to severe short-
channel effects and ultra-thin gate oxide tunneling!". In or-
der to extend the scalability of CMOS technology beyond the
22 nm technology generation many non-classical multi-gate
MOSFET configurations have been proposed>—>l. Among
them, the surrounding-gate (SRG) MOSFETs demonstrate the
best control of short-channel effects, thus, it can be scaled to
the shortest channel length for a given gate oxide thickness.
To implement the potential advantage of this device in future
generation CMOS integrated circuits, compact models will be
required for the electrical circuit simulation and design. For
these applications, a complete SRG MOSFET model requires
an accurate and continuous mathematical formulation to de-
scribe the device characteristics.

Surface-potential-based models are becoming mainstream
either for bulk MOSFETs or non-classical CMOS de-
vices in the compact modelling community, as they in-
clude a more physical and accurate description of the MOS
(metal—oxide—semiconductor) transistor behaviorl©=191. The
complete surface potential versus voltage equation of a bulk
MOS transistor was initiated by Sah and Pao in 1966, and
then finally clarified and unified by Sah, He and PSP groups
from different device physics routest!’~!71. The electrostatic
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analysis and the corresponding surface potential versus volt-
age equation of the double-gate (DG) MOSFET have also been
well studied and established!'3=23]. Various compact models
for the surrounding-gate (SRG) MOSFET such as potential-
based models, charge-based models and carrier-based models
and the complete surface potential-based model have been pre-
sented in Refs. [24—-35]. They have different intermediate vari-
ables and differ in their computation efficiency. On the other
hand, the continuity of the surface potential versus voltage
equation is a key factor for the compact model used in circuit
simulators in order to maintain the simulation convergence.
Recently, discontinuity problems of the surface potential ver-
sus voltage equation of the bulk MOSFETs which strongly de-
grade the compact model convergence and computation effi-
ciency have been found and finally amended by several group
works!12=15] In Ref. [23] a rigorous surface potential solution
for symmetric DG MOSFETs is obtained which is naturally
continuous but depends on an iterative algorithm. However,
the discontinuity issue of the electrostatic analysis of the SRG
MOSFET has never been mentioned and discussed in the pre-
vious models?4~341 although it is very important for the SRG
MOSFET model application. Under such a background, a con-
tinuous surface potential versus voltage equation and its ana-
lytical solution for the SRG MOSFETs is desired for the SRG
MOSFET compact model development.

Based on the previous work[3273%] a continuous surface
potential versus voltage equation of intrinsic cylindrical SRG
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MOSFETs from the accumulation to strong inversion region is
proposed from the continuity property, together with an analyt-
ical algorithm in this paper. These two points are the major con-
tributions of this work. From it, the surface potential continuity
and derivative characteristics of SRG MOSFETs are analyzed.
Moreover, the theoretical surface potential and centric poten-
tial predictions are compared with a 3-D numerical simulation
and good agreements are found between them for wide ranges
of bias parameters, proving the accuracy of the presented sur-
face potential equation and its solution for the SRG compact
modelling application.

2. Electrostatic analysis of SRG MOSFETs

In order to calculate the potential distribution along the ra-

dius direction, one may follow the usual procedure of the bulk
MOSFET analysis and start with the Poisson equation under
the gradual-channel approximation (GCA):
9  1d¢ P
dr2 + rdr &g M
with the charge concentration expressed as: p =
q(p+ Ny—n—N,). Here all the symbols have their
common meanings.

Since an intrinsic or lightly doped body is preferred in the
SRG-MOSFETs, we can neglect the effects of the impurity
charge due to their small magnitude, thus

N, = Ny = 0. ©)
The charge term is simplified as:
p=q(p—n). 3)

Based on Boltzmann statistics, the electron and hole con-
centrations can be expressed as

o q(P—Va)
n = njexp 7T 4)
p=mew(-12). ®)

Note that the hole quasi-Fermi-potential is taken as the ref-
erence point because only an N-type SRG MOSFET is consid-
ered here.

The Poisson equation thus takes the following form:

&g 1dp kT @~ V) 4]
drz2 ~ rdr  gL? kT kT |’

with the boundary conditions:

dp do
d—r(r = O) = O, ar (V = R) - Esv (7)

and
¢(r =0) =¢o, ¢(r=R) =g, 3

where ¢ and E are the surface potential and electric field at
the silicon and gate oxide interface, ¢ is the centric potential
and L? = 1/(q%ni/kTeq).

The analytic solution of Eq. (6) with conditions of Egs. (7)
and (8) is physical and continuous since it includes both hole

and electron item contributions. However, it is not a trial equa-
tion without any analytic solution. Thus, the previous works
had to solve the simplified formulation of Eq. (6) with a single
electron or hole item and then presented regional solutions for
a single electron or hole item, respectively25-28:32-34] A5 a
result, the previous solutions are only valid above the flat-band
point or into the accumulation. Thus, it is this work’s aim to get
a continuous surface potential equation and its global solution
based on the previous region solutions.

For SRG-MOSFET operation above the flat-band point, the
electron dominates the charge term in Eq. (6)25728-32734] and
Equation (6) is simplified as

¢ 1dp _ kT g (¢ —Va)
2 — =—Xp—.

rdr qL? *P kT ©)
We would like to point out in advance that such a simpli-

fication of the Poisson equation, thus, the solution of Eq. (9),

will result in a discontinuity near the flat-band point, which

has never been noted and discussed in the previous literature.

This problem will be discussed and then fixed in the following

continuous surface potential versus voltage equation.
Equation (9) is analytically solved®4:

q (Vgs —Ap — ¢s) i qCox (Vgs —Agp — ¢s)
kT R 4egkT

Esi q (Qbs - Vch)
= , 10
202Co P kT (10)

where Cox= €ox/[ RIn(1+1,x/R)] and Ag is the work-function
difference between gate and intrinsic silicon.

Due to the multiple root characteristics of Egs. (10) and (11)
with respect to Ves—Ag, we make use of the solution procedure
of a general quadratic equation to derive a SRG MOSFET sur-
face potential versus voltage equation with a single root from
the physical meaning of the solution, as shown in Eq. (11):

q(Ves—Ap—¢5) _
kT N

2ei \/ R? q (¢s — Ven) 2ei
14+ —exp - .
RCy 2L2 kT RCo
Equations (10) and (11) is a surface potential equa-
tion of the SRG MOSFET based on a fully rigorous so-
lution of the simplified Poisson equation (9) above the
flat-band point. We note that Equations (10) and (11)
cannot stand for the electrostatic potential when the de-
vice operates very close to the flat-band point due to
the simplification of the Poisson equation, thus the calcu-
lated field and potential cannot pass through the flat-band
point with changing gate voltage. This problem is fixed by
adding a new term —exp _Z¥°" to the right-hand side of
Egs. (10) and (11) as shown in Eq. (12).

(11)

q (Vgs —Agp — ¢s) _ 2es %

kT RCw
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In modelling the capacitance—voltage characteristics of
SRG MOSFETs, such as calculating the capacitances related to
¢s, the first-order differential of ¢ is needed. However, Equa-
tion (12) still results in discontinuity when it is differentiated
with gate voltage. Based on the mathematical condition of the
continuous derivative of the surface potential with respect to
the terminal voltage, Equation (12) is further modified as

q (Vgs —Ap — ¢S) _ 2g %

kT RC,y
R? q (s — Ven) qds —qVen
1 — |exp L& —Te)
\/ EYE [eXp KT ( * kT)eXp kT }
2‘95i
— . 13
RC. (13)

For the SRG-MOSFET operating in the accumulation re-
gion, holes dominate the charge concentration in the channel.
In this case, the derivation is straightforward as done above.
Firstly Equation (6) is simplified as

N ) kT L
— t+t—— =——=€exXp—.
drz2 = rdr qL? P

Then following a similar routine, the solution of Eq. (14) is
obtained as

q (Vgs —Ap — ¢s) |:l _ qCox (Vgs —Ag _¢s):|

(14)

kT R 4egk T
Esi _q¢s
= 28 ) 15
2L2Co ¥ kT (15)
q (Vgs —Ap — ¢s) _ 2¢&si _ 2¢&g; - R_2 o —qps
kT RCoy  RCi 2Li2 P kT
(16)

Again, Equations (15) and (16) is the solution of a sim-
plified Poisson equation beyond the flat-band point. To ensure
that the surface potential passes through the flat-band point and
the derivative is continuous, Equation (16) is modified simi-
larly to Eq. (11):

q (Vgs —Ap — ¢s) i 2¢gi

kT RCoy

2esi R2 —q s
S B DIy e L 17
RCOX\/ E (eXp kT {17
q (Vgs - A(P - ¢§) _ 2eg
kT RCyy
2<c/‘si R? _CI¢S q¢s
— 1+ — —-1]). 18
RCOX\/ T (eXp kT kT (15

In bulk MOSFETs, a single equation is obtained in terms of
the surface potential from the accumulation to strong inversion
region. For intrinsic SRG MOSFETs the corresponding equa-
tion which is valid in all operation regions is also obtained by
combining Egs. (12, 17) and (13, 18), respectively:

q (Vgs —Ap — ¢S) sgn(gs)2esi
kT CoxR

{exp [sen (0 122] - 1} . (19

sgn(¢s)2¢s R29
= 1
\/ + kT

CorR 212

q (Vgs —A¢ — ¢S) sgn(gs)2&s; _
kT CxR

sen()2e,
CoxR

qos
kT

R20
\/ L+ o {exp [sen (00 1%:] — senig 1% - 1} . Qo)
where sgn(gs) is the signum function that returns 1 if the band
bending is above or at the flat-band region and —1 when the
band bending is below the flat-band region. 6 is the quasi-
Fermi-potential factor:

1)

0 — exp(—qVen/kT), above flat-band point,
~ |1, flat-band or accumulation.

Equations (19) and (20) are valid for all bias conditions. We
would like to further point out that Eq. (19) is continuous for
the surface potential and charge but it is not for the derivative
of the surface potential with respect to the gate voltage from
the accumulation to strong inversion region. In contrast, Equa-
tion (20) is infinitely continuous either for a surface potential
and charge or for any order derivative of the related physical
quantities.

3. Analytic solution to the surface potential equa-
tion

An empirical continuous surface potential equations (19)
and (20) is proposed to realize its smooth transition through the
flat-band point with changing gate voltage. However, the prob-
lem is that Equations (19) and (20) is an implicit transcendental
equation just like other surface potential based models. For a
bulk MOSFET with a uniformly doped substrate, the complete
surface potential equation was solved analytically in Refs. [16,
17]. Following similar methods, the authors presented explicit
continuous models for SRG MOSFETs in Refs. [30, 31] for the
equivalent form of the surface potential equation to Egs. (10)
and (11). Here a method similar to that in Ref. [16] is proposed
to give an analytic surface potential solution.

From careful observation of the implicit equations (19) and
(20), we find that the silicon film radius plays a unique role. For
an infinitely large silicon film radius which implies an intrinsic
bulk MOSFET, Equations (19) and (20) becomes

Cox(Vgs - A(p - ¢s) _ Q¢s
e = @) Voo [sen (60 3 .
(22)
q9s

where we neglect the added [—sgn(¢s) 77 — 1] terms, which is
reasonable because they only come into effect when the oper-
ation region is very close to the flat-band point. Equation (22)
is similar to the Poisson equation solution of the intrinsic bulk
MOSFET given by Ortiz—Conde[*®]. Thus, it has an exact so-
lution based on Lambert-W function formulation

2kT
¢SO = Vgs - A‘P — sgn (¢s) TWO

1 [2e4qn;0 q(Ves — Ap)
. V T P [sgn(qbs) KT

(23)
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Fig. 1. Absolute error of the analytical algorithm for surface potential
equation (20) compared with numerically solved results as functions
of gate voltage and geometry parameters.

Equation (23) is used as a global initial guess of the surface
potential for all the operation regions. Then a second order cor-
rection function is used to achieve higher accuracy. Here the
correction function to Eq. (20) is demonstrated.

f/13f

b =0 T osr2 frarjor @)
where
2
VS_ A — ¥s 2 si 2 si 2
f= {q( : kT(p s +Sgn(¢5)%} _(RZ )
R29 S S
x [1 + o7 %CXP [sgn(qzﬁs)%] — sgn(¢y) iq; - 1” :
‘ (25)
Vs — Ay — s 2 si
of =2 ["( O T } ~ sen(@)
2eg 2 R0 q¢s
X (Rcox) Ilz %exp [sgn(gbs)ﬁ] — 1} , (26)
26 \* R26 s
82f =2— (RZ’ ) 512 exp [sgn(¢s)i¢}]. 27

After two correction procedures, the obtained surface po-
tential is accurate enough for application in compact models.
To solve the initial solution from Eq. (23) with the Lambert-W
function, one exponent and three logarithms are included”.
For the correction function (24), two exponents are included. In
total, three exponents and three logarithms are involved in the
preceding algorithm. Figure 1 demonstrates the absolute error
of the analytical surface potential solution of Eq. (20) com-
pared with the Newton-Raphson iterative result. The errors are
sensitive to the geometry of the device (A = R/t in Fig. 1),
as shown in Fig. 1, since the initial solution Eq. (23) assumes
infinitely large radii. As shown in the figure, the maximum ab-
solute error is within 1 nV order for a reasonable range of ge-
ometry and bias parameters.

Note that in Ref. [32] an explicit solution for the SRG
MOSFET is presented. However, the starting point in Ref. [32]

7, (V)

Fig. 2. Comparisons of the surface potential and its derivative between
three equation pairs for a wide gate voltage range.

is Eq. (9), thus the discontinuity problems of the surface poten-
tial versus voltage equation are not addressed. Here in this work
the emphasis is on finding one feasible approach to solve this
problem. It is also found that the method in Ref. [16] to solve
the input voltage equation in a bulk MOSFET is applicable to
Eq. (23) of an undoped SRG MOSFET here.

4. Results and discussion

The continuity of the equation and thus the model of a semi-
conductor device is an essential feature for ULSI circuit simu-
lation, which ensures simulation convergence. For the surface
potential equation of an SRG MOSFET and the relative deriva-
tive, it is also true for the model application. We first discuss
the results of three pairs of equations, Egs. (10), (11) & (15),
(16), Egs. (12) & (17) (i.e. Eq. (19)), and Egs. (13) & (18) (i.e.
Eq. (20)). Figure 2 plots the calculated ¢ (left) and d¢ /dV
(right) versus Vs for a wide gate voltage range from these three
equations. The solid circles denote the analytically solved re-
sults from Eq. (20) while the open squares correspond to the
solution of Eq. (19); lines are the results from the equation pair
of Egs. (10), (11) and (15), (16) both numerically calculated.
As shown in Fig. 2, the results from the three surface poten-
tial equations match well in such a gate voltage range and step
and seem to show no differences from each other. In the opera-
tion region far from the flat-band point, the difference between
Egs. (10), (11), (15), (16) and Eq. (20) is negligible. This re-
sult, on one hand, indicates that the modifications in Eqgs. (19)
and (20) are reasonable; on the other hand, it suggests that the
drawbacks of Egs. (10), (11), (15), (16) and Eq. (19) need to be
observed in a refined gate voltage scope.

Figure 3 demonstrates the calculated results of the ¢ ver-
sus Vg curve near the flat-band point in a refined gate voltage
range. Again Equation (20) is solved analytically with the pro-
posed algorithm and results from the other two equations are
numerically obtained. As shown in Fig. 3, Equations (10), (11)
and (15), (16) result in a discontinuity problem of the surface
potential versus gate voltage, thus the calculated surface po-
tential cannot pass through the flat-band point smoothly below
and above it. This problem is fixed by adding a — exp _kq—TV term
to modify Eq. (10), (11) or (15), (16) respectively, evaluating
Eq. (19). It is found that the surface potential calculated using
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Fig. 3. Comparisons of ¢ versus Vg near the flat band-point between
three equation pairs for different V¢, in a refined gate voltage scope,
showing a discontinuity of the surface potential from Eqgs. (10), (11)
and (15), (16) pairs.
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Fig. 4. Comparisons of d¢s/dVgs—1 versus Vg near the flat-band point
between Eqgs. (19) and (20), showing the discontinuity of the surface
potential derivative from Eq. (19).

(19) can pass through the flat-band point even considering zero
Ven. In addition, we also note that further modification on Eq.
(19), i.e. Eq. (20), also demonstrates its own continuous char-
acteristics from below to above the flat-band point. Moreover,
Equation (20) fits the result of Eq. (19) so well in this refined
gate voltage scope that the distinction between them is not sig-
nificantly illustrated. The difference, however, can be observed
from the difference between the derivatives from Egs. (20) and
(19) as shown in Fig. 4.

Figure 4 plots d¢ /dVes from the numerically solved
Eq. (19) (represented by squares and circles) and the analyti-
cally evaluated Eq. (20) (represented by crosses and triangles).
As expected, Equation (19) results in a discontinuous deriva-
tive of the surface potential with respect to gate voltage close to
the flat-band point when V;;, # 0 although it results in a contin-
uous surface potential. This result indicates that Equation (19)
cannot be used to predict the capacitance-voltage characteris-
tics of SRG-MOSFETs. In order to fix this flaw, Equation (20)
has to be used and the resultant derivative of the surface poten-
tial with respect to the gate voltage is smooth when passing the
flat-band point either for zero and non-zero quasi-Fermi poten-
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Fig. 5. Surface potential ¢s and centric potential g versus Vg ob-
tained from the surface potential equation (lines) for different V, and
3-D simulation (symbols).

tials as demonstrated in Fig. 4. In fact, Equation (20) fixes all
the discontinuity problems and its result is infinitely continu-
ous.

The continuity of the surface potential and its derivative is a
necessary rather than sufficient condition for the utility of the
surface potential versus voltage equation for SRG-MOSFET
modelling. In practice, the accuracy of the presented surface
potential equation and its derivatives is a more stringent test
for SRG-MOSFET device physics analysis. All equation pre-
dictions in the following discussion are based on the analyti-
cally solved Eq. (20), and the corresponding centric potentials
(¢o) are obtained directly as functions of ¢ 4. On the other
hand, the numerical simulation is performed from the commer-
cial device simulator Sentaurus[®8].

Figure 5 is a comparison of the result between the surface
potential and the centric potential versus gate voltage curves of
the 3-D simulation (symbols) and the surface potential equa-
tion prediction (lines) for different quasi-Fermi-potentials. It is
easily seen that the surface potential equation prediction agrees
with the 3-D simulation very well: the error is within a range
of less than 0.15%, indicating the accuracy of Eq. (20). As in
the bulk MOSFETs, the surface potential operation region is
divided into two significantly different regions above the flat-
band point: one is the sub-threshold region where the surface
potential is almost a linear function of the gate voltage, and the
other is the strong inversion region where the surface potential
saturates gradually. Similarly, the quasi-Fermi potential comes
into effect only when the SRG-MOSFET operation goes into
the strong inversion region. We find from Fig. 5 that the centric
potential merges with the surface potential in the sub-threshold
region while it diverges from the surface potential when it en-
ters both the strong inversion and the strong accumulation re-
gions where it becomes almost flat, e.g. saturates into a con-
stant value. This saturation centric potential can be explained
by the argument of the logarithmic items in its expression(®4l.
For example, the logarithmic function requires the argument in
it to be larger than zero, thus, it results in the maximum centric
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Fig. 6. Surface potential @5 derivatives versus Vg obtained from the
surface potential equation for different V., in comparison with 3-D
simulation.
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kT kT . 8L?
o,max = o In 6 + sgn (¢5) ”a In —-.

o (29

As stated above, one stringent test on the SRG-MOSFET
surface potential equation is the continuity and high precision
of the surface potential derivatives with respect to the gate volt-
age. Figure 6 shows a comparison between the surface poten-
tial derivatives of the surface potential equation and the 3-D
simulation for different quasi-Fermi-potentials. We find that
not only does the equation prediction remain continuous and
smooth in the whole SRG-MOSFET operation region from the
accumulation, thorough the flat-band point and sub-threshold,
and finally to the strong inversion region, but it also matches
the 3-D numerical simulation very well. These results indicate
that the accuracy of the presented surface potential equation
and its derivative is satisfactory for the SRG-MOSFET elec-
trostatic analysis and performance test.

Precision of the gate capacitance from the presented sur-
face potential equation is highly desirable in SRG-MOSFET
small signal analysis from the accumulation to the strong in-
version region. Once the surface potential and its derivative are
obtained, the corresponding gate-capacitance is easily obtained
with the following formulation:

Coo _ 405 _ | _ 4%
Cox  CoxdVi AV

29

Figure 7 plots a comparison between the gate capacitance
curves of the surface potential equation calculation and the 3-
D simulation for different quasi-Fermi-potentials. As expected,
not only does the equation predicted gate capacitance remain
continuous and smooth in the whole SRG-MOSFET operation
region, but it again matches the 3-D numerical simulation very
well.

5. Conclusions

In summary, an empirically continuous and physics based
surface potential versus voltage equation is presented in this

;;;;;; Curves:Model

Wy, Symbols:Simulatiy

—
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—
[\]
T

V. =0V

ch’

=)}

¢ =2 nm
ox

R=20 nm
3L Ap=0V

Gate capacitance (mF/m?)
©
T

Fig. 7. Gate capacitance versus Vs from the surface potential equation
for different V}, in comparison with 3-D simulation.

paper for a long intrinsic channel (lightly doped) surrounding-
gate (SRG) MOSFET from the accumulation to strong in-
version region and its analytical solution is also discussed.
The equation is derived from the Poisson equation and then
amended with the appropriate mathematical condition for the
continuity of the surface potential and its derivative. From
these results, the surface potential and its derivative property
of an SRG MOSFET are discussed and the results are also
compared with the 3-D simulation. The excellent agreement
between them suggests that the proposed empirical surface po-
tential equation and its analytical solution may provide a solid
basis for the surface potential based compact model develop-
ment of SRG MOSFETs.
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