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A novel closed-form resistance model for trapezoidal interconnects�
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Abstract: A closed-form model for the frequency-dependent per-unit-length resistance of trapezoidal cross-sectional
interconnects is presented. The frequency-dependent per-unit-length resistance R.f / of a trapezoidal interconnect line
is first obtained by a numerical method. Using the method we quantify the trapezoid edge effect on the resistance of
the interconnect and the current density distribution in the cross section. Based on this strict numerical result, a novel
closed-form model R.f / for a single trapezoidal interconnect is fitted out using the Levenberg–Marquardt method.
This R.f / can be widely used for analyzing on-chip interconnects when the frequency is changing. The model is
computationally very efficient with respect to the numerical method, and the results are found to be accurate.
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1. Introduction

As circuit complexity increases and MOS devices scale
into the deep submicron regime, the interconnect has become
a primary bottleneck in integrated circuit design, because the
scaling-down technology poses significant challenges to on-
chip interconnect design, such as delay, power integrity, and
signal integrityŒ1�3�. Resistance is one of the most important
parameters to characterize interconnect behavior. For a digital
signal, the frequency spectrum’s higher part is more closely re-
lated to its rise/drop time tr (e.g. 1=.3:14tr//; this frequency is
much higher than the signal frequency itself, and it may be easy
reach to tens of gigahertz, therefore, studying the on-chip inter-
connect R .f / is needed. A simple and accurate interconnect
resistance model is the basic requirement in advanced simula-
tion.

Copper (Cu) has been used in deep submicron ULSI tech-
nology for many years, but Cu cannot be easily patterned by
reactive ion etching (RIE), due to the low volatility of Cu chlo-
rides and Cu fluorides. Therefore Cu interconnects are gen-
erally formed using the “dual damascene” process, in which
the dielectric is etched before the barrier layer is deposited,
by plasma. A sidewall angle is creased and induces a trape-
zoidal shape of the copper line. The trapezoidal copper line
causes a decreasing cross section that leads to a resistance in-
crease compared to the rectangular line. The increased resis-
tance caused by the trapezoidal edge will provide a consis-
tent decrease on the transmission properties of the line. There-
fore the importance of modeling the trapezoidal edge is high-
lightedŒ4�7�. ScognaŒ5� quantifies the trapezoidal shape effect
on the electrical performance to stripline. TravalyŒ6;7� points
out that the resistance is linear to the reciprocal of the cross
section of the line and analyzes how the profile of the line in-
fluences the resistance heavily. But none of them clearly cal-
culate the resistance of the trapezoidal copper line or give the
closed model.

In this paper, we first develop a numerical method to cal-
culate the resistance of the trapezoidal copper line and try to
figure out the final R .f / changes based on which parameters
change and in which way. We also give the current distribu-
tion in the cross section of the conductor. Then a closed-form
model is fitted out using the Levenberg–Marquardt method
based on the numerical results. The final comparison proves
that the model has obvious advantages in the accuracy and ef-
ficiency in simulation and it can be used in local, intermediate
and global interconnects.

2. Numerical method for resistance extraction
considering the skin effect

To capture the interconnect skin effect accurately, we first
develop a numerical method to calculate frequency-dependent
per-unit-length resistance of trapezoidal cross sectional inter-
connect.

Figure 1 is the cross section of the line used in this paper.

Fig. 1. Trapezoidal line and its discretization of mesh.
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Fig. 2. 3D topographic plot of current density distribution over a cross section of the line. The dimensions are: b = 4 �m, t = 4 �m. (a) a = 3.5
�m. (b) a = 2 �m.

a is the width of the lower edge, b is the width of the upper edge
and t is the height of the line. The trapezoidal line is discretized
into a collection of parallel thin filaments through which cur-
rent is assumed to flow uniformly. The filaments are hybrid,
including triangle and rectangle.

For each filament, it has a resistance r and inductance l ;
between the different filaments there is inductance coupling,
so the system equation can be generated as:

V D zI; (1)

where V is the per-unit-length voltage drop on the line. V and
I are a vector with a number ofN (N D NPCNg/, andNP and
Ng are the trapezoidal line discretization number and its image
line’s discretization number. The z matrix can be expressed as:�
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where Ai is the cross sectional area of the filament.

The 2D boundary elemental method (BEM) is used to cal-
culate Eq. (4) and the formula is
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lnŒ.xim � xjm0/2 C .yin � yjn0/2�; i ¤ j: (5b)

In Eq. (5b), N1; N2; N3; N4 are Gaussian quadrate orders
in the x and y directions, and wm; wn; w0

m; w0
n are the corre-

sponding weights. To ensure accuracy we use Eq. (5a) to calcu-
late the self inductanceŒ8�. The definitions are f .x/j
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All the filaments in the trapezoidal line have the same cross

voltage and voltage drop along the line length. The filaments in
the trapezoidal line have their own current, and the summation
of all the filaments’ current is the final trapezoidal line’s cur-
rent. Therefore, by solving Eq. (1) one can obtain the current
distribution as:

I D z�1V D yV: (6)

Based on the above assumptions, the N � N filament l

and r matrices can be size reduced to 2 � 2 matrices by the
following approach:

Œyij �N �N D Œzij ��1; (7)
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Then for the inverse of the 2�2 Y matrix one obtains the
2�2 Z matrix:

ŒZij �2�2 D R C j!L D

�
rpp C j!lpp rpg C j!lpg
rgp C j!lgp rgg C j!lgg

�
D

�
Ypp Ypg
Ygp Ygg

�
(10)

Finally, real.Z11/ is the trapezoidal line’s frequency-
dependent per-unit-length resistance. This technique is used
in some software such as FastHenry to calculate a rectangu-
lar line’s frequency-dependent per-unit-length resistanceŒ9� and
the results are accurate.
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Fig. 3. Distribution of current density on the boundary of a single line at different frequencies. The dimensions are: b = 4 �m, a = 2 �m, t = 4
�m.

Fig. 4. Frequency-dependent per-unit-length resistance of a trape-
zoidal line, t = 1 �m.

Figure 2 shows the 3D topography of a normalized axial
current density distribution over a cross-section of the con-
ductor. Clearly, the current distribution is symmetric with re-
spect to x D 0. Due to the trapezoidal cross section the upper
two angles are sharp ones and explicit edge behavior becomes
sharper. So the differential value of current density between the
upper edge and lower edge becomes larger as the differential
width value increases.

Figure 3 presents the current density on the boundary line.
It shows that the edge behavior becomes sharper as the fre-
quency f assumes larger values. So it is found numerically
that the cross-section current density distribution of a single
conductor depends on the thickness, the upper width, the lower
width and the frequency.

Figure 4 presents the frequency-dependent per-unit-length
resistance for a single trapezoidal line. From the figure we can
see that when the width of the lower edge decreases from the
upper width the DC resistance assumes a bigger value com-
pared with the standard rectangular cross-section. For different
lower widths, all theR.f / are convergent to theRdc at low fre-
quency. As the frequency is increased, the fine line first shows
skin effects while the narrower line shows the skin effect later.

3. Closed-form model
In the model that we propose here, the frequency-

dependent resistance is represented as:

(
Rl .f / D Rdc C m.f =f0/ C n.f =f0/2; f < f0; (11a)
Rh.f / D RdcekC.0:5�q/ ln.f =f0/; f > f0; (11b)

where Rdc is the direct resistance, f0 is the break fre-

quencyf0 D
4

��0�

�
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bt

�2

, and k; q; m; n are constants to be
described.

Equation (11a) is used to compute the resistance in the
range of low frequency and it ensures R.f / is equal to Rdc
at zero frequency. Equation (11b) corresponds to the high fre-
quency and the resistance varies as

p
f . To maintain the con-

tinuity of the two formulae ofR.f / at f0 we use two equations
to get the parameters m; n in Eq. (11a).

ŒRl .f / D Rh .f /�
ˇ̌
f Df0

; (12)

ŒdRl .f /=df D dRh .f /=df �
ˇ̌
f Df0

; (13)

where Equation (11) shows the continuity of the R.f / and
Equation (13) shows the smoothness at the turning points.

Then it can be found that

m D Rdcek .1:5 C q/ � 2Rdc; (14)

n D Rdc � Rdcek .0:5 C q/ : (15)

The parameters k; q are determined by the size of the di-
mension of the line and their values can be calculated by the
Levenberg–Marquardt method.

The Levenberg–Marquardt methodŒ10� is an iterative tech-
nique that locates the minimum of a multivariate function that
is expressed as the sum of the squares of non-linear real-valued
functions. It has become a standard technique for non-linear
least-squares problems.

In the Levenberg–Marquardt method, the performance in-
dex f .w/ to be minimized is defined as the sum of squared
errors, namely

F .w/ D eT e; (16)
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Fig. 5. Comparison R.f / between our Eq. (3) and the numerical method. Line size is: (a) b = 400 nm, t = 400 nm. (b) b = 400 nm, t = 500 nm.

where w D Œk; q�T consists of the two parameters, and e is the
error vector.

The increment of weights �w can be obtained as follows:

�w D

h
JT J C �I

i�1

JT e; (17)

where J is the Jacobian matrix, and � is the damping term
which is to be updated using the decay rate ˇ depending on
the outcome. In particular, � is multiplied by the decay rate ˇ

.0 < ˇ < 1/ whenever F (w) decreases, while � is divided by
ˇ whenever F (w) increases in a new step.

The standard Levenberg–Marquardt method can be illus-
trated in the following steps:

(1) Initialize the two parameters k,q and � (� D 0:01 is
appropriate);

(2) Compute the sum of squared errors F.wi /;
(3) Compute the Jacobian matrix Ji ;
(4) Solve Eq. (17) to obtain the increment �wi ;
(2) Recompute the sum of squared errors F.w0

i / using
wi C �wi as the trial w0

i . If F.w0
i / is less thanF.w0

i /, the
next increment wiC1 D wi C �wi and the damping term
�iC1 D �i ˇ .ˇ D 0:1/: Then go back to Step 2. If F.w0

i /

is bigger than F.wi / the damping term �iC1 D �i =ˇ and the
iteration is stopped.

Using the Levenberg–Marquardt method we obtain large
numbers of values of k; q. By analysis they can be expressed
by

k D kc C ks
b � a

t
; (18)

q D qc C qs
t

b � a
; (19)

where:
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kc D 0:354 C 107751:1t � 4 � 1011b2; (22)

ks D �0:14 C 0:37
t

b
C 234035:5t: (23)

The coefficients in Eqs. (20)–(23) are also obtained by the
Levenberg–Marquardt method.

So Equation (11a) combined with Eq. (11b) constitutes our
final closed-form model for a single trapezoidal line’s p.u.l.
(per-unit-length) R.f / and the parameters in Eq. (3) can be
calculated by Eqs. (14), (15) and (18)–(23).

4. Results

Model (3) is an explicit expression that contains the fre-
quency and the line size as variables. To validate the model,
we compare it with the numerical results.

Figure 5 shows a comparison between the different resis-
tance values for a single line. The numerical results are re-
garded as the standard true results. From the picture, one can
see that our proposed model results always agree well with the
numerical results in the whole frequency range and with dif-
ferent dimension sizes. The maximal relative error is less than
4%. The model can calculate the resistance of a trapezoidal
copper interconnect in nanotechnology; it is valid in the range
of 100 nm 6 b 6 600 nm, 1 6 AR 6 2 (AR D b=t/,
0 < .b � a/=t 6 0:2.

The numerical method is accurate if the trapezoidal line is
divided into enough small filaments. However, as the number
of filaments increases, the computation complexity is also in-
creased quickly as N size matrix z inversion is required, so it
will take more time to compute the resistance. For example, a
trapezoidal line (with dimensions of a = 340 nm, b = 400 nm,
t = 400 nm) is divided into 210 filaments and it takes 1406 ms
to compute the resistance while model (3) takes only 0.1 ms.
So the obvious advantage of model (3) is its high efficiency.

5. Conclusion

In this paper, we use a numerical method to calculate
the frequency-dependent resistance of a trapezoidal cross-
sectional conductor. The effect of the trapezoidal edge on the
resistance of the standard trapezoidal conductor is analyzed.
A closed-form model of the frequency-dependent resistance of
the trapezoidal line is presented in Eq. (3). It is fitted out in
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the Levenberg–Marquardt method based on accurate numer-
ical results. Compared to the numerical method, the formula
has obvious advantages in its efficiency varying ranges. The
proposed model can be used widely in CAD simulation of IC
levels for power or signal integrity.
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