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Development of a virtual metrology for high-mix TFT-LCD
manufacturing processes�
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Abstract: Nowadays, TFT-LCDmanufacturing has become a very complex process, in which many different products
being manufactured with many different tools. The ability to predict the quality of product in such a high-mix system
is critical to developing and maintaining a high yield. In this paper, a statistical method is proposed for building a
virtual metrology model from a number of products using a high-mix manufacturing process. Stepwise regression is
used to select“key variables” that really affect the quality of the products. Multivariate analysis of covariance is also
proposed for simultaneously applying the selected variables and product effect. This framework provides a systematic
method of building a processing quality prediction system for a high-mix manufacturing process. The experimental
results show that the proposed quality prognostic system can not only estimate the critical dimension accurately but
also detect potentially faulty glasses.
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1. Introduction

In recent years, the thin-film transistor-liquid crystal dis-
play (TFT-LCD) has become more and more important in op-
tical electrical industry across the world. Many devices, such
as computers, notebooks, digital cameras and flat panel TVs,
need TFTL-LCDs to display the information content. With the
extensive application of TFT-LCDs, more and more manufac-
turers are participating in the high-tech industry, thereby mak-
ing profits smaller and smaller. Therefore, improving the yield
for the manufacturing process has been viewed as an important
competitiveness determinant for TFT-LCD manufacturers. In
general, a TFT-LCD manufacturing process consists of three
main sub-processes: array, cell and module processes. The fi-
nal quality of products in the array process is one of the most
critical stepsŒ1�. Similar to semiconductor wafer fabrication,
the glass of the array process must be processed 5–7 times
through cleaning, coating, exposure, developing, etching and
strip. In each step, the equality of the processed glass has a se-
rious impact on the final product yield. So, it is important to
monitor the glass-state data, such as critical dimension, unifor-
mity and thickness, and to find faulty glasses in the shortest
possible time during each processed step. However, most of
glass-states lack an in situ sensor to provide real time infor-
mation in each processed step, and usually they are measured
offline and less frequently than every glass, which can lead to a
number of glasses being scrapped before a fault is detectedŒ2�.
To remedy this problem, most of the TFT-LCD manufactur-
ers exert much effort to implement and improve highly auto-
mated and precisely monitored facilities throughout the com-
plex manufacturing processŒ3�. Nonetheless, process variations

still exist and are reflected in real-time measurements of pro-
cess variables, such as temperature, pressure, power and flow
rate. These real time measurements provide valuable informa-
tion about the tool status and may be directly correlated with
the final quality of the glass. Engineers attend to the investi-
gation of these process variables in order to enhance the yield
rate. A better approach is to apply virtual metrology (VM) tech-
nology, which can predict the process quality of every glass
with the process data of production equipment. Then, the ob-
jective of real-time glass-to-glass quality monitoring without
interrupting the normal operations can be achieved.

Previous literature is quite rich in different VM schemes as
well as various design approaches for each scheme. Generally,
these methods can be divided into two groups: nonlinear meth-
odsŒ4; 5� and linear methodsŒ6; 7�. Although these methods have
been proven to be useful in batch manufacturing, they neglect
the inherent characteristics of the process. In the modern and
TFT-LCD manufacturing industry, production resembles an
automated assembly line in which many similar products with
different specifications are manufactured by the same tool. In
this high-mix manufacturing process, the VM developed for a
single product cannot be directly used. In order to overcome
this problem, a new processing quality prediction system has
been developed for sophisticated high-mix manufacturing pro-
cesses. Using stepwise regression, key variables with physical
meaning are selected to build a VM model, and the collinear-
ities and high dimensions of the process data can also be re-
duced. Another contribution is that a multivariate analysis of
covariance (MANCOVA) method is cast into the VM frame-
work. Using this VM algorithm, the quality of products with
different specifications can be predicted during manufacture.
This can not only enhance (or even replace) direct metrology
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Fig. 1. Flowchart of stepwise regression.

operations but also increase manufacturing efficiency.

2. Systematic approach for the development of
VM

Consider numerous products of the same recipe, which are
labeled by an index i D 1; 2; � � � ; n according to their sequence
of the finishing quality measured step. These products contain
J specifications. Here, n sets of historical data are assumed
to be collected, including process data (Xi ; i D 1; 2; � � � ; n/

and the corresponding actual measurement values (yi ; i D

1; 2; � � � ; n/, where each set of process data contains p sensor
variables (SVs) , namely Xi D

�
xi;1; xi;2; � � � ; xi;p

�T . These
highly dimensional parameters may be collinear.

In general, a number of steps, including data collection and
filtering, variables and model structure selection, model iden-
tification and model validation, are essential for the develop-
ment of a successful VM. Each step is crucial. A number of
studies have focused on data collection and preprocessing, and
topics such as data compression, datamissing and outlier detec-
tion are discussed Œ8; 9�. This paper focuses on variables selec-
tion, model identification and validation based on a statistical
method.

2.1. Key variable selection based on a statistical method

Asmentioned above, thesep SVs in˝ D
˚
x1; x2; � � � ; xp

	
may be highly dimensional and collinear. Selecting the cor-
rect subset is challenging yet critical in developing useful VM
models. In the literature, many compression algorithms, such
as principal component analysis (PCA) and partial least square
(PLS), have been described. These methods can deal with high
dimensionality and collinearities in data by projecting the orig-
inal process variables onto a space defined by the orthogonal
principal components (PC) or latent variables (LV). However,
the field engineer may not understand the physical meaning
of PC/LV. Thus, a variable selection method is used in this
paper. With the aim of finding some “key variables” ˝1 D

fx1; x2; � � � ; xkg .k < p/ that affect the quality of products in
the manufacturing process. Then, the selected parameters are
used to fit the multiple regression model,

Oy D ˇ0 C ˇ1x1 C ˇ2x2 C � � � C ˇkxk C "; (1)

where " is the estimated error.

Stepwise regression is widely used for variable selection
in a linear system. The procedure iteratively constructs a se-
quence of regression models by adding or removing variables
at each step. The criterion for adding or removing a variable at
any step is usually expressed in terms of a partial Ft. Let Fin
be the value of the F -random variable for adding a variable to
the model, and let Fout be the value of the F -random variable
for removing a variable from the model. The requirement of
Fin > Fout ensures that inserting a variable is more difficult
than removing one. A complete description of the algorithm is
as followŒ10�.

Step 1: Determine the thresholds of the probability of a type
I error (e.g., ˛in D 0:05; ˛out D 0:1/ and the corresponding
confidence level in partial F -statistic( Fin and Fout).

Step 2: Assume set ˝1 D fx1; x2; � � � ; xkg, which is a sub-
set of˝ D

˚
x1; x2; � � � ; xp

	
, is selected by the model (1). Now

the remaining p � k candidate variables are examined one by
one and its corresponding partial F -statistic fFt g

p�k
tD1 can be

calculated.
Step 3: If

�
Fq D max fFtg

p�k
tD1

�
> Fin, then add xq to the

subset ˝1, or else go to Step 4.
Step 4: k C 1 tested models are constructed with all

variables in ˝1 D fx1; x2; � � � ; xk ; xkC1g except xi .i D

1; 2; � � � ; k C 1/ in turn. The corresponding partial F -statistic
fFt g

kC1
tD1 is calculated.
Step 5: If

�
Fq D min fFtg

kC1
tD1

�
< Fout, then hold the subset

˝1, or else remove xq from the subset ˝1.
Step 6: Repeat steps 2 to 5 until no other variables can be

added to or removed from the model.
The details of stepwise regression are shown in Fig.1. In

the adding step, the variable with maximal partial Ft and larger
than Fin should be selected from ˝. In the elimination step,
the variable with minimal partial Ft and less than Fout should
be removing from ˝1. For both steps, the Ft is calculated as

Ft D
SSR .xt ; x1; x2; :::; xk/ � SSR .x1; x2; :::; xk/

MSE .xt ; x1; x2; :::; xk/
; (2)

where SSR .�/ is the residual sum of squares due to regression,
and MSE .xt ; x1; x2; :::; xk/ denotes the mean square error for
the model containing both xt and x1; x2; :::; xk .

Finally, the variables selected for the VMmodel are termed
“key variables”, which directly affect the quality of products
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and may contain important information regarding the source of
variation of the current process condition.

2.2. VM development based on MANCOVA

As mentioned above, there are J types of product specifi-
cation. Based on model (1), the product effect should be con-
sidered in the VM model. Then, the model can be constructed
by MANCOVA Œ11�,

Oyi;j D � C �j C BT Xi C "; (3)

where Oyi;j is the i th product with j th specification, � is the
mean of all products (yi ), �j is the product effect of the j th

specification,
PJ

j D1 �j D 0; Xi D
�
1; xi;1; xi;2; � � � ; xi;k

�T

denotes the key variables selected by stepwise regression,B D

Œˇ0; ˇ1; ˇ2; � � � ; ˇk �T is a regression coefficient and " is the
estimated error.

The matrix form of Eq. (3) is

Y D

2666666664
1

1
:::

1

ı1;1

ı2;1

:::

ın;1

� � �

� � �

� � �

� � �

ı1;J

ı2;J

:::

ın;J„ ƒ‚ …
J

x1;1

x2;1

:::

xn;1

� � �

� � �

� � �

� � �

x1;k

x2;k

:::

xn;k„ ƒ‚ …
k

3777777775

266666666664

�

�1

:::

�J

ˇ1

:::

ˇk

377777777775
;

(4)

where ıi;j 2

(
ıi;j 2 f0; 1g

ˇ̌̌̌
ˇ JP
j D1

ıi;j D 1; i D 1; � � � ; n

)
. As

shown in Eq. (4), The regression B and product effects �j can
be calculated via an ordinary least squares algorithm.

2.3. Evaluation of VM

To evaluate how well a VM model fits the relationship be-
tween the input data and the metrology target values, the root
mean square error of prediction and the mean absolute percent-
age error are used,

RMSE D
1

n

vuut nX
iD1

. Oyi � yi /
2; (5)

MAPE D
1

n

nX
iD1

j Oyi � yi j

yi

� 100%; (6)

where yi and Oyi are the actual target and predicted value of the
i th test wafer, respectively.

3. Experimental results
This section describes an investigation into a wet etch-

ing process for the fabrication of TFT-LCDs deposited with
low resistance data lines of Mo/Al/Mo, as shown in Fig. 2. In
TFT-LCDmanufacturing, the wet chemical etch proceeds with
spraying the glass substrate with the etchant solution. The glass
substrate is swung from side to side by the servo mechanism.
This mechanical agitation is required to ensure etch uniformity
and a consistent etch rate. Then, chemical reactions occur at
the surface and the products from the surface are removed by
diffusion.
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Fig. 2. Schematic diagram of the wet etching process.

With this type of process, the CD is known to be affected
by several factors, such as the etching time, the temperature
of the etchant solution, the spraying pressure, the flow rate
of the etchant and the chemical consumption. The sensor data
were collected from the etching process of a TFT-LCD manu-
facturing plant of AU Optronics Corporation local in Taiwan.
The example involves 20 sensor data (process data; xi;j ; j D

1; 2; � � � ; 20) collected from July to December 2009. The sam-
ple number of the process data is 34096, involving seven spec-
ifications (the 24-inch has four specifications, the 32-inch has
two specifications and the 42-inch has one specification; see
Fig. 2). However, not all of their corresponding actual CDs (yi )
were measured, because only 1–2 glasses of a cassette were
selected as sample glasses, whose CD value were measured
to monitor the quality of the whole cassette. Consequently,
these 671 glasses of process data and their corresponding ac-
tual metrology values can be used as data to build a model of
the wet etching process. Among the 671 glasses, the first 274

glasses were used to obtain data with which to establish the
model, and the remaining 397 glasses were used to validate the
model.

In this etching process, not all process data are critical af-
fect the CD. To reduce the dimension of modeling, statistical
stepwise regression was used for input variable selection. As
a result of stepwise regression, the temperature of the etchant
solution (xi;1), the flow rate of the etchant (xi;2) and the chem-
ical consumption (xi;3) were chosen as inputs to the Multiple
Linear Regression. According to the physical properties of the
etching process and the experience of the equipment engineers,
the corresponding coefficients must be less than zero. Thus, the
parameters can be calculated by solving the following optimal
objective function with constraints,

minJ D

�
yi;j �

3P
tD1

ˇt xi;t �ˇ0 � � � �j

�2

s:t: ˇt < 0; t D 1; 2; 3;
7P

j D1

�j D 0;

� D
1

274

274P
iD1

yi :

(7)

Then, the VM model is obtained,
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Fig. 3. Performance with VM for high-mix products.

Oyi;j D ˇ1xi;1 C ˇ2xi;2 C ˇ3xi;3 C ˇ0 C � C �j : (8)

The training result of VMwas as follows: RMSE D 0:2148

and MAPE D 0:73%. To test the performance, the CDs of the
remaining 397 glasses with seven specifications were predicted
by the developed VM model. Figure. 3 shows the conjecture
results. The RMSE and MAPE are 0:2515 and 0:81%, respec-
tively. To further illustrate the capability of the proposed VM,
a product #3 processed in one day was taken, for example. As
shown in Fig. 4, the RMSE and MAPE are 0:2438 and 0:97%.
Also, the maximum predicted error is 0:4980 and emerged in
number 6. It can be seen that the VM predictor is accurate
enough to be implemented in an actual TFT-LCD manufactur-
ing process.

Our VM model aims not only to predict metrology values
but also to monitor the glass-to-glass quality, values of which
are outside the control limits. Taking product #5, for exam-
ple, 1445 glasses were processed in November 2009. Figure
5 shows the predicted values for product #5. In this specifi-
cation, the upper control limits (UCL) and the lower control
limits (LCL) are 29:5 and 30:5, respectively. Using the pro-
posed VM, four out of five abnormal products were detected
while one abnormal glass was misclassified. So, the accurate
ratio of prediction was 80%. Although our VM model missed
one glass, the highly suspect glasses whose actual target val-
ues were very far from the control limit (four glasses) were
detected as well. In terms of the workload of measurement for
1445 glasses, the detection time was reduced greatly. On the
other hand, four scrapped glasses were removed in this etching
process and the follow-up production costs were also saved.
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Fig. 4. Performance with VM for product #3 in one day.
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Fig. 5. Monitoring process for product #5 using the proposed VM.

4. Conclusion

In this paper, we describe the development of a VM model
based on statistical methods and modern data-mining tech-
niques. The process data can be selected directly as key vari-
ables by a stepwise linear regression method. The experimen-
tal results show that the number of input variables decreased
significantly. Taking the product effects into consideration, a
high-mix VM model was presented using MANCOVA. Based
on the conjecture/prediction results of the illustrative example,
this quality prognostic scheme is believed to be feasible and
able to conjecture/predict product quality efficiently and effec-
tively.
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