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Phonon-induced magnetoresistance oscillations in a high-mobility quantum well�
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Abstract: We examine the temperature dependence of acoustic-phonon-induced magnetoresistance oscillations in a
high-mobility GaAs-based quantum well with conventional transverse and longitudinal phonon modes, using a model
in which the temperature increase of the Landau level broadening or the single-particle scattering rate 1=�s is attributed
to the enhancement of electron-phonon scattering with rising temperature. The non-monotonic temperature behavior,
showing an optimal temperature at which a given order of oscillation amplitude exhibits a maximum and the shift
of the main resistance peak to higher magnetic field with rising temperature, is produced, in agreement with recent
experimental findings.
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1. Introduction

In addition to the well-known Shubnikov–de Haas oscil-
lations (SdHOs) showing up at low temperature in the lin-
ear magnetoresistance of a two-dimensional (2D) electron gas
(ES), other types of magnetoresistance oscillations in high-
mobility 2D semiconductors, induced by microwave radiation
and/or by a direct current, have been observed over the past
decade. The discoveries of microwave-induced magnetoresis-
tance oscillations (MIMOs)Œ1�8� and current-induced magne-
toresistance oscillations (CIMOs)Œ9�12� stimulated intense the-
oretical studies on linear and nonlinear magnetotransport in 2D
electron systemsŒ13�23�. They stem mainly from impurity or
disorder scatterings and the direct phonon contributions to the
resistivity are believed to be relatively small in these systems
at such low temperatures.

However, the magnetophonon resonance in semiconduc-
tors, previously known to result from electron coupling with
optic phonons and to be observed only at high temperatures
and high magnetic fields, has been demonstrated to occur at
temperatures as low as T � 2K and lower magnetic fields in
GaAs-based high-mobility systems by acoustic phonon scatter-
ingsŒ24�26�. These phonon-induced magnetoresistance oscilla-
tions (PIMOs) are periodic in inverse magnetic field 1=B with
the resistance peak located around integer values of 2kFvs�=!c,
where !c is the cyclotron frequency, kF is the Fermi wavevec-
tor of electrons and vs� is the velocity of the relevant acoustic
phonon. When a finite current flows through the 2D system the
behavior of PIMO changes drasticallyŒ27�. Theoretical studies
have already appeared to explain these experimental observa-
tionsŒ28; 29�.

Further careful measurement by Hatke et al.Œ30� on the

temperature variation of these PIMOs disclosed that with ris-
ing temperature the oscillation amplitude increases first, and
then decreases after reaching a maximum. Resonance peaks
of different orders exhibit different optimal temperatures for
the maximum amplitude, and higher order oscillations are best
developed at lower temperatures. This behavior has been con-
firmed by a recent measurement of another groupŒ31�, and a
shift of the peak position of the magnetophonon resistance os-
cillations to higher magnetic fields with increasing temper-
ature was also observed. The temperature dependence was
attributed to the electron-electron interaction modifying the
single-particle lifetimeŒ30; 31�.

In this letter we examine these PIMOs in a GaAs–AlGaAs
quantum well using a balance-equation scheme, in which the
temperature dependence of Landau level broadening or the
single particle lifetime �s results from the enhancement of
electron–phonon scattering with rising temperature. The non-
monotonic temperature behavior, showing an optimal temper-
ature at which a given order of the resistance oscillation am-
plitude exhibits a maximum and a peak position shift with
rising temperature, is reproduced. The optimal temperature
corresponding to the largest oscillation amplitude is found to
scale approximately with B1=2, in agreement with experimen-
tal findings.

2. Theory

We consider a quasi-2DES consisting of Ne electrons in a
unit area of an x–y plane. These electrons are confined within
a GaAs-based quantum well of width a, subjected to a uniform
magnetic field B D .0; 0; B/ in the z direction and scattered
by random impurities and by phonons in the lattice. The linear
longitudinal resistivity consists of impurity and phonon con-
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tributions, Rxx D Ri C Rp, which can be expressed, in the
balance-equation transport theoryŒ28�, as
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In this, U.qk/ is the effective impurity potential, M.q; �/

is the effective coupling matrix element between a
�-branch 3D phonon having wave-vector q and en-
ergy ˝q� and a quasi-2D electron, ˘2.qk; ˝/ and
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the imaginary parts of the electron density correlation
function and electron–phonon correlation function, and
n.x/ � 1=.ex � 1/ is the Bose function.

The ˘2.qk; ˝/ function of a 2D system in a magnetic field
can be expressed in the Landau representation:
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n.Y / the associated La-
guerre polynomial, f ."/ D fexpŒ." � �/=T � C 1g�1 is the
Fermi function at lattice temperature T , and ImGn."/, the
density-of-states of the broadened Landau level n (with energy
centering at "n) is modeled with a Gaussian formŒ32�:
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The half-width of the Landau level � D .2!c=��s/
1=2

(!c D eB=m is the cyclotron frequency) or the single-particle
lifetime �s depends on electron-impurity, electron-phonon and
electron–electron scatterings, and is temperature–dependent.
In this paper, we assume that the single-particle lifetime �s is
related to the transport scattering time �tr, which depends on
electron–impurity and electron-phonon scatterings, by an em-
pirical parameter ˛, such that � can be expressed in terms of
the linear mobility �0 at lattice temperature T in the absence
of the magnetic fieldŒ28; 33�:

� D .8e!c˛=�m�0/1=2: (6)

Here ˛ serves as the only adjustable parameter in the present
investigation.

3. Calculation result and discussion

In the numerical calculation we deal with a GaAs-based
quantum well with a D 30 nm, Ne D 3:75 � 1015 m�2, and
low-temperature linear mobility �0.0/ D 1200 m2=.V � s/

Fig. 1. Total mobility �0, impurity-limited mobility �i and acoustic-
phonon limited mobility �p are plotted versus temperature T for a
GaAs-based quantum well with a D 30 nm, Ne D 3:75 � 1015 m�2

and �0.0/ D 1200 m2/(V � s).

in the absence of magnetic field, considering electron scat-
terings from bulk longitudinal acoustic phonons (one branch,
via the deformation potential and piezoelectric couplings with
electrons) and transverse acoustic phonons (two branches, via
the piezoelectric coupling with electrons), as well as from im-
purities. The relevant matrix elements and material and cou-
pling parameters are taken as typical values of GaAsŒ34�: elec-
tron effective mass m D 0:068me (me is the free electron
mass), acoustic deformation potential „ D 8:5 eV, piezo-
electric constant e14 D 1:41 � 109 V=m, transverse sound
speed vst D 2:48 � 103 m=s, longitudinal sound speed vsl D

5:29 � 103 m=s, and material mass density d D 5:31 g=cm3.
The calculated linear mobility �0 is presented in Fig. 1

as a function of temperature, together with its impurity- and
phonon-limited parts �i and �p respectively: 1=�0 D 1=�i C

1=�p. We can see that �i is almost constant and �p decreases
rapidly with rising temperature from �p / T �2:9 around
T D 1K to �p / T �1:4 around T D 8K, resulting in the
diminishing of total mobility �0.T / with growing T . These
features agree with the experiment observationŒ30�.

Using these values of �0.T / in Eq. (6) we calculated the
linear longitudinal resistivities Ri due to impurities, Rst due to
transverse acoustic phonons, andRsl due to longitudinal acous-
tic phonons. Figure 2 shows the calculated Rst and Rsl ver-
sus magnetic field at T D 3:5 K obtained with a parameter
˛ D 6:2. Magnetophonon resistance oscillation peaks show-
ing up at magnetic fields around 2kFvsœ=!c � j (� D t; l), the
first three peaks (j D 1; 2; 3) in Rst are denoted in the figure.

Figure 3 demonstrates the temperature evolution of the to-
tal longitudinal resistivity Rxx D Ri C Rst C Rsl from 2K
to 6K in 0.25K increments and from 6K to 14K in 1K in-
crements, obtained with ˛ D 6:2. PIMOs and SdHOs coexist
at lower T . With increasing temperature, SdHOs decay uni-
formly, while PIMOs exhibit interesting features. When T as-
cends, the amplitude of a given order magnetophonon oscil-
lation initially grows, then reaches a maximum at an optimal
temperature T0 before eventually weakening at higher temper-
ature. Figure 4(a) shows the amplitudes of the three peaks of
Rxx, j D 1, 2, 3, as functions of T , at ˛ D 6:2. The square of
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Fig. 2. Linear longitudinal resistivities Rst due to transverse acoustic
phonons and Rsl due to longitudinal acoustic phonons at temperature
T D 3:5K in a GaAs-base quantum well as described in Fig. 1.
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Fig. 3. The linear magnetoresistivity Rxx for the system described in
Fig. 1 at temperatures from 2K to 6K in 0.25K increments and from
6K to 14K in 1K increments.

the optimal temperature T 2
0 is roughly proportional to the mag-

netic field strength B as shown in Fig. 4 (b), in agreement with
the experimental resultsŒ30�, which are shown as crosses in the
figure. Note that at a given order of oscillation T 2

0 increases
and the slope of the whole T 2

0 -versus-B curve becomes larger
when the parameter ˛ decreases. A value of ˛ D 6:2 yields a
reasonably good agreement with the slope of the experimen-
tal square of the optimal temperature to the magnetic field in
Ref. [30]. This ˛ value seems to be a quite reasonable one for
the ratio of transport scattering time �tr to the single-particle
life time �s in a high-mobility 2D semiconductor as related to
the impurity and phonon scatterings.

Another interesting feature which can be clearly seen from
Fig. 2 is that the j D 1 peak of magnetophonon resistance
oscillations shifts slightly to higher magnetic field when tem-
perature rises, as observed by a recent experimentŒ31�.

The above discussion focuses mainly on the resonance
peak series related to the transverse acoustic phonon scattering.

Fig. 4. (a) PIMO amplitude �R versus temperature T at j D 1; 2,
and 3 peaks for the system described in Fig. 1 obtained with ˛ D 6:2.
(b) Optimal temperature T 2

0 versus B , at ˛ D 5:8; 6:2 and 6.6. The
crosses are the experiment results of Ref. [30].

When the temperature rises an additional distinct peak emerges
around B D 0:65 T (2kFvsl D !c) due to longitudinal phonon
scattering as shown in Fig. 3, which should correspond to the
# peak in Fig. 2 of Ref. [30].

4. Conclusion

In summary, we have examined the temperature depen-
dence of acoustic-phonon-induced magnetoresistance oscilla-
tions using a model in which the temperature increase of the
Landau level broadening or the single-particle scattering rate
1=�s results from the enhancement of electron–phonon scatter-
ing with rising temperature. The non-monotonic temperature
behavior, showing an optimal temperature at which a given
order of the resistance oscillation amplitude exhibits a maxi-
mum and a shift of the main resistance peak to higher mag-
netic field with rising temperature, is produced, in agreement
with recent experimental findings. In Refs. [30] and [31] this
temperature behavior of PIMOs was attributed entirely to the
electron–electron interactionmodifying the single-particle life-
time, while the effects of electron–phonon interactions are ne-
glected. The present investigation, though not excluding the
effect of electron-electron scattering on the single-particle life-
time, provides an alternative possible mechanism for the issue.
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