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A multivariate process capability index model system
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Abstract: This paper presents a systematic multivariate process capability index (MPCI) method, which may pro-
vide references for assuring and improving process quality levels while achieving an overall evaluation of process
quality. The system method includes a spatial MPCI model for multivariate normal distribution data, MPCI model
based on factor weight for multivariate no-normal distribution application, and MPCI model based on yield for
yield application. At last, examples for calculating MPCI are given, and the experimental results show that this
systematic method is effective and practical.
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1. Introduction

With the increasing development in technologies, the min-
imum size in integrated circuit manufacture reaches nanometer
level. Microelectronics processes are becomingmore complex:
a manufacture system includes more processes and each pro-
cess has more specifications to satisfy the advanced nanome-
ter process requirements. Therefore, more requirements for
processes exist in evaluating microelectronics processes level.
Moreover, few differences happen between the advanced pro-
cess, and traditional methods used to evaluate process level are
not effective for evaluating and differentiating the nanometer
process level. Thus, the differentiating and evaluation of these
advanced processes require a competitive and systematic solu-
tion.

A process capability index (PCI) is a numerical summary
that compares the behavior of a microelectronics process char-
acteristic to its engineering specifications. The measure is also
often called capability or performance indices or ratios. We
use the capability index as the generic term. A capability in-
dex relates specification limits to the performance of the pro-
cess. A large value of the index indicates that the current pro-
cess is capable of producing parts that, in all likelihood, will
meet or exceed the specification’s requirements. Over the last
two decades, most developments in PCI focus on the univariate
process. For example, Kane (1986), Chan et al. (1988), Choi
and Owen (1990), Boyles (1991), Singhal (1991), Pearn et al.
(1992), and Boyles (1994)Œ1�6�. However, it is not uncommon
in microelectronics manufacturing that one often encounters
processes which involve many correlated variables of interest.
In such a situation, simply calculating the univariate PCI of in-
dividual variables and combining them together will inevitably
fail to value the level of processesŒ7�. Therefore, it is more de-
sirable to assess the process capability using the multivariate
process capability index (MPCI).

Recently, several attempts to developMPCI have been car-
ried out by various researchers such as Chen (1994)Œ8�, Pearn,
Kotz and Johnson (1992)Œ9�, Wang and Du (2000)Œ10�, and Kotz

and Lovelace (1998)Œ2�. However, most existingMPCIs such as
Chen (1994) require that the data from process be normal dis-
tribution, and are largely dependent on the variance-covariance
structure of the underlying distribution. The others are uneasy
to apply them into practices due to the difficulty of comput-
ingŒ11�.

In this paper, a systematic method has been demonstrated
to evaluate the microelectronics process ability and apply the
multivariate process capability index into practices. The sys-
tem method divides all cases into three situations: one is multi-
variate normal distribution application, the second case is mul-
tivariate no-normal distribution application, and the last one is
yield application. In the systematic method, the MPCI model
based on yield is for yield application; the MPCI model based
on factor weight is for multivariate no-normal distribution ap-
plication; and the spatial MPCI model is for multivariate nor-
mal distribution application.

2. Univariate PCI

A process capability index relates the engineering speci-
fication (usually determined by the customer) to the observed
behavior of the process. The capability of a process is defined
as the ratio of the distance from the process center to the nearest
specification limit divided by ameasure of the process variabil-
ity. Some basic capability indices that have been widely used
in the manufacturing industry include Cp, and Cpk, explicitly
defined as followsŒ1�:

Cp D
USL � LSL

6�
; (1)

Cpk D min
�
USL � �

3�
;

� � LSL
3�

�
; (2)

where USL and LSL are the upper and the lower specification
limits respectively, � is the process mean, and � is the process
standard deviation. Equation (1) is effective when the mean
of process data is equal to the median of specification limits;
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however, Equation (2) is used when the mean of process data
is departure from the median of specification limits.

3. Multivariate PCI

Nowadays, the microelectronics process level has been
improved extraordinarily, and process capability analysis of-
ten entails characterizing or assessing processes and products
based on more than one engineering specification on quality
characteristic, which needs to use multivariate process capabil-
ity index to assess such process. Univariate process capability
indices have been investigated extensively. However, MPCI
are comparatively neglected. Some of the MPCIs defined by
researchers are complexly computed and applied. In the sec-
tion, a solution system for multivariate process capability in-
dex has been demonstrated. The system includes MPCI model
based on yield, MPCI model based on factor weight, and a spa-
tial MPCImodel. These models are introduced in the following
sections.

3.1. MPCI model based on yield

Inspired by the recent works of Chen (2003)Œ12� and Chao
(2005)Œ13�, in which Chao (2005) proposes a universal PCIwith
considering a very specific view that a proper value of the pro-
cess capability index represents the true yield of the process,
we incorporate the approach with Chen (2003) to propose and
study aMPCI based on yield. The newMPCI, which we denote
by MCy, is not limited to data scale, and its result is relative to
yield of process level.

3.1.1. Univariable PCI

It is generally agreed that the original motives underlying
the introduction of PCI are related to the proportion of non-
conforming productsŒ14�. Therefore, when we have a value of
PCI = 1 and without considering random influence, the yield is
99.73%; and if the situation is not the case, the yield is less than
99.73%. Most PCIs do not provide a precise meaning of yield.
Chao (2005) proposes a PCI which can present the true yield of
process. Let F.x/ be the distribution function. The univariate
PCI is defined as

Cy D
1

3
˚�1

�
1

2
.F.USL/ � F.LSL/ C 1/

�
; (3)

where˚.x/ denotes the cumulative distribution function of the
standard normal distribution. And the equality implies the re-
lationship between the index Cy and yield, which can be ex-
pressed by process yield D 2˚.3Cy/ � 1Œ15�. The relationship
is true under any situation: whether or not mean or process tar-
get coincides with the center of the specification interval and
whether or not the process follows a normal distribution.

3.1.2. MPCI (MCy)

Similar to the univariate PCI, MPCI should imply the true
yield of the process. Based on the PCI (Cy/ which is presented
by Chao and combined with the approach to propose the mul-
tivariate process capability index which is presented by Chen,
we present a multivariate process capability index which does

not require process data to satisfy normal distribution. The
MPCI called MCy is defined as

MCy D
1

3
˚�1

("
mY

iD1

.2˚.3Cyi / � 1/ C 1

#
=2

)
; (4)

whereCyi is the process capability index value of i th character-
istic for i D 1; 2; : : :; m, andm is the number of characteristics.
The new index, MCy, may be viewed as a generalization of the
single characteristic yield index Cy. Let MCy D C , hence

� D 2˚.3C / � 1; (5)

where � is the yield of a process. Equality (5) shows one to one
correspondence relationship between the indexMCy and yield.
Then, theMPCI can be used to assess the process level by yield
in multivariate situation. For a process with n characteristics,
if the requirement for the multivariate process capability in-
dex is MCy > C0, a sufficient condition for the requirement
to each univariate process capability index can be obtained by
the following. Let Cmin be the minimum value for each single
characteristic, then

1

3
˚�1

("
mY

iD1

.2˚.3Cyi / � 1/ C 1

#
=2

)

>
1

3
˚�1

("
mY

iD1

.2˚.3Cmin/ � 1/ C 1

#
=2

)
:

(6)

If
1

3
˚�1

("
mY

iD1

.2˚.3Cmin/ � 1/ C 1

#
=2

)
> C0; (7)

then

Cmin >
1

3
˚�1

 
m
p

2˚.3C0/ � 1 C 1

2

!
: (8)

Therefore, requirements of univariate process capability
index are given by

Cyi >
1

3
˚�1

 
m
p

2˚.3C0/ � 1 C 1

2

!
; i D 1; 2; : : :; m:

(9)
When inequality (8) is satisfied, then the multivariate pro-

cess capability index requirement MCy > C0 will be satisfied.

3.1.3. Result and application

Based on equalities (4) and (5), the correspondence values
of MCy and yield for the number characteristics from n D 1 to
n D 14 are obtained, as shown in Table 1. From Table 1, the
correspondence relationship between MPCI and yield is simi-
lar to univariate situation, thus we can know application of the
MCy model is practicable, and we can use the values in Table
1 to class the process capability level.

In fact, in order to meet customers’ requirement, process
level needs to be classed. When process level is qualified to the
specification, how to precisely monitor the variation of process
and how to class the products is an important subject. For this
reason, we set up the process capability zone for process level
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Table 1. Correspondence value of MCy and yield.
n MCy (%Yield)
1 1.0

(0.997300204)
1.33
(0.999933927)

1.67
(0.999999456)

2.00
(0.999999998)

2 1.068
(0.998649190)

1.384
(0.999966963)

1.714
(0.999999728)

2.037
(0.999999999)

3 1.107
(0.999099257)

1.414
(0.999977975)

1.739
(0.999999819)

2.059
(0.999999999)

4 1.133
(0.999324367)

1.436
(0.999983481)

1.757
(0.999999864)

2.074
(1.000000000)

5 1.153
(0.999459457)

1.452
(0.999986785)

1.770
(0.999999891)

2.085
(1.000000000)

6 1.170
(0.999549527)

1.465
(0.999988987)

1.781
(0.999999909)

2.095
(1.000000000)

7 1.183
(0.999613868)

1.477
(0.999990561)

1.791
(0.999999922)

2.103
(1.000000000)

8 1.195
(0.999662126)

1.486
(0.999991741)

1.799
(0.999999932)

2.110
(1.000000000)

9 1.205
(0.999699662)

1.495
(0.999992658)

1.806
(0.999999940)

2.116
(1.000000000)

10 1.214
(0.999729692)

1.502
(0.999993392)

1.812
(0.999999946)

2.121
(1.000000000)

11 1.222
(0.999754262)

1.509
(0.999993993)

1.818
(0.999999951)

2.126
(1.000000000)

12 1.230
(0.999774738)

1.515
(0.999994494)

1.823
(0.999999955)

2.130
(1.000000000)

13 1.236
(0.999792064)

1.520
(0.999994917)

1.828
(0.999999958)

2.135
(1.000000000)

14 1.243
(0.999806915)

1.526
(0.999995280)

1.832
(0.999999961)

2.138
(1.000000000)

Table 2. Limit value of Cyi .
Number of Limit value of Cyi

characteristic Value of upper
limit

Value of lower
limit

1 1:000 1:670

2 1:068 1:714

3 1:107 1:739

4 1:133 1:757

5 1:153 1:770

6 1:170 1:781

7 1:183 1:791

8 1:195 1:799

9 1:205 1:806

10 1:214 1:812

11 1:222 1:818

12 1.230 1.823
13 1.236 1.836
14 1.243 1.840

according to specification and then class them to conformity
or unconformity. When we know the value of specification,
the value of univariate PCI for single characteristic can be ob-
tained by inequality (9). Now we give an example to show this
point. The process capability specification for a process level is
1:0 6 MCy 6 1:67 which is common value in most factories.
According to inequality (9), the process capability zone for a
single characteristic is shown Table 2.

The original motives underlying the introduction of PCI
are to relate to the proportion of non-conforming products.

In the section we propose a new MPCI. The proposed in-
dex, MCy, can be applied to a variety of specification zones
without considering data distribution. Therefore, it has greater
flexibility than the existingMPCI’s. Furthermore, the proposed
index is directly related to the yield of process. Thus, the index
MCy can be used to assess to what extent the process is produc-
ing non-conforming products, of which its computing is simple
and practitioners will not limit to theoretical.

3.2. Spatial MPCI model

In the section, based on the multivariate process capabil-
ity index definition, an effective and workable spatial MPCI
model has been developed. The model can solve the problem
that MPCI definition cannot achieve MPCI values when pro-
cess quality characteristics are greater than three. Then a prac-
tical application using the model is given.

3.2.1. MPCI model

As a general case, define X as a m � n sample matrix,
where m is the number of process quality characteristics mea-
sured on a part and n is the number of parts measured. That
is, each column in the matrix represents the p measurements
recorded from a sampled part. These n observations represent
samples drawn from a multivariate distribution with correla-
tion among the m variables. Engineering specifications for the
processes are assumed to exist for each of the m dimensions.
Analogously to univariate process capability indices, also mul-
tivariate capability indices, relate the allowed process region
such as some measure of the specification region, to the actual
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process region such as some measure of the process region.
Therefore, a multivariate process capability index is called
MVCp which is defined asŒ7�

MVCp D
vol.R1/

vol.R2/
; (10)

where R1 represents an engineering specification region and
R2 is for a scaled 99.73% process region. In particular, if the
process data satisfy multivariate normal, then R2 is for an el-
liptical region. For Eq. (10), its computation in high dimension
variables is complex and difficult. When the variable number
inmultivariate normal distribution is greater than three, achiev-
ing MPCI results using Eq. (10) is very difficult. Therefore, we
need to transform the form and to build a simple model.

The specification for the i-th quality variable xi is usu-
ally given by the triple of lower specification limit LSLi , mean
value �i and upper specification limit USLi . For the m pro-
cess quality characteristics, a multivariate normal distribution
with mean vector � and positive definite covariance matrix
† D .�ij /; i; j D 1; � � � ; m is commonly assumed. This mul-
tivariate PCI, here denoted by MVCp, is given by

MVCp D

mQ
iD1

.USLi � LSLi /

vol
h
.x � �/0

P�1
.x � �/ 6 �2

m;0:9973

i ; (11)

where �2
p;0:9973 denotes the 99.73%-quantile of the �2-

distribution with p degrees of freedom. Note that the volume
of the ellipsoid does not depend on the value of �. A drawback
of this index as a generalization of the univariate Cp is that its
value is not 1 if indeed 99.73% of the distribution is inside the
specification. To overcome this drawback, Taam et al. (1993)Œ7�

proposed to use a modified specification region R�, which is
the greatest ellipsoid with generating matrix † entirely con-
tained inside the specification region. Then the corresponding
index is defined as

MVCp�
D

vol
h
.x � �/0

P�1
.x � �/ 6 K2

i
vol

�
x � �/0†�1.x � �/ 6 �2

m;0:9973

� ; (12)

where K is determined by the modified specification region
and K2 is chosen so that the resulting ellipsoid is the greatest
volume ellipsoid inside the specification.

3.2.2. Model transformation

When the distribution function of process data are multi-
variate normal distribution and process region is an elliptical
region, we can achieve the relationship as follows:

vol
�
.x � �/0†�1.x � �/ 6 K2

�
D j†j

1=2 .�K2/ Œ� .m=2 C 1/��1 : (13)

Then, based on equalities (12) and (13), we can see that

MVCp�
D

�
K

�m;0:9973

�m

: (14)

To compute the MVCp value, we need to find the value
of K. Then we will achieve a greatest volume ellipsoid, which

is a tangent ellipsoid to the original specification region, with
the sth specification limit and 1 6 s 6 m. For the mth
variable this tangent is easy to find replacing this variable
by its specification limit. We employ a permutation matrix
which exchanges the s-th for the m-th dimension and let
x.s/ D .x1; � � � ; xs�1;xm; xsC1; � � � ; xm�1/0

p
b2 � 4ac, � =

0 (for simple discussion), and †�1 D A D .aij / .i; j D

1; � � � ; m/ which is a symmetric matrix. Then we can further
the matrix into

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

a�
s D.as;1; ��� ; as;s�1; as;m; as;sC1; ��� ; as;m�1/0;

A�
s D

266666666664

a11 ��� a1;s�1 a1;m a1;sC1 ��� a1;m�1

:::
:::

:::
:::

as�1;1 ��� as�1;s�1 as�1;m as�1;sC1 ��� as�1;m�1
am;1 ��� am;s�1 am;m am;sC1 ��� am;m�1

asC1;1 ��� asC1;s�1 asC1;m asC1;sC1 ��� asC1;m�1

:::
:::

:::
:::

am�1;1 ��� am�1;s�1 am�1;m am�1;sC1 ��� am�1;m�1

377777777775
;

(15)
where A�

s is the left upper part of the matrix A of dimension
(m�1; m�1) and the s-th row and s-th column ofA have been
replaced by the m-th row and m-th column. It can determine
the tangent of the ellipsoid with s-th specification limit. The
quadratic form of interest is given by

Q.x1; � � � ;LSLs; � � � ; xm/

D .x1; � � � ;LSLs; � � � ; xm/0A.x1; � � � ;LSLs; � � � ; xm/

D x.s/0A�
s x.s/ C 2LSLs.a�

s /0x.s/ C as;sLSL2
s ;

(16)

@Q.x1; � � � ;LSLs; � � � ; xm/

@x.s/
D aA�

s x.s/ C aLSLsa�
s : (17)

Setting the first derivative equal to null, which lead to
xmin

.s/
D �LSLs.A�

s /�1a�
s，the value of the quadratic form at

the point is

Q.xmin
1 ; � � � ; LSLm; � � � ; xmin

p /

D LSL2
s .a�

s /0.A�
s /�1A�

s a�
s

� 2LSL2
s .a�

s /0.A�
s /�1a�

s C as;sLSL2
s

D LSL2
s .as;s � .a�

s /0.A�
s /�1a�

s /: (18)

Let B D

�
A�

s a�
s

.a�
s /0 as;s

�
D Cs†�1Cs D

�
B11 B12

B21 B22

�
, then

we can get Cm.

Cm D

0BBBBBBBBB@

0

Is�1

::: 0s�1

0 � � � 0 � � � 0 1
::: 0

0m�s 0 Im�s�1

:::

1 0

1CCCCCCCCCA
; (19)

where Ik and I D 0k denote the identity matrix and null matrix
of dimension K. Thus
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Table 3. Two variable process data for Brinell hardness and tensile
strength.

H S H S
143 34.3 186 57.0
200 57.0 172 49.4
160 47.5 182 57.2
181 53.4 177 50.6
148 47.8 204 55.1
178 51.5 178 50.9
162 45.9 196 57.9
215 59.1 160 45.5
161 48.4 183 53.9
141 47.3 179 51.2
175 57.3 194 57.5
187 58.5 181 55.6
187 58.2

Q.xmin
x ; � � � ;LSLs; � � � ; xmin

m / D
LSL2

s

�2
s

: (20)

Then we have

K D min
iD1;��� ;m

�
USLi � �i

�i

;
�i � LSLi

�i

�
: (21)

This implies that the value of MVCp depends only on the
process quality characteristics with the greatest variance in re-
lation to the corresponding specification width. Therefore, we
can use the MVCp� in Eq. (22) to compute the multivariate
process capability index.

MVCp�
D

min
iD1;��� ;m

��
USLi � �i

�m;0:9973�i

�m

;

�
�i � LSLi

�m;0:9973�i

�m�
: (22)

3.2.3. Experimental result

Table 3 has been used in the case study. Chan et al. (1991)
use the bivariate process data to examine their definition of a
multivariate PCI over an ellipsoid zone. In Table 3, H D X1

represents the Brinell hardness of chips, and S D X2 repre-
sents the tensile strength of chips. Setting the upper specifi-
cation limit of H is USLH D 233, and lower specification
limit of H is LSLH D 122. For tensile strength, its upper and
lower specification limits respectively are USLS D 70 and
LSLS D 35. Based on the data in Table 3, we can get sam-
ple mean XH D 177:2 and XS D 52:32，and their standard
deviation are �H D 18:38 and �S D 5:8. Then according to
Eqs. (10) and (22), the multivariate process capability index
can be achieved as MVCp D 1:4783 and MVCp� D 1:4004,
where the value 1.4783 is computed using the MPCI defini-
tion form and the value 1.4004 is obtained from Eq. (22). The
two results are close to each other. Therefore, the spatial MPCI
model is effective when the model is used for multivariate nor-
mal distribution data.

In this section, a spatial MPCI model use to compute mul-
tivariate process capability index has been presented. The Spa-
tial MPCI model requires the data from process satisfy mul-
tivariate normal distribution. A case study shows the model

is effective. Moreover, the Spatial MPCI model is based on
the basic definition of multivariate process capability index.
Therefore, the model is meaningful and reasonable in its appli-
cation.

3.3. MPCI model based on factor weight

In section 3.2, we build MPCI model for multivariate nor-
mal distribution data. However, in many cases, the multivari-
ate data did not satisfy multivariate normal distribution. Thus,
in the section, a MPCI model based on factor weigh has been
build to compute the MPCI value for no-normal distribution
data.

3.3.1. Factor analysis

As for multivariate process quality characteristics, the aim
of factor analysisŒ10� is to describe covariance relation between
them using several factors. The basic way is to group the factors
according correlation, in which the factor having more correla-
tion is classified to a group, and the correlation among different
group is very weak, then such group is regarded as a factor. As-
suming X is one m�n step matrix, m is the number of process
quality characteristics and n is the sample number.

X D

26664
x11 x12 � � � x1n

x21 x22 � � � x2n

:::
:::

:::
:::

xm1 xm2 � � � xmn

37775 : (23)

The factor model is defined asŒ16; 17�

X D L � F C "; (24)

where F is a p � 1 step matrix. p, less than m, is the number
of factors which are chosen based on principles. Fi is the i -th
factor. L is one m � n step matrix and Lij expresses the load
of the i -th variable on the j -th factor. ", one m � 1 step matrix,
is the special factor of x. And we have8̂̂̂<̂

ˆ̂:
cov.F; "/ D 0;

V .F / D 1; V ."/ D

264 �2
2 0

: : :

0 �2
n

375 :
(25)

3.3.2. Computing L and �i
Œ18�

When computing L and �i , an extensively method name
principal component analysis has been chosen. Then the sam-
ple covariance matrix S of X matrix is as follows:

S D

26664
s11 s12 � � � s1m

s21 s22 � � � s2m

:::
:::

:::
:::

sm1 sm2 � � � smm

37775 ; (26)

where S is a symmetrical nonsingular matrix, si i is variance of
Xi , and sij is covariance of Xi and Xj . Thus

sij D
1

n � 1

nX
kD1

.xik � xi /.xjk � xj /; (27)
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xi D
1

n

nX
j

xij : (28)

After making an orthonormalization D D ET
x SEx , a di-

agonal matrixD will be obtained, the diagonal element �1, �2,
. . . , �m .�1 > �2 >. . .> �m/ are characteristic roots of S ma-
trix and E1, E2, . . . , Em are characteristic vector of S matrix.
Ei is the load of every variable on i-th factor. Contribution rate
of each factor is as follows:

ri D �i

,
mX

iD1

�i ; i D 1; 2; : : :; m: (29)

We can get the load matrix L as

L D .E1; E2; � � � ; Em/

264
p

�1 0 0

0
: : : 0

0 0
p

�m

375 : (30)

3.3.3. Factor MPCI

In order to get the process capability index value for every
factor, the factor specification and the target value for quality
standard should be determined first.

LSLFA D L�1.LSL � "/; (31)

USLFA D L�1.USL � "/; (32)

TFA D L�1.T � "/; (33)

where LSL, USL and T are lower limit of allowance, upper
limit of allowance and process quality expected target value
of every process quality characteristic respectively. LSLFA,
USLFA and TFA are lower limit of allowance, upper limit of
allowance and process quality expected target value of every
factor. Then we obtain process capability indices and its mean
for the i-th factor:

Cp;FAi D
USLFAi � LSLFAi

6
p

�i

; (34)

Cpk;FAi D min
�
USLFAi � O�F i

3
p

�i

;
O�F i � LSLFAi

3
p

�i

�
; (35)

O�F i D
1

n

nX
j D1

F ij ; i D 1; 2; : : :; m: (36)

3.3.4. MPCI based on factor weight

Now we consider that each factor has different contribu-
tion ratio to random vector X . The fluctuation of process vari-
able causes the fluctuation of common factor, and we can use
contribution ratio to measure the fluctuant influence of com-
mon factor to overall quality. Therefore, the multivariate pro-
cess capability index based on factor weight is defined to be:

MCp D

pX
iD1

ri Cp;FAi ; (37)

MCpk D

pX
iD1

ri Cpk;FAi ; (38)

where ri is contribution ratio of common factor. We can
achieve the contribution ratio using Eq. (29).

Table 4. MPCI value based on factor weight.
Specificationⅰ Specificationⅱ Specificationⅲ

MCp 0.6981 1.1737 1.1635
MCpk 0.6710 1.1681 0.8735

3.3.5. Experimental results

(1) Experimental analysis
We use two-variable process data as example which is ob-

served from microelectronic process. There are three different
requirements of process target value and process specification,
which are:

i: Process specification limit for each process parameter
is ˙3� , and process specification center is equal to process
distribution center.

Considering X1, the upper and lower specification limit
are USL = 233 and LSL = 122 respectively.

Considering X2, the upper and lower specification limit
are USL = 70 and LSL = 35 respectively.

ii: Process specification limit for each process parameter
is ˙5� , and process specification center is equal to process
distribution center.

Considering X1, the upper and lower specification limit
are USL = 270.5 and LSL = 87.5 respectively.

Considering X2, the upper and lower specification limit
are USL = 83.6 and LSL = 22.6 respectively.

iii: Process specification limit for each process parameter
is ˙3� , and there is 1.5� deviation between process specifica-
tion center and process distribution center.

Considering X1, the upper and lower specification limit
are USL = 295 and LSL = 110 respectively.

Considering X2, the upper and lower specification limit
are USL = 82 and LSL = 32 respectively.

The requirement for process target value is T .X1/ = 177
and T .X2/ = 52. Table 4 displays the computing outcome for
MCPI based on factor weight.

(2) MPCI result analysis
Firstly, we make a hypothesis test on the experiment data

with Chi-square test, A-D test and Kolmogorov test. The result
shows that the data cannot be regarded as data from normal
distribution. Then we obtain Cp and Cpk values from X1 and
X2 respectively without considering correlation between X1

and X2, as shown in Table 5.
Table 5 shows the univariate PCI value. Comparing the

values in Table 4 with Table 5, for specification i, the MCp
D 0:6981 and MCpk D 0:671 which are in the range of Cp
and Cpk of X1 and X2. The same results exist for specification
ii and iii. Therefore, the results illuminate that the MCp and
MCpk in Table 4 be able to represent the process parameter
variability approximately.

(3) Experiment summary
In many cases, the multivariate data did not satisfy mul-

tivariate normal distribution. Thus, a MPCI model based on
factor weigh has been build to compute the MPCI value for
no-normal distribution data. Based on the comparing between
Tables 4 and 5, the MPCI based on factor weight has the capa-
bility to represent such information of process performance. It
can be conclude that the approach calculate Multivariate pro-
cess capability index based on factor weight is feasible. There-
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Table 5. Cp and Cpk from X1 and X2 respectively.
Specification i Specification ii Specification iii

Cp Cpk Cp Cpk Cp Cpk
X1 0.7398 0.7120 1.2538 1.2487 1.1257 0.9112
X2 0.5692 0.5513 1.1557 1.1446 1.6438 0.6945

fore, the experimental results demonstrate the MPCI based on
factor weight is workable and effective. The model can achieve
themultivariate process capability index in no-normal distribu-
tion case.

4. Conclusions
Process capability ultimately decides microelectronics

process quality. Based on analyzing process capability index
(PCI), microelectronics process capability may be effectively
assured. With the rapid development in microelectronics pro-
cess, Quality evaluation of processes concerns more than one
quality characteristics; In this situation, simply calculating the
univariate PCI of individual variables and combining them to-
gether will inevitably fail to value the level of processes. There-
fore, it is more desirable to assess the process capability us-
ing multivariate process capability index (MPCI). The paper
has presented a system multivariate PCI method, which may
provide references for assuring and improving process quality
while achieving overall evaluation of process quality. The sys-
tem method divides all cases into three situations: one is multi-
variate normal distribution application, the second case is mul-
tivariate no-normal distribution application, and the last one is
yield application. In the systematicmethod,MPCImodel based
on yield is for yield application; MPCI model based on factor
weight is for multivariate no-normal distribution application;
and spatial MPCI model is for multivariate normal distribu-
tion application. Finally, experimental analyses and practical
example with the system method demonstrate the method is
reasonable and effective.
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