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A numerical integration-based yield estimation method for integrated circuits
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Abstract: A novel integration-based yield estimation method is developed for yield optimization of integrated
circuits. This method tries to integrate the joint probability density function on the acceptability region directly.
To achieve this goal, the simulated performance data of unknown distribution should be converted to follow a
multivariate normal distribution by using Box–Cox transformation (BCT). In order to reduce the estimation vari-
ances of the model parameters of the density function, orthogonal array-based modified Latin hypercube sampling
(OA-MLHS) is presented to generate samples in the disturbance space during simulations. The principle of vari-
ance reduction of model parameters estimation through OA-MLHS together with BCT is also discussed. Two yield
estimation examples, a fourth-order OTA-C filter and a three-dimensional (3D) quadratic function are used for
comparison of our method with Monte Carlo based methods including Latin hypercube sampling and importance
sampling under several combinations of sample sizes and yield values. Extensive simulations show that our method
is superior to other methods with respect to accuracy and efficiency under all of the given cases. Therefore, our
method is more suitable for parametric yield optimization.
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1. Introduction

Due to the fluctuations of process parameters, mass-
produced chips suffer from yield loss and low product quality.
Traditionally, worst-case based analysis methods are adopted
to ensure conservative design margins under process variabil-
ity. As manufacturing geometries continue to shrink, those
margins are becoming unnecessarily large and with them the
risks of over-design and profit loss increase. For these reasons,
parametric yield optimization techniques have been proposed
to tackle this problemŒ1�3�.

During parametric yield optimization (PYO), a maximiza-
tion algorithm is utilized to find the circuit designs that im-
prove the yield iteratively. Mathematically, parametric yield,
which is the probability of a fabricated circuit meeting the per-
formance specifications under process variability, can be for-
mulated as a multivariate integral. Thus it is significant for the
algorithm to evaluate the integral accurately and efficiently.
Yield can be evaluated numerically using either the quadrature-
based or Monte Carlo (MC) based methods. Both methods are
put forward in the light of the fact that the integral cannot be
calculated directly.

The quadrature-basedmethod can approximate the integral
in a convex acceptability region, and its computational costs
explode exponentially with the dimensionality of the distur-
bance spaceŒ1; 3�. The MC method, by contrast, is more widely
used free from the restriction on the dimensionalityŒ4�. How-
ever, in order to gain a reasonably accurate estimation of the
yield, the number of circuit simulations can grow prohibitively
high. As a result, variance reduction techniques have long been
a concern of studiesŒ5�10�.

In this paper, a novel integration-based yield estimation
method is developed. Unlike the above two methods, the yield
is estimated by integrating the joint probability density func-
tion (JPDF) directly through orthogonal array-based modified
Latin hypercube sampling (OA-MLHS) and Box–Cox trans-
formation (BCT). In Section 2, the necessary background on
parametric yield estimation and the MC method are briefly
reviewed, which shows that the MC method is inadequate
for PYO for its big misjudgment probability and minimum
sample size required, in addition to the well-known low ac-
curacy. Next, two widely-used MC-based variance reduction
techniques are discussed in Section 3. The yield estimation pro-
cedure of our integration-based method is depicted in detail in
Section 4. The principle of variance reduction for model para-
meter estimation through OA-MLHS is also given. In Section
5, successful results are obtained for our method when com-
pared with different methods under several combinations of
sample sizes and yield values. Finally, concluding remarks are
made in Section 6.

2. Monte Carlo method and its drawbacks

2.1. Monte Carlo method based parametric yield estima-
tion

Suppose y D Œy1; y2; � � � ; ym� is a set of circuit perfor-
mances and d D Œd1; d2; � � � ; dp� is the design parameters
involved. � D Œ�1; �2; � � � ; �n� denotes those transistor para-
meters of the circuit that are subject to process variations and
the components of � can be considered mutually independent
with normal distributionŒ6; 7�. For a fixed circuit design d , y

is given by a deterministic function y.�/. Since � is known to
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obey a multivariate normal distribution with its JPDF f� DQn

j D1 f�j
, y.�/ becomes statistical too. Now, the circuit per-

formances can be characterized by a JPDF fy and the yield can
be expressed as

Y D

Z
RA

y

fy.y/dy; (1)

where RA
y is the acceptability region defined by the specifica-

tions and usually a convex subspace ofRm. Normally,fy is un-
known because y.�/ usually does not have an explicit expres-
sion, like a simulation code. In order to compute the integral in
Eq. (1), define

Iy.y/ D

8<:0; y … RA
y ;

1; y 2 RA
y ;

(2)

as an indicator function and the yield can be re-expressed as

Y D

Z
Rm

Iy.y/fy.y/dy D Efy
.Iy.y//: (3)

Use
^

Y D

�PN
iD1 Iy.yi /

�
=N as an unbiased estimator

of the yield. Since fy is unknown, yi s cannot be drawn di-
rectly. Alternatively, a random sample �1; �2; � � � ; �N is in-
dependently drawn in the disturbance space according to f� .
Thus, the yield can be redefined due to the sources of variabil-
ity as

Y D

Z
Rn

Iy.y.�//f�.�/d� D

Z
Rn

I�.�/f�.�/d�

D Ef�
.I�.�//; (4)

where

Iy.y.�// D IŸ.�/ D

8<:0; � … RA
Ÿ

;

1; � 2 RA
Ÿ

:
(5)

Seen from Eq. (5), Iy.y.�// defines a mapping of the ac-
ceptability region from RA

y to RA
Ÿ
. In most cases, RA

Ÿ
is only

known implicitly and unnecessarily convex subspace of Rn. It
seems that the Monte Carlo method is the only general way to
numerically solve the integral in Eq. (4). The unbiased MC-
based estimator of yield is then given by

OYMC D
1

N

NX
iD1

I�.� i /: (6)

Note that BI D
PN

iD1 I�.� i / is binomially distributed as
BI � B.N; Y / and OYMC is an unbiased estimator of the un-
known parameter Y . The variance of OYMC can be easily derived
as

var. OYMC/ D �2
MC D

�2
BI

N 2
D

Y.1 � Y /

N
: (7)

Since �MC is inversely proportional to the square root ofN ,
the sample size must be quadrupled to estimate the unknown
Y twice accurately.

Fig. 1. Relationship between Pr.j OYMC�Y j < ˛F / and PICPII when
Y = 95.45% and ˛ = 0.2.

2.2. The misjudgment probability and minimum sample
size requirement

If N is large enough, according to the de Moivre–Laplace
theorem, B.N; Y / can be approximated to a normal distribu-
tion N.N Y; N Y.1 � Y //Œ11�. Accordingly, we have OYMC �

N.Y; �2
MC/. Suppose there are three independent candidates of

circuit designs dA, dB, dC involved in PYO. The yield val-
ues of them are known to be Y B D Y A � ˛F A, and Y C D

Y A C ˛F A, 0 < ˛ < 1, where F A D 1 � Y A is the reject rate.
A wrong step will happen in iterations if OY A

MC < OY B
MC or <

OY C
MC < OY A

MC when the yield is estimated by the MC method.
Since OY A

MC � OY B
MC � N.˛F A; var. OY A

MC/ Cvar. OY B
MC//, the prob-

ability PI D Pr. OY A
MC � OY B

MC < 0/ can be easily computed,
likewise for PII D Pr. OY C

MC � OY A
MC < 0/; hence, the probability

of misjudgment is PI C PII, which can also be viewed as the
probability of the iterations going in the wrong direction. In or-
der to lower this probability, OY should be made as accurate as
possible.

A precision index of a general yield estimator OY is defined
as Pr.j OY � Y j < ˛F /. Note that the reject rate F is introduced
because the relative accuracy ofF is worse than that of Y when
the circuit yield is high, and ˛F is more suitable to mimic the
step size in PYO. Intuitively, if OY is more likely to locate near
Y , the estimated yield is unlikely to be confronted with the ad-
jacent values of Y . Figure 1 shows this relationship between
Pr.j OY A

MC � Y Aj < ˛F A/ and PI C PII under different sample
sizes when Y A = 95.45% and ˛ = 0.2. Clearly, the misjudg-
ment probability of the MC method cannot be neglected until
the sample size is big enough. As the number of iterations in-
creases, the step size decreases and the yield values are raised;
meanwhile, the misjudgment probabilities also increase. The
low accuracy of OYMC due to unaffordable simulation costs may
reduce the efficiency and effectiveness of PYO.

Another major limitation of the MC method is the min-
imum sample size required when estimating high yield. It is
obvious that using 100 random samples, MC cannot reliably
approximate the yield values as high as 99.73%. The reason
is that according to Poisson approximationŒ11�, the probability
of at least 1 sample being rejected is only 1 – e�.100�0:0027/ =
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0.2366. Even if the rejected samples do exist, the highest yield
one can get is just 99%. One rule to decide the minimum sam-
ple size is that � = NF must be greater than 5, in which case
the probability of rejection occurrence is higher than 1 – e�� =
0.9933. This rule also gives the minimum sample size needed
for the adequacy of normal approximationŒ11�. Therefore, the
minimum sample size required is 1852 for Y = 99.73% and the
misjudgment probability in PYO is 0.75 for ˛ = 0.2 and 0.42
for ˛ = 0.5. Both the sample size and the misjudgment proba-
bility are disasters for PYO using the MC method.

3. Variance reduction techniques

Variance reduction techniques are MC-based methods and
can be used to improve the accuracy of yield estimation. Two
of them, Latin hypercube sampling (LHS)Œ6; 7� and importance
sampling (IS)Œ5; 8�10� are extensively studied and thus are in-
troduced here for comparison with our method.

3.1. Latin hypercube sampling

LHS is a type of stratified MC sampling widely used in
computer experiments. LHS generates an N -sized sample in
disturbance space � D Œ�1; �2; � � � ; �n� as follows. The in-
terval [0, 1] is divided into N equal intervals. Then in each
interval a sample is drawn randomly with uniform distribu-
tion. This procedure is repeated independently for each dimen-
sion. Thus for each dimension j , we have Qxk

j � U..k �

1/=N; k=N /, k D 1; � � � ; N . Next, Œ Qx1
j ; Qx2

j ; � � � ; QxN
j �T is

randomly ordered as Œx1
j ; x2

j ; � � � ; xN
j �T . Let kj be a ran-

dom permutation of the integers Œ1; 2; � � � ; N �, then we have
Œ Qx

kj .1/

j ; Qx
kj .2/

j ; � � � ; Qx
kj .N /

j �T D Œx1
j ; x2

j ; � � � ; xN
j �T . The sam-

ples of each component of �, � i
j , i D 1; � � � ; N are obtained by

mapping xi
j , i D 1; � � � ; N to the �j axis by the correspond-

ing univariate normal inverse cumulative distribution function
(ICDF) F �1

�j
.xi

j /. By juxtaposing these n vectors, the LHS
sample is achieved. This sampling approach ensures that each
component of � has all portions of its range represented.

After a random sample �1; �2; � � � ; �N is generated by
LHS, the unbiased estimator of the yield is given as

OYLHS D
1

N

NX
iD1

I�.� i / D
1

N

NX
iD1

I�.Œ� i
1; � i

2; � � � ; � i
n�/

D
1

N

NX
iD1

I�.ŒF �1
�1

.xi
1/; F �1

�2
.xi

2/; � � � ; F �1
�n

.xi
n/�/; (8)

where xi
j 2 Œ0; 1�, i D 1; � � � ; N , j D 1; � � � ; n. Let xi D

Œxi
1; xi

2; � � � ; xi
n� 2 Œ0; 1�n, then OYLHS is simplified as

OYLHS D
1

N

NX
iD1

Ix.xi /: (9)

Therefore the yield can be viewed as the mean of the in-
dicator function Ix.x/, Y D E.Ix.x//. Note that if all xi

j

are randomly sampled uniformly on [0,1] like xi
j � U.0; 1/,�PN

iD1 Ix.xi /
�

=N is then a MC estimator. Stein pointed out

that the variance of
�PN

iD1 Ix.xi /
�

=N under LHS is asymp-

totically smaller than that of the MC method Œ12�.
LHS is widely used for its simple implementation and low

computational costs. However, the efficiency provided by LHS
over MC is modest especially when yield is high Œ6; 7�. In addi-
tion, LHS also suffers from the minimum sample size require-
ment as the MC method does.

3.2. Importance sampling

When the IS method is used in yield estimation, the orig-
inal sampling function f� is replaced by a new one f IS

�
DQn

j D1 f IS
�j

in order to produce more samples in the importance
regions. After a random sample �1; �2; � � � ; �N is generated ac-
cording tof IS

�
, the yield can be estimated without bias by

OYIS D

PN
iD1 w.� i /I�.� i /PN

iD1 w.� i /
; (10)

where w.� i / D f�.� i /=f IS
�

.� i / is called the weight function.
When the yield is high, samples are more likely to fall into the
acceptability region RA

Ÿ
. The importance regions can be de-

fined as f� i j� i 2 Rn; � i … RA
Ÿ

g. Properly choosingf IS
�
, IS

can produce a lower variance estimator of the yield by select-
ing less likely samples in the importance regions. The required
minimum sample size also decreases accordingly.

Traditionally, IS is hard to implement for the implicity of
R
AŒ5�

Ÿ
. Recently, several techniques have been proposed to use

IS in yield estimationŒ8�10�. In Ref. [10], f IS
�j

is fulfilled by
enlarging the standard deviation of f�j

, which results in more
samples being drawn from the extremes of �j . This method re-
quires much less implementation effort than other IS methods
and is adopted in comparison with other yield estimation meth-
ods in section 5.

IS is efficient only for very high yield because more sam-
ples within the importance regions are not adequate for estimat-
ing a moderate yieldŒ5�. Thus, IS cannot be used as a general
estimation method in PYO since the yield is unknown before-
hand. Even when the yield is high, the performance of IS is
sensitive to the choice of f IS

�
and its parameters Œ5; 8�10�.

4. Numerical integration based yield estimation
via BCT and OA-MLHS

The low accuracy ofMC-based estimators is due to the lost
information of the simulated data. If the statistical laws behind
the data may be recognized, the yield can be estimated more
accurately. Traditionally,

R
RA

y
fy.y/dy cannot be computed di-

rectly because fy is unknown. Things will change when y

can be transformed to obey a multivariate normal distribution.
Then the yield can be obtained by integrating fy on the convex
region RA

y as
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OY D

Z
RA

y

fy.y/dy

D

Z
RA
y

1

.2�/m=2j
P

y j1=2

� exp
�

�
1

2
.y � �y/T

X�1

y
.y � �y/

�
dy; (11)

where �y and
P

y are the mean vector and covariance matrix
of y; respectively, and can be estimated by a random sam-
ple y1; y2; � � � ; yN as O�y D Ny D

1
N

PN
iD1 yi , and O

P
y D

1
N �1

PN
iD1 .yi � Ny/.yi � Ny/T .

Note that every value of the sample participates into the
estimation of Y , whereas a lot of information is lost by the
two-valued indicator function in the MC-based method. In or-
der to obtain a precise estimator of Y using the integration
method, y1; y2; �; yN should first be transformed into mul-
tivariate normal data and the parameters, �y and

P
y , should

then be estimated as accurately as possible. These two steps
can be fulfilled by BCT and OA-MLHS, respectively. There-
fore, our numerical integration-based yield estimation method
involves the combination of BCT and OA-MLHS. To the best
of our knowledge, it is the first time that this method is intro-
duced into PYO. Next, the procedures needed for yield esti-
mation, including BCT and OA-MLHS, are depicted in Sec-
tions 4.1 and 4.3. The reason why the model parameters can
be estimated accurately through the combination of BCT and
OA-MLHS is explained in Sections 4.2. In Section 4.4, general
accuracy measures are defined.

4.1. Box–Cox power transformation

Box–Cox transformation is the most commonly used uni-
variate power transformation familyŒ13� and has long been
adopted in process capability evaluation during semiconduc-
tor manufacturingŒ14�. The j th column of y1; y2; � � � ; yN can
be transformed by BCT as

y
.�j /

j D BCT.yj / D

8̂̂<̂
:̂

y
�j

j � 1

�j

; �j ¤ 0;

lnyj ; �j D 0:

(12)

This family is only appropriate for positive data. For data
that are possibly negative, one can first transform them to pos-
itive values by adding a constant and then apply a BCT. This
(continuous) family depends on a single parameter �j , which
can easily be estimated by the method of maximum likelihood.
First, a value of �j from a pre-assigned range, say [–5, 5], is
collected. Next, we evaluate

L.�j / D �
1

2
ln. O�2.�j // C .�j � 1/

NX
iD1

ln.yi
j /: (13)

The estimate of O�2.�j / for a fixed �j is O�2.�j / D

S.�j /
ı

N , where S.�j/ is the residual sum of squares in the

analysis of variance of y
.�j /

j . Box and Cox show that the max-
imum likelihood estimate of �j is the value of �j that maxi-
mizes L.�j /. The above process can be easily implemented by
a 1D searching algorithm like the golden section method. With
the optimal ��

j , the specification limits are also transformed us-
ing Eq.(12). This process is repeated for data samples of each
performance, andy1; y2; � � � ; yN can be transformed into mul-
tivariate normal data.

Generally, the normality test should be used to decide how
likely the transformed data is to be normally distributed. The
more likely it is, the more accurate the estimate is. Since most
performance distributions encountered in IC designs can be
thought as moderately deviate from normal distribution, Box-
Cox transformation is supposed to work well for yield estima-
tion.

4.2. The principle of variance reduction of model para-
meter estimation through OA-MLHS together with
BCT

As seen in Sections 2 and 3, the yield is estimated by the
sample mean of the indicator function. LHS can reduce the
variance of the estimator. Similarly, each element of O�y and
O

P
y can be expressed as a sample mean of the transformed

data. The variance of the estimator for each element of �y andP
y can also be reduced as long as y1; y2; � � � ; yN is obtained

through a proper sampling plan. Consider the first element of
O�y , Ny

.�1/
1 is the sample mean of the dataset transformed from

Œy1
1 ; y2

1 ; � � � ; yN
1 �

T by BCT, then we have

Ny
.�1/
1 D

1

N

NX
iD1

BCT.yi
1/ D

1

N

NX
iD1

BCT.y1.� i //; (14)

where y1.� i / stands for the deterministic function of the first
performance defined on � and is implicit in essence.

If F �1
�

denotes the joint inverse cumulative distribu-
tion function, Œ� i

1; � i
2; : : : ; � i

n� D ŒF �1
�1

.xi
1/; F �1

�2
.xi

2/; : : : ;

F �1
�n

.xi
n/� can be reduced as � i D F �1

�
.xi /. Thus Equation

(14) can be re-expressed as

Ny
.�1/
1 D

1

N

NX
iD1

BCT.y1.F �1
� .xi /// D

1

N

NX
iD1

g.xi /; (15)

where xi D Œxi
1; xi

2; : : : ; xi
n� 2 Œ0; 1�n, Œ0; 1�n is a unit cube of

Rn. The only parameter of g.xi /, ��
1 can be estimated by the

maximum likelihood method. If we define

gj .xj / D E.g.x/jxj / � E.g.x//; (16)

as the main effect of xj , and

gij .xi ; xj / D E.g.x/jxi ; xj / � gi .xi / � gj .xj / � E.g.x//;

(17)
is the second-order interaction between xi and xj , Thus g.x/

can be formulated as

g.x/ D E.g.x//C
X

j

gj .xj /C
X
i<j

gij .xi ; xj /Cr.x/; (18)
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where r(x) is the remainder, which can be expressed by the
other terms. According to Stein’s resultŒ12�, the variance of�PN

iD1 g.xi /
�.

N under MC method is

�2
MC D

1

N

0@X
j

var.gj .xj //

C
X
i<j

var.gij .xi ; xj // C var.r.x//

1A ; (19)

and the variance under the LHS method is

�2
LHS D

1

N

0@X
i<j

var.gij .xi ; xj // C var.r.x//

1A C o

�
1

N

�
:

(20)
It is clear that by using LHS the main effects are filtered

out even without knowing the expression of g.x/. The variance
can be further reduced by filtering out all of the second-order
interactions and the main effects through Orthogonal Array-
based Latin Hypercube Sampling (OA-LHS)Œ15� as

�2
OA-LHS D

1

N
var.r.x// C o

�
1

N

�
: (21)

On the other hand, if Qxk
j D .2k � 1/=2N , k D 1; � � � ; N

during LHS generation, one gets a modified LHS (MLHS).
According to the statistical properties of MLHS discussed in
Ref. [7], the variance of

�PN
iD1 g.xi/

�
=N is expected to be

smaller than that of standard LHS. Therefore, a new sam-
pling plan called OA-MLHS is presented, originating from
OA-LHS. The above reasoning of variance reduction is cer-
tainly suitable to any other element of O�y and O

P
y . Since all of

the model parameters are expected to be more accurate by us-
ing OA-MLHS after the simulated performance data are trans-
formed through BCT, the yield estimation is supposed to be
more accurate than by using other data sampling plans, such as
MC, LHS and OA-LHS.

4.3. Procedures of generating OA-MLHS

The procedures of generating OA-MLHS are basically the
same as those of LHS in Section 3.1 except that (1) Qxk

j is taken
to be .2k � 1/=2N other than Qxk

j � U..k � 1/=N; k=N /,
k D 1; � � � ; N . (2) Œ Qx1

j ; Qx2
j ; � � � ; QxN

j �T is not simply ordered
as Œx1

j ; x2
j ; � � � ; xN

j �T according to a random permutation kj

but ordered according to the j th column of an orthogonal se-
quence of permutationsŒ15�. The typical steps for producing this
sequence are:

Step 1: Select an orthogonal array OA(N , n0, s, r/ with
strength r = 2,N rows,n0 (n0 > n/ columns and s levels (levels
are often denoted as 1, 2,. . . , s/.

Step 2: Draw n columns from OA(N , n0, s, r/ by simple
random sampling without replacement.

Step 3: Let Pi denote a random permutation of [1, 2,. . . ,
N /s] plus a constant N.i–1)/s for i = 1, 2,. . . , s. For each col-
umn, replace the N /s elements with the same level by the cor-
respondingPi . For example, ifN = 32, s = 4, then replace eight

Fig. 2. Integration-based yield estimation via BCT and OA-MLHS.

1s by P1, eight 2s by P2 and so on. Denote each column of the
final orthogonal sequence by O1, O2,. . . , On.

All of the procedures needed for yield estimation by BCT
and OA-MLHS are depicted in Fig. 2. The integration in
Eq. (11) is calculated efficiently by the sophisticated algorithm
of GenzŒ16�. The majority of extra computation time is occu-
pied by the 1D searching of BCT and the integration; both are
very computationally cheap. Thus, the extra computation costs
are assumed to increase linearly with the dimension of perfor-
mance space and very little compared to circuit simulation. In
addition, the integration-based methods are free from the re-
striction on minimum sample size.

4.4. Measures of accuracy for a general estimator of yield

The MC, LHS and IS methods all produce unbiased es-
timators of the yield. Thus, the accuracy of these estimators
can be measured by their variances, �2 D E..

^

Y �E.
^

Y //2/.
Since the integration-based estimator is not generally unbiased
due to the introduction of BCT and MLHSŒ7�, it is incorrect to
measure the accuracy of our method still by �2. For a general
estimator of the yield, with its bias B D E.

^

Y / � Y , one can
define the mean square error (MSE) as

MSE D E..
^

Y �Y /2/ D B2
C �2: (22)

Clearly, for MC-based methods, MSE = �2. From the per-
spective of MSE, an unbiased estimator with large �2 is less
accurate than an estimator with a small sum of B2 and �2. An-
other measure of accuracy is Pr.j OY � Y j < ˛F / given before.
Pr.j OY � Y j < ˛F / defines the accuracy using probabilities
and can also be used for measuring the misjudgment probabil-
ity. In order to obtain these two accuracy measures, the whole
process of Fig. 2 is repeated Nr times independently. It is eas-

045012-5



J. Semicond. 2011, 32(4) Liang Tao et al.

Fig. 3. (a) Schematic of the fourth-order low-pass OTA-C filter. (b)
Schematic of the OTA.

Table 1. Circuit parameters and bias conditions.
Transistor W=L (�m/�m) Capacitor C (pF)
M1, M2 51.3/0.5 C1 13.12
M3, M4 6.2/1 C2 13.52
M5, M6 6.3/1 C3 9.28
M7, M8 5.2/1.7 C4 3.28
M9, M10 0.85/0.5 Bias condition
M11, M12 42.2/0.5 Vdd 2.5 V
M13, M14 2.2/0.5 IBIAS 86 �A

ily found that OMSE D
1

Nr

NrP
iD1

. OY i � Y /2 and N˛=Nr (N˛ is

the frequency number for j OY i � Y j < ˛F / are unbiased es-
timators of MSE and Pr.j OY � Y j < ˛F /, respectively. Thus,

OMSE and N˛=Nr or N˛ can serve as the accuracy measures for
the comparison of different yield estimation methods.

5. Experimental results

In this section, the effectiveness of the proposed method
is illustrated in two yield estimation examples: a fourth-order
OTA-C filterŒ17� and a quadratic performance functionŒ6; 7�.
Six different yield estimation methods are compared through
the accuracy measures proposed above. These methods are
three MC-based methods (1) MC, (2) LHS, (3) IS and three
integration-based methods which are categorized by their re-
spective sampling plans on the disturbance space as (4) MC

Table 2. Process noise factors.
�i E.�i / 3��i

Description
�1 12.8 0.7 Oxide thickness (nm)
�2 –14.2 90 NMOS zero-bias threshold

voltage shift (mV)
�3 –13.0 100 PMOS zero-bias threshold

voltage shift (mV)
�4 60 70 MOSFET length reduction

(nm)
�5 55 70 MOSFET width reduction

(nm)
�6 1.57

�10�3
1.57
�10�4

Sheet capacitance for filter
capacitors (F/m2/

Table 3. Filter specifications (Y = 99.73%).
yj Specification Description
y1 8.967–11.277 –3dB frequency fc range (MHz)
y2 < 104:414 Stop band (MHz)@–80 dB attenuation
y3 < 1:695 Pass band ripple (dB)
y4 < 11:562 Group delay variation (ns) @

0.01fc–0.5fc

based integration (MCI), (5) LHS based integration (LHSI) and
(6) OA-MLHS based integration (OA-MLHSI).

5.1. Fourth-order all-pole canonical OTA-C filter

Schematics of the OTA and the low-pass filter are given in
Fig. 3 together with the circuit parameters shown in Table 1.
The filter is designed in a 0.5 �m CMOS process. The para-
meters of six process noise factors are listed in Table 2; they
are considered to be the principal independent factors in dis-
turbance space of an MOS circuitŒ6; 7�. According to our sim-
ulation, the statistical properties of the filter using all of the
noise factors in foundry variation models are nearly identical
to those using only �. Several combinations of sample sizes
and yield values are used in comparison. The yield require-
ments are typically set to be 99.73% (corresponds to the so-
called three-sigma design), 95.45% (two-sigma), 86.64% and
68.27% (one-sigma) by 800,000 MC runs. For the purpose of
studying different yield estimation methods, fixing the speci-
fications and varying the circuit parameters is basically equiv-
alent to fixing the parameters and varying the specifications.
However, the implementation effort of the latter is far simpler.
That is why it is widely used in Refs. [6, 7, 9, 10]. The per-
formance specifications when the yield is 99.73% are given in
Table 3. To compare the accuracy measures of different meth-
ods, repeat 200 times independently for each combination of
N and Y . Since the MC and MCI methods are only different
in how they deal with the performance data, they can share the
same simulation data; so do LHS and LHSI. The standard de-
viation of f�j

becomes 1.5 times its original value during IS,
which proves to be reasonable to estimate high yield values in
our example.

When N is big enough, the skewness test statistic should
not be significantly different from zero if the data sample is ap-
proximately normally distributedŒ11�. The average of the skew-
ness test statistics of the simulated cut-off frequency fc by us-
ing the MC and three integration-based methods are compared
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Table 4. Average of the skewness test statistics by 200 times repetitions.
Sample Average of the skewness test statistics

OA(N , n0, s, r/size MC MCI LHSI OA-MLHSI
1024 3.497 0.011 0.008 0.002 (1024, 33, 32, 2)
512 2.464 0.016 0.012 0.004 (512, 33, 16, 2)
256 1.781 0.020 0.017 0.006 (256, 17, 16, 2)
128 1.323 0.026 0.028 0.015 (128, 17, 8, 2)
64 – – – – (64, 9, 8, 2)
32 – – – – (32, 9, 4, 2)

Fig. 4. MSE of different methods under different sample sizes when estimating (a) Y = 99.73%, (b) Y = 95.45%, (c) Y = 86.64% and (d) Y =
68.27%.

in Table 4 after 200 times repetitions (the test statistics when
N = 64 and 32 are not given because the skewness test is qual-
ified for N >100). Obviously, the simulated performance data
do not obey normal distribution and thus are successfully trans-
formed to normal through BCT and various sampling methods.
The orthogonal arrays OA(N , n0, s, r/ chosen for different
sample sizes are also given in Table 4.

In Fig. 4, the MSE of each method decreases with the sam-
ple size for different yield values. Consequently, the yield esti-
mation accuracy can be controlled via the sample size. In Fig. 5,
the frequency number, N’ is compared for different methods
under small sample sizes. As seen in Figs. 4 and 5, our method
is superior to all of the other methods as for both MSE and
Pr.j

^

Y �Y j < ˛F / under all given combinations of N and
Y . For the three MC-based methods, LHS performs best on
the whole and is always more accurate than MC. When Y =

99.73%, the MSE of LHS is very close to that of MC, espe-
cially for small sample sizes, and IS performs better than the
others. However, the accuracy of IS deteriorates rapidly as Y

decreases. For the three integration-based methods, MCI per-
forms worst. The accuracy of MCI is close to that of MC and
less than that of LHS in many cases. Although LHS and LHSI
share the same data, the accuracy measures of them differ a
lot since more information contained in the data is exploited
by LHSI. However, the superiority of MCI over MC does not
seem quite apparent. Therefore, with only the BCT technique,
integration-based methods are not at all attractive compared
with MC-based methods. That explains why integration-based
methods never cause any concern to people.

It is worth noting that N˛ of MC and LHS are not given in
Fig. 5(a) sinceN˛ = 0 for themwhen Y = 99.73%. In Fig. 6, the
histograms of yield estimates for MC and OA-MLHSI when Y
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Fig. 5. N˛ of different methods under different combinations of sample size, ˛ and yield value.

Fig. 6. Histograms of
^

Y for (a) MC and (b) OA-MLHSI when Y = 99.73% and N = 128.

Fig. 7. Accuracy measures of different methods under different sample sizes when estimating Y = 99.73%. (a) MSE. (b) N˛ .

= 99.73% and N = 128 are compared. The distribution of yield
estimates by using the MC method resembles the shape of a
binomial distributed variable, and j OYMC � Y j < ˛F never hap-

pens because OYMC can only take discrete values. The origin of
this phenomenon is that the sample size is far smaller compared
with the minimum requirement for the MC method to estimate
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Y = 99.73%. Since the performance of LHS is close to that
of MC for very high yield valuesŒ6; 7�, LHS also produces bad
results. By contrast, the distribution of yield estimates by us-
ing OA-MLHSI is close to a normal distribution via such small
samples. The misjudgment probability is expected to be very
small because most yield estimates stay around Y . Therefore,
the integration-based method using BCT and OA-MLHSI can
efficiently produce accurate yield estimation even for very high
yield values.

5.2. Quadratic performance function

Let’s consider a more general case. Suppose that the be-
havior of a circuit performance can be expressed as a 3D
quadratic function. We adopt the function used in Refs. [6, 7]
in this example,

y.�/ D a0 C J � C
1

2
�T H �; (23)

where a0 D 3, and the matrices J and H are

J D

24 �1

10

2

35T

; H D

24 1 �4 5

�4 3 4

5 4 �2

35 : (24)

Each component of � is considered mutually independent
and identically distributed normal variable withE.�i/ = 0.5 and
3��i = 1, i = 1, 2, 3. y is verified to obey three parameters log-
normal distribution and the yield value of y is 99.73% when
y > �0:23. The MSE and N˛ of each method are compared in
Fig. 7 after repeatingNr = 1000 times. Again, our method is su-
perior to all other methods. Similar results will be obtained for
the six methods under different combinations of sample sizes
and yield values. It is noteworthy that the IS method performs
better in this example than in Section 5.1. In fact, the accu-
racy of the IS method is very dependent upon the dimension-
ality of the performance space, the higher the dimensionality
the lower the accuracyŒ5�. People can expect IS to perform well
only in the extreme situations where the performances involved
are very few and the yield is know to be fairly high.

6. Conclusion

In this paper, an integration-based method for estimating
circuit yield is presented. This method tries to integrate the
joint probability density function on the acceptability region di-
rectly. To do that, the simulated performance data of unknown
distribution should be converted to follow a multivariate nor-
mal distribution by using Box-Cox transformation. According
to our analysis, if the performances are evaluated using the
noise dataset sampled on the disturbance space by OA-MLHS
during simulations, the estimation variances of model para-
meters of the multivariate normal JPDF can be reduced greatly.
Correspondingly, the accuracy of yield estimation is improved
drastically even under small sample sizes. The extra computa-
tion costs of our method are linearly proportional to the dimen-
sion of performance space. The yield estimations of a fourth-
order OTA-C filter and a quadratic performance function are
used for comparison of different methods under several com-
binations of sample sizes and yield values. A vast number of

simulations show that our method is superior to other methods
with respect to accuracy and efficiency under all of the given
cases. Hence, our method is more suitable for parametric yield
optimization.
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