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Mass transport analysis of a showerhead MOCVD reactor
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Abstract: The mass transport process in a showerhead MOCVD reactor is mathematically analyzed. The math-
ematical analysis shows that the vertical component velocity of a point over the substrate is only dependent on
vertical distance and is independent of radial distance. The boundary layer thickness in stagnation flow is indepen-
dent of the radial position too. Due to the above features, the flow field suitable for film growth can be obtained. The
ceiling height of the reactor has important effects on residence time and the mass transport process. The shower-
head MOCVD reactor has a short residence time and diffusion plays an important role in axial transport, while both
diffusion and convection are important in radial transport.
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1. Introduction

Metalorganic chemical vapor deposition (MOCVD) is
a key process in manufacturing compound semiconductor
devices, such as blue-light-emitting and high-power laser
diodes[!-2]. In the MOCVD process, reactant gases are intro-
duced to a reactor chamber where chemical reactions occur un-
der the activation of heat, light etc., followed by the formation
of a single-crystal or poly-crystal film on the substrate. Ev-
ery MOCVD process requires that precursors are transported
from the location where the gases are supplied (inlet manifold,
showerhead, injector) to the surface on which deposition must
occur (substrate, wafer): that is, mass transport must occur. It is
known that the rate of deposition can be controlled by the sur-
face reaction rate (surface limited) or the mass transport rate
(mass transport limited). The latter is frequently the case in
commercial MOCVD reactors, where a high rate is desirable
to reduce costs. In the case where mass transport is important,
it often determines not merely the rate but also the uniformity
of deposition, which is frequently critical in practical applica-
tions.

Showerhead MOCVD reactors have been widely applied
in recent years. They employ a perforated or porous planar
surface to dispense reactant gases more-or-less uniformly over
a second parallel planar surface. Such a configuration can be
used for batch processing multiple substrates, but also lends it-
self to processing single round wafers. In view of the fact that
little theoretical research on showerhead MOCVD reactors has
been carried out in Chinal® 41, this paper presents a mathemat-
ical analysis of the mass transport process of the reactor type
based on the basic theory of fluid mechanics. The results will
help an understanding of the process of MOCVD film growth,
and provide a reference for the structural design of reactors.

2. The showerhead MOCYVD reactor

The showerhead MOCVD reactor is characterized by a
showerhead flange and inlets very close to substrate. The reac-
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tant gases are injected vertically from the showerhead flange
with many small holes (in the order of 0.5 mm) toward the
substrate. The showerhead distributes the reactant gases uni-
formly over the substrate and yields a uniform concentration
field. Then reactant gases travel across the boundary layer onto
the substrate surface by concentration diffusion. By adopting a
close space (in the order of 1 cm) between the showerhead and
the substrate, the convection rolls can be suppressed, the gas
residence time can be reduced and the reactant gases can be
used efficientlyl®]. A typical showerhead reactor looks some-
thing like Fig. 1, where H is called the ceiling height or elec-
trode gap and R refers to the radius of the reaction chamber.

3. Mathematical analysis of mass transport
3.1. Related definitions

It is well known that convection and diffusion are the two
methods of mass transport. Convective transport occurs when
mass is carried along with the fluid due to macro movement;
while diffusive transport is the average of the random motions
of the huge number of individual molecules that make up the
fluid or gas. For convenience of discussion in the MOCVD pro-
cess, we introduce the following physical quantities(®l:

(1)Residence time fes: tres = Flm, where V is the chamber
volume and Fj, is the inlet volume flow. Residence time is the
time to remove mass by gas flow.

(2) Consumption time f.on: feon = %, where V' is the
chamber volume, K is surface reaction rate constant, and S is
the area of the growth surface. Consumption time is the time
to consume available reactant at the growth surface.

When the residence time is short compared to the con-
sumption time, the condition is often referred to as “surface
limited”, in which film uniformity is likely to be good but ef-
ficiency of utilization is low. When the consumption time is
shorter, the condition is often known as “mass transport lim-
ited” and the uniformity of deposition is likely to be poor ow-
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Fig. 1. Schematic of the showerhead MOCVD reactor.

ing to large gradients in concentration. Since a MOCVD re-
action chamber usually works at high temperature and the sur-
face reaction rates are much faster than the transport rate, “mass
transport limited” deposition is the usual case for MOCVD pro-
cesses. And residence time is the most important parameter to
evaluate mass transport. On the one hand, the gas residence
time can reflect the transport rate, the longer the residence time,
the lower the mass transport rate and the lower the film growth
rate; on the other hand, a long residence time may cause harm-
ful parasitic reactions.

(3) Diffusion length Ly: Ly = +/4Dt,where D is the mass
diffusivity and ¢ is the diffusion time. The diffusion length
is the characteristic length scale for diffusion problems. It in-
creases as the square root of the time. If the diffusion length
is much longer than the system size, the profiles of concentra-
tion must be essentially linear, and are independent of time (if
diffusion is the only thing happening). A change in one part
of the reactor is reflected throughout the reactor in a diffusion

time (t = %). The relevant time used to find the diffusion
length will often be the residence time of gases in the reactor.
As we’ll discuss below, in this case fluid velocity is generally
not important: diffusion dominates transport. If the diffusion
length is much shorter than the system size, concentrations can
differ drastically from one part of the reactor to another. Gra-
dients can be very large, and concentrations are highly time-
dependent. Large changes in concentration in one region in the
reactor will have no effect on other regions if the time involved
is short enough that the diffusion length is small.

In order to determine that the mass transport is dominated
by convection or by diffusion in a showerhead MOCVD re-
actor, it is usually preferable to use a dimensionless number
which is the diffusion length divided by a characteristic size of
the reactor. For example, the ratio of the diffusion length and
the chamber radius (%) is used for radial mass transport, while
the ratio of the diffusion length and the ceiling height (ILi—‘é) is
for axial (vertical) mass transport of the reactor. Thus, if the rel-
evant dimensionless number (% or }LI—"C) is much larger than 1,

then diffusion dominates transport; if the dimensionless num-
ber is much smaller than 1, then convection dominates; if the
number is comparable to 1, both diffusion and convection are
important.

3.2. Mathematical analysis
3.2.1. Stagnation flow

In a showerhead reactor, if we approximate the shower-
head itself as an ideal porous material and treat the flow as in-
compressible, gases are dispensed uniformly from the shower-
head but must move radially to exit at the perimeter (shown in
Fig. 2(a)). This flow pattern is called “stagnation flow” (shown
in Fig. 2(b)) because the velocity of flow goes to zero in the
middle of the flow. Thus, at any radius, all of the gas dispensed
from inside must flow outward (ignoring changes due to reac-
tions in the gas or at the surface). Since the area dispensing
increases as the square of the radius and the perimeter area is
linear, the radial velocity of the gases must increase linearly

with radial distance: the radial velocity should be 5 ;Ic .

3.2.2. Flow field in the reactor

It turns out to be pretty simple to derive an analytic ex-
pression for the gas velocity in a showerhead-like configura-
tion in the inviscid incompressible flow approximation: that is,
we assume that the gas is incompressible (also ignoring ther-
mal expansion) so that the volume in is the same as the volume
out, and we ignore the fluid viscosity. However, in this case
we must account for the presence of an impermeable bottom
boundary (the wafer and substrate holder): the vertical veloc-
ity must equal 0 at z = 0.

We treat the showerhead as a continuous source of gas, ig-
noring the individual dispensing holes: thus the vertical veloc-
ity is fixed at z = ceiling height. Incompressibility means that
the divergence of the velocity field must be zero everywhere:
this is a potential flow. So we can list the analytic expressions
as follows,
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Fig. 2. Schematic diagram of (a) the dispense area and (b) the stagna-
tion flow.

cylindrical symmetry: v = (v, v;),

constant entry velocity: v, = —uvy, at ceiling z = Hc,

impermeable bottom wall: v, = 0atz = 0,

incompressible flow: V-V = 0.

Here, v is the velocity vector; v, the radial velocity; v, the
vertical velocity; vy, the inlet velocity; Hc the ceiling height;
and V - V the divergence of the velocity field.

In order to get the expressions of v, and v, the divergence
equation must be written out in cylindrical coordinates (assum-
ing no azimuthal flow),

1
vor =136+ Ly 2o 0
ror dz

Equation (1) is solved and the solutions for the vertical and

radial velocity are
z
Vz; = Vip _H_C B (2)

= Ving ;- 3
Ur = Vi 3)
Obviously, Equations (2) and (3) satisfy the boundary con-
ditions: v, = —vy, at z = H¢, and is 0 at z = 0. The radial ve-

locity is just what we derived in Section 3.2.1, by conserving
the total gas volume.

Let us examine the behavior of the solution. The vertical
velocity is linear in height and the radial velocity similarly lin-
ear in radius. The total fluid velocity at any point is

Uin /12 1 az2, )

2Hc

lv| =

For r > Hc, the velocity is dominated by the radial com-
ponent.

To get a picture of what this flow looks like, we can derive
an equation for the streamlines (paths of test particles trapped

in the flow),

0 vy
—r ==, 5
8zr Vg ©)

with a solution r = ro\/g that is independent of the actual
velocity vi,.

According to the solution of the streamline equation, we
can draw the flow pattern, which looks like Fig. 3, for a ceiling
height of 1.5 cm and a radius of 10 cm. It turns out to be a stag-
nation flow pattern with uniform velocity distribution above
the substrate suitable for film growth.

3.2.3. Residence time

As mentioned in Section 3.1, since in MOCVD process the
surface reaction rates are much faster than the transport rate, it
is usually “mass transport limited” deposition. Therefore, both
the rate and the uniformity of the film growth are determined by
the rate of transporting precursor to the growth surface, which
can be reflected by the residence time.

Based on the above analysis and according to the definition
of residence time, we can calculate the time that a particle or a
precursor gas molecule has spent in the stream since it entered
the chamber, for any given position. The answer is

HC z
tst o In Ho' (6)

From Eq. (6), we can find a necessary and interesting fea-
ture that the time in the stream goes to infinite as the height goes
to zero, which means that gas molecules can never actually get
to the wafer by pure convection. Diffusion is always necessary
for deposition. In addition, since the time in the stream is only
dependent on the height, the time for gas phase reactions is in-
dependent of the radial position. One may be tempted to think
that the gases have been around for longer as we move towards
the outside of the showerhead, but in fact the compression of
the streamlines towards the bottom of the chamber (see Fig. 3)
compensates.

Note that Equation (6) is based on the ideal gas assump-
tion ignoring the viscosity of the fluid. In fact, all actual fluid
has viscosity and there is a velocity boundary layer close to
the substrate surface. Thus the diffusion time which particles
spend travelling across the boundary layer should be taken into
account. In reactors with large separations between the shower-
head and the substrate-holder (i.e. large H¢), stagnation flow
becomes relevant. Precursors are convected from the shower-
head down and outward: when they reach the boundary layer
height, they then proceed by diffusion to the wafer surface. The
effective residence time for gases in the stream can be approx-
imated by adding the time in the stream to reach the boundary
layer to the time taken to diffuse across it,

He 6 §2

) L @

n QE—
st
vin  Hc

where § is the boundary layer thickness in stagnation flow and
D is the mass diffusivity. Expression (7) is the correction form

of Eq. (6). The second term % is the diffusion time calculated
by the definition of the diffusion length. The time 7y’ scales as
(Hc/vy), with the multiplier being a slowly-varying logarith-

mic term, and thus in practical cases it doesn’t differ very much
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Fig. 3. Flow pattern in the chamber for a ceiling height of 1.5 cm and a radius of 10 cm.

from the simple residence time #y in Eq. (6). The discussion in
Section 3.2.4 will reveal that the boundary layer thickness §
is independent of the radial position, so the effective residence
time #;' is also only dependent on the height and is independent
of the radial position.

From the above analysis, we can see that the residence time
is roughly linear in the ceiling height Hc for the slowly-varying
logarithmic term and variation in Hc is a simple way to influ-
ence the operation of showerhead reactors. That is why Hc is
always considered to be the most important size parameter for
showerhead reactor design.

3.2.4. Boundary layer thickness

Since viscosity is the diffusion of momentum, and the
above analysis showed that diffusion dominates convection
in the vertical direction, we can’t really ignore gas viscosity.
Here, we give the boundary layer thickness in stagnation flow.

The boundary layer thickness in stagnation flow is inde-
pendent of the radial position: we have approximately’]

H
§~3 [ v_s. ®)
Vin

Recalling that the kinematic viscosity increases as the re-
ciprocal of the pressure (1/P) and the inlet velocity has the
same dependence, we can easily see that the boundary layer
thickness is independent of the pressure, if the molar inlet flow
is fixed. Thus we can re-express the boundary layer thickness
in terms of the molar flow and molar volume at standard tem-
perature and pressure (STP),

5 R2
S ©)
Hc VinFinHc

Here, v is kinematic viscosity, Fj, is the molar flow, and V}, is
the molar volume at STP.

If HLC = 1, then the whole chamber is in the boundary layer
and convection plays little role in vertical transport of mass
and momentum. The stagnation flow solution is not relevant
to the chamber. If HL <« 1, then the boundary layers would
be thin compared to the chamber height and stagnation flow
is relevant. From Eq. (9), we can see that if the flow and the
ceiling height are increased, the convection will play a more
important role in vertical transport.

It should be noted that the boundary layer mentioned above
is actually called the velocity boundary layer. In addition to the
velocity boundary layer, there exists the concentration bound-
ary layer (the thickness is described as é¢) and the temperature

boundary layer (the thickness is §t) close to the substrate. Ac-
cording to the basic principles of fluid mechanics, the relation
between &, §c and 8t can be expressed as follows,

§/8c ~ Sc'/?, (10)

8/ ~ Pr!/3, (11)

Here, Sc and Pr are both dimensionless numbers, the former is
a Schmidt number and the latter is a Prandtl number. For most
gases, Sc &~ 0.1-1 and Pr & 1 (Sc can be calculated by Sc =
v/ D, where D is the mass diffusivity; Pr can be calculated by
Pr = v/a, where v is also the kinematic viscosity and « is the
thermal diffusivity.), so 8, ¢ and dr are in the same order of
magnitude.

From the relations between the thicknesses of the three
boundary layers, it can be concluded that, similar to the ve-
locity boundary layer, the thicknesses of the concentration and
temperature boundary layers are also independent of the ra-
dial position, which means uniform velocity, concentration and
temperature distribution above the substrate, thereby improv-
ing the uniformity of thin film growth.

3.3. Data example

With the above analysis in mind, let’s see what can be
learned from an overall examination of mass transport in a typ-
ical showerhead MOCVD reactor, without taking into account
the detailed nature of the gas flow. We assume the transport
properties for nitrogen as a representative gas. The results are
shown in Table 1.

From the results shown in Table 1, we can see the follow-
ing. (1) The diffusion length is much larger than the ceiling
height, so we know that convection plays a weak role in trans-
port in the axial (vertical) direction. The concentrations of pre-
cursors and products will be constant or linear in height. (2)
On the other hand, the diffusion length is comparable to the
chamber radius: both diffusion and convection are important in
radial transport. (3) The residence time is very short (about 10
times less than in the comparable case for a horizontal tube re-
actor). The combination of a short residence time and confine-
ment of high temperatures to the region near the wafer makes
showerhead reactors appropriate for use in systems where high
rate gas phase reactions are important. (4) §/Hc > 1 means
that the whole chamber is in the boundary layer and convec-
tion plays little part in the vertical transport of mass, which is
consistent with Eq. (1).

033006-4



J. Semicond. 2011, 32(3)

Li Hui

Table 1. Mass transport example in a typical showerhead MOCVD
reactor.

Parameter Value
Ceiling height, Hc 2 cm
Chamber radius, R 15 cm
Chamber volume, V/ 14L

Ceiling temperature, T 100 °C
Wafer temperature, Tyafer 400 °C
Pressure, P 0.5 Torr
Inlet volume flow, Fj, 14 000 cm3/s
Velocity at r = R, v,=R 77 cm/s

Residence time, 7 0.1s

Mass diffusivity, D (Np) 805 cm?/s
Diffusion length, Ly 18 cm
Boundary layer thickness, § 9.2 cm
8/Hc 4.6

L4g/R 1.2
Lq/Hc 8.9

4. Conclusion

Showerhead MOCVD reactors have been widely used for
their advantages, such as uniform deposition and high pro-
ductivity. This paper focuses on the mass transport process in
the reactor and provides an overall mathematical analysis. The
main conclusions are as follows:

(1) The flow pattern in the showerhead MOCVD reactor is
like “stagnation flow” and the vertical component velocity of a
point above the substrate is only dependent on vertical distance

and is independent of radial position. The boundary layer thick-
ness in stagnation flow is independent of radial distance too.
Thus uniform velocity, concentration and temperature bound-
ary layer can be constructed above the substrate.

(2) The ceiling height of the reactor has important effects
on the residence time and mass transport process. Due to the
very small ceiling height, the showerhead MOCVD reactor has
a short residence time and diffusion plays an important role in
axial transport, while both diffusion and convection are impor-
tant in radial transport.
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