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On modeling the digital gate delay under process variation
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Abstract: To achieve a characterization method for the gate delay library used in block based statistical static
timing analysis with neither unacceptably poor accuracy nor forbiddingly high cost, we found that general-purpose
gate delay models are useful as intermediaries between the circuit simulation data and the gate delay models in
required forms. In this work, two gate delay models for process variation considering different driving and loading
conditions are proposed. From the testing results, these two models, especially the one that combines effective
dimension reduction (EDR) from statistics society with comprehensive gate delay models, offer good accuracy
with low characterization cost, and they are thus competent for use in statistical timing analysis (SSTA). In addition,
these two models have their own value in other SSTA techniques.
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1. Introduction

Accompanied by the further scaling of the integrated cir-
cuit, unavoidable process variation has aggregated the timing
issue in advanced digital designs. With the presence of un-
certainty, an aggressive design with a tight timing closure in
the nominal case would probably result in a very low yield
if no analysis regarding the statistical timing behavior was
performed. As a response from the EDA society, much re-
search focusing on statistical static timing analysis (SSTA) has
emerged in the last decadeŒ1�7�. Those SSTA techniques can
be classified into three groups. Block based SSTAsŒ1�5� prop-
agate statistical delay distributions of some specific forms from
the primary inputs to the primary outputs in topological order.
Path based SSTAsŒ6� perform statistical analysis only on those
paths with the smallest slack values in a deterministic analysis.
Recently, Reference [7] proved that Monte Carlo (MC) ana-
lysis, when being done cleverly, can also be a serious solution
for SSTA.

Though being studied most thoroughly among these three
due to their efficiency and mathematical completeness, block
based SSTA usually has a strict requirement on the forms of
the gate delay distributions, without which the MAX operator
for two path delays that is used a lot in the calculation would
lose its efficiency. The most common case is that the gate de-
lay distributions need to be modeled as low order polynomials
(a.k.a. response surfacemodel, RSM)with respect to the device
parameters under variation, such as gate lengthL and threshold
voltage Vth, with the 2nd order polynomialsŒ3�5� being preva-
lent due to their higher accuracy than the 1st order ones. For a
digital timing library to be useful, the delay of the gates therein
should be characterized under a range of driving and loading
conditions, i.e. with different input slopes and output loads (in
this work, we only consider a purely capacitive load, an ac-
tual one or an effective oneŒ8�, while the method can be ex-
tended to more general loadings, like simple RC structures).

A majority of the researches regarding the statistical gate de-
lay modelsŒ9�12� suggested fitting the polynomial delay mod-
els separately for different input slopes and output loads. The
number of process parameters under variation is about 5 to 10
nowadaysŒ13� for each type of MOSFET, thus making the char-
acterization cost of a statistical library forbiddingly increase to
several tens of times of that of a deterministic library, even with
some profound methodsŒ9�11�.

An alternative approach is to fit the 2nd order polynomials
with respect not only to variational process parameters but also
to input slope and output loadŒ5�. This method, which we will
refer to as a global second order response surfacemodel (global
2-RSM), does cut down the characterization cost sharply, but
it offers really poor accuracy. Figure 1 plots the errors in an
inverter’s delay compared with golden MC data over a 20X
range for both input slope and output load. Errors in mean as
large as a few sigmas (standard deviation) can be observed.
This could be ascribed to the fact that 2-RSM is suitable for

Fig. 1. Errors in themean of the gate delays for an inverter using global
2-RSM over 20X ranges of both input transition time and loading ca-
pacitance. The values are normalized to sigma.
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expansion around one point and prone to fail when the ranges
of parameters become large.

In this work, rather than fitting the polynomial models di-
rectly, we propose to use as an intermediary somemore general
statistical gate delay models. By first characterizing those gen-
eral models with sampled data from circuit simulation and then
using them to cheaply provide the larger set of data required in
the fitting of polynomial models under different driving and
loading conditions, the overall cost will be drastically reduced
and the final model accuracy can be preserved close to that of
those general models. In addition, the general statistical gate
delay model can be used in other analysis directly, such as the
Monte Carlo based SSTA.

The largest hindrance to a general statistical gate delay
model lies in the large number of variational device parameters
involved, which could further increase in the future process. In
this work, we propose to address this problem with an effec-
tive dimension reduction (EDR) technique. This is promising
to extract a few linear combinations of the variational device
parameters, which most effectively dedicate the effect of pro-
cess variation to gate delay. With those reduced variables, two
general purpose statistical gate delay models considering dif-
ferent driving and loading conditions, both of which can be
cheaply characterized and offer good accuracy over a range of
different conditions and/or parameters, are suggested. The ma-
jor contribution of this work can be summarized as follows:

(1) We propose to use the EDR technique to reduce the
number of random variables (RV) involved in the gate delay
model. To obtain the reduced variables, only dc simulation is
required and the process only needs to be done for a few rep-
resentative transistor sizes in a digital library.

(2)With the reduced variables, we apply an artificial neural
network (ANN) to get a general purpose statistical gate delay
model. With close characterization cost, this model offers ob-
vious improvement in accuracy and stableness over the global
2-RSM model.

(3) We adopt comprehensive gate delay models
(CGDM)Œ14�17� into statistical ones based on the reduced vari-
ables. These models apply to both single-stage inverter-like
gates and cascade gates. The comprehensive models offer the
best accuracy. In addition, the physical meaning of the models
may also make it valuable to process engineers who are trying
to study or to mitigate the effect of process variation on gate
delay.

2. Using efficient dimension reduction in statisti-
cal delay modeling

As in other statistical analysis involving standard cells, sta-
tistical gate delay modeling usually assumes that the same vari-
ational device parameters of the MOSFETs of the same kind in
a gate are perfectly correlated. Thus, we can briefly use ‘device
parameters’ when we refer to them in discussion. Usually, in
statistical gate delay models, one random variable is assigned
to each device parameter under variation to describe the sta-
tistical effect. The high dimensionality of RV’s does impede
developing a statistical gate delay model. What makes it worse
is that we cannot tell which process parameters should be re-
garded as ‘under variation’ in model development, since they

Fig. 2. Test structures for NMOS. The gates of the blue transistors
are biased at 0.6, 0.9 and 1.2 V in different tests; the gates of other
transistors are biased at VDD D 1.2 V.

can change from process to process and from time to time. To
solve this problem, we employ the EDR method to find a com-
bination of process parameters that indicates most of the ef-
fect of process variation on gate delay. In this section, we first
briefly introduce EDR techniques and then show how to utilize
them efficiently in our application.

2.1. Efficient dimension reduction technique

Efficient dimension reduction methods, first proposed in
Ref. [18], are effective means for compressing input variables
in statistical regression. Assuming m outputs y are functions
of n input variables x (and some other unknown factors), EDR
methods are engaged to find p (p < n/ linear combinations of
x, namely z, such that the models of y w.r.t. z will be almost as
accurate as those w.r.t. x. Formally, consider the relationships
between x and y, i.e.,

yi � fi .x1; x2; :::; xn/; i D 1; 2; :::; m; (1)

where fi are either functions with unknown parameters or to-
tally undiscovered. If the difficulty lies in the high dimension-
ality of x, EDR is used to find a set of reduced variables z, i.e.,
linear combinations of x,

z D Kx; K D .K ij /p�n D .k1; k2; :::; kp/T; (2)

where ki are reduced directions. With z, we can draw some
good approximations for fi ,

yi � gi .z1; z2; :::; zp/

D gi .kT1x; kT2x; :::; kTpx/ � fi .x1; x2; :::; xn/: (3)

The EDR method we use in this work is Yin’s conditional
moment based method for multiple outputsŒ19; 20�. The sim-
plified algorithm is given in Algorithm 1. For further details,
please refer to the original literature. One thingwe should stress
here is that in EDRmethods, statistics such as variance and cor-
relation needn’t be evaluated very precisely for the method to
give good results.

2.2. Reduction of random variables using EDR

In this subsection, we introduce how to use EDR to reduce
the number of RV’s that are necessary to indicate the statistical
behavior in gate delay.
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Fig. 3. Ids in test structures versus first reduced variable for PMOS.
Each row corresponds to one circuit structure and each column corre-
sponds to one bias condition for the transistor under test.

Algorithm 1: Yin’s EDR algorithmŒ19�

Input: samples of (X , Y )
Output: reduced directions K

1. †X D corr(X ) (Xi’s correlation),�Y D diag(var(Y )) (Yj ’s
variance)

2. U D †X
�1=2 � .X �E.X//, W D �Y

�1=2 � .Y �E.Y //

(whiten)

3. K1 D E(UWT)

4. K2 D E(UWT ˝ WT/ (˝ for Kronecker direct product)

5. K3 D E(UUT˝ WT /

6. K D [K1, K2, K3]

7. K D svd(K) (do singular value decomposition)

In EDR methods described in Section 2.1, in order to get
reduced variables, samples of (x, y) are needed. To address our
problem in gate delay models under variation, x’s are no doubt
variational device parameters. However, in order to avoiding
time-consuming tran analysis on different gates switching un-
der different conditions (this analysis is exactly what we want
to save in the characterization of gate delay models), we need
y to be an intermedium that doesn’t rely on specific gate struc-
tures but does tightly relate to gate delay. We note, as have
some other researchersŒ13; 21; 22�, that gate delays, to a great ex-
tent, depend on Ids of transistors. In other words, Ids, denoting
the driving strength of the transistor, will also be a good indi-
cation of the driving strength of the gate. Therefore, we pick y
as Ids of a transistor under several test conditions. For instance,
the test conditions used in this work are shown in Fig. 2. The
effects of different loads and biases are considered, as well as
the stack effect. We draw random instances of the variational
transistor and get the Ids of the test structures with SPICE. Then
we employ the EDR algorithm to extract the reduced variables.
This procedure is very cheap, since only dc analysis is required
and the number of different test conditions, as well as the sam-
ple size, can be quite small. More importantly, we don’t have
to apply this process repeatedly for each gate; we just need to

Fig. 4. Illustration of artificial neural network models.

do this for a few transistors to cover a typical range of size in
a digital library. A further discussion about this extra cost is
included in Section 5.3.

In our experiment, to be described in detail in Section 5, we
find from the singular values that the first (i.e. most significant)
reduced variables catch 80%–85% of the variation in a transis-
tor’s Ids. In a PMOS case, the Ids of different test structures is
plotted in Fig. 3 against the first reduced variable, namely vecp
(vecn for NMOS). In all test structures, the (Ids, vecp/ points
scatter just in a small range around a curve, indicating that the
prediction of vecp on Ids is good. This allows us to use only
one combined RV to describe most of the statistical effect on
the gate delay from one type of MOSFET in the gate. Refer-
ence [21] showed that Ids has a linear relation with respect to
some major process parameters over a rational region, which
also encourages us to use only one reduced RV.

We are not the first to introduce EDR methods to EDA
society. The authors of Refs. [9, 23] suggested applying EDR
to simplify the models after obtaining the 2-RSM’s. Whereas,
here, we draw the reduced RV’s from transistor’s dc current
information and find those RV’s good indicators of the fluc-
tuation in the driving strength of the gates consisting of these
transistors. We will develop statistical gate delay models based
on them in the next couple of sections. The idea of employing
EDR to obtain some meaningful combined RV’s may be use-
ful in other studies of process variation. Such a method can be
used in a flexible way in the development of statistical models
and algorithms.

3. Gate delay model using an artificial neural
network

An artificial neural network is a general methodology
for modeling undiscovered relationships. A handful of proven
properties indicate that the flexibility in this model is much
larger than in polynomials. As shown in Fig. 4, an ANNmodel
can be conceptually denoted by a diagram of nodes in a se-
quence of layers with weighted connections between nodes in
neighboring layers. The first and last layers are input and out-
put layers, respectively, and there is usually at least one hidden
layer between them. Every node in this diagram stands for a
variable (the nodes in the first and last layer are for input and
output). Let tij be the variable corresponding to the j th nodes
in the i th layer, where i D 0 stands for the input layer and
i D kC1 for the output layer. Then, the forward propagation
of ANN can be expressed as
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tij D fij

 
ni�1X
sD1

Wijst.i�1/s C bij

!
; (4)

where fij are pre-determined activation functions. The most
common function forms include linear and arctan. The para-
meters in ANN models, i.e. the weights, can be extracted by a
back-propagation training processŒ24�, in which the gradients of
the parameters are fed back from the output to the input. To ac-
celerate the training, several algorithms including Levenberg-
Marquardt (LM) are often employed.

To apply ANN to a statistical gate delay model, the vari-
ables in the input layer are related to the variational device para-
meters and the output layer indicates the gate delay. A possible
choice is to use one ANN for the delays of multiple gates that
share a same set of inputs and have similar structures, but in
this work, we stick to the basic case that one ANN is used for
each gate in the library. The advantage of ANN is that it could
handle a large range of parameters and stronger non-linearity,
thus making it sensible to include the input slope and the output
load in the input variables and still hope for reasonably good
results.

Both the training process and the network structure have
an effect on the accuracy of the resulting ANN. Not every re-
lation between input and output can be described with a small
ANN. However, with a large ANN, a larger set of training data
or more reliable training method are required for the model to
give a robust result. When the training set is relatively small (as
in our case where we may want to cut down the times of the
calling circuit simulators,) ANN is prone to be over-fitted. That
means that ANNmay predict poorly for the input variables not
contained in the training set, though it gives acceptable accu-
racy on the training set.

An approach to make the training process more robust was
given in Ref. [25]. In this Bayesian regularization algorithm,
not only the errors between the model output and exact values
but also the sum of the square of the connection weights are lin-
early combined into the target of the minimization. With some
assumption on the prior distribution of the parameters, a pro-
cess consistent with a LM algorithmwas proposed in which the
linear combination coefficients can be automatically selected.

Nevertheless, a more efficient approach to reduce the sam-
ple size to an endurable number while ensuring that the trained
ANN is still of consistently high accuracy is to use a small set
of input variables. A large set of inputs usually complicate the
structure of ANN. With the increase in nodes and connections,
more variables and parameters are involved, which makes the
training process more difficult to stabilize. The EDR technique
in Section 2 is an efficient way to cut down the number of in-
puts. With EDR, one variable for each type of MOSFET rather
than the original 5-10 is sufficient. Thus, the number of vari-
ables in the input layer is fixed at 4 (including the slope and
the load). This also allows more effort to be focused on dis-
covering good ANN structures hopefully working for different
manufacturing processes. We found that ANNworks well with
a structure of either 4-12-1 (one hidden layer) or 4-4-6-1 (two
hidden layers) when taking vecn, vecp, slope and load as the
four inputs. Actually, in our test, the EDR technique, combined
with Bayesian regularization, allows the ANN to be stable with
�100 sample data.

After obtaining the ANN model for interesting ranges of
working conditions, to extract the polynomial gate delaymodel
is much cheaper, since we only need to sample the gate delay as
a response to the deviations in device parameters from theANN
rather than from the costly circuit simulation. With the given
driving and loading conditions, the gate delay is a function of
locally varying device parameters, thus the low order polyno-
mials are hopefully of high accuracy, which suggests that the
final model accuracy will be close to that of the ANN. The de-
tailed procedure is similar to that with the statistical CGDM
model, which is presented in Section 4.3.

4. Statistical comprehensive gate delay model

The ANN model, as well as the polynomial response sur-
face, is a general purpose model in function fitting or in ‘re-
gression’ as used in statistics. Usually, a carefully designed
specific model will outperform those general ones by discov-
ering the underlying mechanics, as was done with determin-
istic CGDMs. After the EDR technique digging out abstract
but dominant variables thus addressing the problem with high
dimensionality, we are able to develop statistical CGDM for
simple inverter-like gates and cascade gates. The basic mod-
eling methodology is to adopt some deterministic models into
statistical ones based on observation and induction. Whereas,
since the parameters in CGDM are physically meaningful, it is
easy to show that the statistical modification is reasonable in
most cases. After developing the models, we will introduce the
procedure to extract the 2-RSM’s used in block-based SSTA
via those general models, which can also be applied to the
ANN gate delay model. In the following discussion, we usu-
ally presume that a rising switching occurs at the input pin of
the gate, which makes the description succinct without lose of
generality.

4.1. Statistical CGDM for inverter-like gates

In the deterministic context, a variety of physical-based,
widely adopted comprehensive models are developed for gate
delayŒ14�17�. A starting point of these models is the behavior
of a simple inverter. For CGDMs, there are two typical cases to
handle, namely the fast transition case and the slow transition
case. In the fast transition case, the input transition rate is fast
relative to the output, with the latter majorly depending on the
load. The fast changing input signal makes the PMOS off and
the NMOS into the saturated region immediately. While in the
slow transition case, where the input transition is slow or the
loading capacitance is small, PMOSwill enter the linear region
or even get saturated. Simultaneously, NMOS cannot always
discharge the load with its saturation current.

With some mild assumptions, Reference [14] gave a sim-
ple analytical form for the gate delay td in the fast transition
case, i.e.

td D
vTH

2
tin C .CLe C CLi C 2CM/

�ST

2CN
; (5)

where tin is the input transition time, whose reciprocal is the
input slope, vTH is NMOS’s threshold voltage normalized with
VDD, CLe and CLi are the extrinsic and intrinsic parts of
the loading capacitance, CN is the gate capacitance of the
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NMOS, and �ST is a characteristic parameter standing for driv-
ing strength of the switching transistor (see the original paper).

Reference [15] discussed the extremely slow transition
case. The output will follow the input as on the dc transfer tra-
jectory. The slope of the output will be proportional to that of
the input, and the gate delay is also asymptotically proportional
to the input transition time. Thus, we have

td D tin

�
1

2m
�

Vinv.1 � m/

mVDD
�

1

2

�
; (6)

where Vinv is the threshold of the gate, i.e. the point on the dc
curve where Vin equals Vout, and m is the dc transfer slope, i.e.,

m D �Vout=�Vin: (7)

To get a simple but accurate CGDM,we blend the fast tran-
sition model in Ref. [14] and the slow transition model in Ref.
[15]. We join the two cases with the following factor k and
1�k,

k D
1

1 C ˛

�
tin=

��
�ST

2CN

�
.CLe C CLi/

��ˇ
; (8)

where ˛ and ˇ are two fitting parameters, whose values change
moderately among different gates. In the fast and slow transi-
tion cases, Equations (5) and (6) work as the gate delay model,
respectively. Then our deterministic CGDM for inverter-like
gates, with 7 parameters, is

td D kŒp1tin C p3.CLe C p2/� C .1 � k/p7tin; (9)

k D
1

1 C p4Œtin=p3=.CLe C p6/�p5
: (10)

Among the seven parameters, p1, p2, p3, p6 and p7 have
physical meanings while p4 and p5 change in a small range,
so the characterization is simple and can be solved by some
gradient based methods. In our test, the errors of this model
and of the deterministic CGDM for cascade gates given below
are well under 1% over a 20X range of both input slopes and
loads for various gates.

After developing the deterministic CGDM, we give a sta-
tistical CGDM for inverter-like gates and one for cascade gates
like AND in the next sub-section. The basic logic underneath
these models is that the parameters in a deterministic model
have clear physical meanings related to the driving strength of
the gate, and the latter is indicated by the reduced variables of
the transistors in that gate, as discussed in Section 2. To reveal
the relation between the model parameters and reduced vari-
ables, a method of observation and induction is employed.

The development of the statistical comprehensive gate de-
lay model is based on the following observation. When we fit
the above deterministic model for gates under variation, the
parameters vary around their nominal values. Figure 5 shows
the plot of parameters of the CGDM for an inverter-like gate
against vecn, the reduced variable for NMOS. We can see from
the plots that all of the parameters except p2 depend heavily on
vecn. Also,p6 andp7 are found to have relationswith vecp. The
relations between model parameters and reduced variables are

Fig. 5. Parameters in comprehensive gate delay model versus vecn.
This is an illustration of the correlation between reduced variables
standing for process variation and the gate delay model parameters.

universal, i.e. they can be observed from different gates in our
experiment. Most of these relations are reasonable in a physi-
cal sense. For example, p3 is proportional to �ST, a substantial
parameter indicating the driving strength of the switching tran-
sistor, so p3 has a linear relation with vecn. p7 is related to
the dc slope and gate threshold voltage, which reflect the driv-
ing strength of both NMOS and PMOS, so it depends on both
vecn and vecp. Based on this observation and its physical in-
terpretation, we modify the CGDM into a statistical one, the
parameters of which are simple functions of reduced variables,
i.e. 8̂̂̂̂

ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

p1 D p10.1 C p1nvecn/;
p2 D p20;

p3 D p30.1 C p3nvecn/;
p4 D p40.1 C p4nvecn/;
p5 D p50.1 C p5nvecn/;
p6 D p60.1 C p6nvecn C p6pvecp/;
p7 D p70 C p7nvecn C p7pvecp;

(11)

together with Eqs. (9) and (10). p7 is of a different form be-
cause p70 may be close to zero. The fitting of the statisti-
cal model can also be done by a gradient based optimization
method with an initial guess set to the values in a deterministic
counterpart.

4.2. Statistical CGDM for cascade gates

A widely accepted assumption for cascade gates is that
the delay of one cascade gate is the sum of the delays of the
inverter-like gates of which the cascade gate is made. That
means that we could simply develop a delay model for 2-
cascade gates like AND by summing two models for inverter-
like gates (which we will refer to as simple gates in this sub-
section). However, there are still some simplifications that
could be made.

First, the input capacitance of the second simple gate is
given. This makes the first simple gate’s delay only rely on the
input slope (or input transition time). Second, the only impact
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of the first simple gate on the second is that the former’s output
slope is the latter’s input slope. Furthermore, since the first sim-
ple gate only needs to drive a small load, the output transition
time is basically small and nearly proportional to the input tran-
sition time (except for when the input slope of the first simple
gate is quite large), thus making the second gate usually expe-
rience a fast transition. Based on these observations, we model
the delay of the two simple gates as

td1 D .p1tin C p2/.1 � p3tin/; (12)

td2 D .p4tin C p5CLe C p6/Œ1 � .p7=CLe/
p8 �: (13)

With a similar observation and induction scheme, wemod-
ify the CGDM for cascade gates into a statistical one. The para-
meters in Eqs. (12) and (13) are changed into some simple func-
tion of vecn and vecp, just as those shown in Eq. (11), i.e., (note,
for a rising input, there is an input falling switch for the second
part of the cascade gates).8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

p1 D p10.1 C p1pvecp/;
p2 D p20.1 C p2nvecn C p2pvecp/;
p3 D p30.1 C p3nvecn/;
p4 D p40.1 C p4pvecp/;
p5 D p50.1 C p5pvecp/;
p6 D p60.1 C p6nvecn/;
p7 D p70.1 C p7pvecp/;
p8 D p80.1 C p8pvecp/:

(14)

For those n-cascade gates, we would not give the models
here. These gates are rare in a standard library and the develop-
ment of their CGDM is easy with the only thing to note being
that those simple gates between the first and the last have a
nearly constant delay.

We should point out here that our method is capable of
creating other statistical CGDMs if some other underlying de-
terministic models are used, as long as the first few reduced
variables could capture most of the delay fluctuation.

4.3. Obtaining 2-RSM’s from statistical CGDM

When the statistical CGDMs are obtained, we can extract
2-RSM’s (or other gate delay model) for any input slope and
load within a range simply by sampling, model evaluation
(which only demands a few simple computations) and linear
least square fitting. Using this approach, we can obtain gate
delay 2-RSM’s with respect to reduced variables (i.e. vecp and
vecn/. Because reduced variables are linear combinations of
device parameters, we also obtain 2-RSM’s with respect to de-
vice parameters. We can use the latter in block based SSTA
or we can just use the 2-RSM’s with respect to reduced vari-
ables (they are close to those being pursued in Refs. [9, 23]).
The correlation between variational device parameters can be
turned into the correlation between reduced variables. Using
the 2-RSM’s with respect to reduced variables will offer two
other benefits. First, with the reduction in the number of ran-
dom variables SSTA will run much faster, since the complexi-
ties of ADD andMAX operators for 2-RSM based SSTA are at
least quadratic functions with respect to the number of RV’s in
the models. Second, by the combination of device parameters,

Table 1. Some statistical assumptions in our experiment.
W L Tox Nch �0 Vth0

Relative 3� 20% 20% 5% 20% 20% 10%
Corr. grad. k 0.05 0.05 0.02 0.03 0.1 0.1
Large 3� 30% 30% 10% 30% 30% 15%

Algorithm 2: 2-RSM characterization procedure
Input: net-lists for logic gates, process variation information,

ranges and specific case for input slopes and loads
Output: 2-RSM’s for a series of input slope and load conditions

for different gates with respect to reduced variables
1. Extract reduced variables for each transistor in the library or

generalized reduced variables for transistors in a region of size
using Yin’s EDR

2. For each gate, each input port, each switching case
3. Sample the gate delays with different slopes, loads and de-

vice parameters
4. Fit corresponding statistical CGDM
5. For each specific slope and load case
6. Fix slope and load, sample vecn and vecp, calculate

the gate delay with the model
7. Fit 2-RSM’s with reduced parameters
8. end for
9. end for

the normality of the resulting distribution will increaseŒ18�,
which adds robustness to those SSTA methods assuming nor-
mal distributions.

If a gate delay 2-RSM’s library is required, we can use the
procedure in Algorithm 2 to characterize the library with our
statistical CGDM, which will offer high efficiency and high
accuracy, as will be shown in the next section.

5. Computer experiment results and discussions

In this section, we first verify that reduced variables are
sufficient to build statistical models for gate delay. Then, we
focus on the accuracy of the proposed statistical gate delay
models. To compare those models with others, such as global
2-RSM’s mentioned in the introduction, we find it fair to use
all of the competitors to draw 2-RSM’s over a range of input
slope and output load for various gates and then compare the
accuracy of the resulting 2-RSM’s. After that, a discussion on
the extraction of reduced variables, and which is the extra cost
of those statistical models, is included.

All of the computations are carried out with a single-core
CPU working at a frequency of 2.8 GHz. In our experiment,
we consider the following six parameters as random sources:
W; L; Tox, dopant density in the channel, i.e.Nch, low field mo-
bility, i.e. �0, and Vth0. All of the sources are assumed to have
normal distribution. The 3� ’s of these sources are listed in Ta-
ble 1 (the variation in Tox is small since high-k gate dielectrics
would be used in the process node where variation is serious)
and we also assume no correlation between different device
parameters. In fact, the distribution and the correlation are ir-
relevant in EDR based methods. Although in most parts of the
experiment we use a library of a 0.13 �m process, the extent of
variation is set large enough to aim at the use in smaller process
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Table 2. Average errors for simple inverter-like gates. Errors in mean and sigma normalized to sigma for the 2-RSM’s drawn from the proposed
statistical gate delay models and global 2-RSM’s are compared to HSPICE MC data. The average is over 36 cases covering 20X ranges of both
input slope and load. Only rising signals at the input are tested. The gate with a ‘@65’ string in the name is tested with a 65 nm library.

Via statistical CGDM (%�/ Via ANN gate delay model (%�/ Via global 2-RSM (%�/

Gate #smpl � � � � � �

INV 200 7.88 3.91 7.18 5.33 48.77 42.38
500 7.30 3.96 5.57 3.83 51.63 12.49

NAND2 200 5.20 3.32 7.56 5.75 18.73 10.36
500 4.53 3.53 4.57 5.61 17.60 5.12

NOR2 200 6.67 4.77 7.24 5.93 42.11 29.62
500 5.25 4.25 5.94 5.65 42.78 8.81

NAND3 200 4.97 4.88 6.13 4.95 5.09 3.43
500 4.32 3.62 4.76 5.50 4.77 2.90

NOR3 200 6.17 3.97 9.37 5.46 39.34 10.89
500 4.98 2.99 5.50 3.73 40.67 7.49

INV@65 200 8.50 5.23 8.01 5.60 58.41 62.38
500 8.41 3.46 6.57 5.47 57.31 21.52

NOR2@65 200 6.07 5.28 8.67 4.91 48.58 37.13
500 5.93 4.09 6.80 4.51 48.42 16.30

nodes. We use NMOS of 0.3 �m/0.13 �m (W=L/ and PMOS
of 0.6 �m/0.13 �m (W=L/ in all of the gates for simplicity. In
the revision of this work, we also tested the proposed method
with a 65 nm library (see Section 5.2 for details). We normalize
all of the errors in both mean and sigma to sigma in this work.
All of the errors are calculated in absolute value before they
are normalized or averaged.

5.1. Basic results on delay 2-RSM’s with respect to reduced
RV’s

We first demonstrate the accuracy of the 2-RSM’s with re-
spect to reduced variables compared with those with respect
to original device parameters. This gives us the basic expec-
tation of how well reduced RVs can describe the gate delay.
After getting the reduced variables, we do random sampling
and fit gate delay 2-RSM’s with those reduced variables di-
rectly. 2-RSM’s with respect to the first reduced variable of
each transistor type, 2-RSM’s with respect to the first two re-
duced variables and 2-RSM’s with respect to original variables
are gained with 30, 50, and 200 samples, respectively. The er-
rors inmean and sigma, comparedwith the SPICEMonte Carlo
results, of the three cases are under 5%, 5% and 1.5% sigma,
respectively. The extra error caused by using reduced variables
is below 4% sigma, even with far fewer samples. The effects of
using the first one or two reduced variables of each MOSFET
are close, thus we use only one reduced variable in statistical
gate delay models.

5.2. Results on the statistical gate delay models

Here we present the experimental results on proposed sta-
tistical gate delay models. To compare their accuracy with
global 2-RSM, which has a close characterization cost, we sug-
gest comparing the accuracy under some specific input and out-
put condition. And since the global 2-RSM was proposed in
2-RSM based SSTA, we feel it is fair to compare the accuracy
of 2-RSM’s drawn from all of the models.

The tested range of input transition time is [10 ps, 200
ps] and the range of load is [1 fF, 20 fF]. We pick some typ-
ical inverter-like gates and some cascade gates in this experi-

ment. For each input of each gate, we first fit both models with
SPICE results, and then extract 2-RSM’s with specific slopes
and loads. The results in Tables 2 and 3 are averaged over 36
specific input slope and load conditions and over three inde-
pendent runs. The results of the same gate but at different pins
are averaged to save the length. In our test, to fit the models,
sample sizes of 200 or 500 are used. For the ANNmodel, as we
mentioned in section 3, a structure of either 4-12-1 (one hidden
layer) or 4-4-6-1 (two hidden layers) works well. The results of
these two structures are close and appear a bit better than other
structures with one or two hidden layers in our experiment. We
list the results from the 4-12-1 in Table 2.

The average errors in mean (�/ and in sigma (�/ normal-
ized to sigma for inverter-like gates are listed in Table 2. The
errors of global 2-RSM’s can be very large or quite small, de-
pending on the gate. Since it is hard to predict what gates will
result in good accuracy, the use of the global 2-RSM method
is limited to handling situations where small ranges of input
slope and load are supposed. The proposed ANN model offers
better and more stable results. Since the mean/sigma ratio is
about 8–9 in our experiment, the relative error in mean is al-
ways below 1%, while in a few cases the relative error in sigma
will be around, or a little above, 5%. If we just use the original
variational device parameters rather than the reduced variable
as the input of the ANN, sometimes we can obtain acceptable
results. However, it also happens sometimes that the results
will be quite poor. The statistical CGDM gives the best results
among the three where the average errors are below 5% sigma
even with as few as 200 data (it can be fitted with even �100
data). In all of the runs, the maximum errors of the CGDM are
less than 18% sigma in mean values and less than 12% sigma in
sigma values. Considering the 8–9 mean/sigma ratio, the max-
imum relative error in mean is around 2%. The results on cas-
cade gates are listed in Table 3. The ANN model behaves very
similarly and we choose to omit the numbers to allow this table
to be put in one column. Interesting enough is to have a look at
the results from global 2-RSM’s. In this case, it even outper-
forms the proposed statistical CGDM, even though the latter
continues to provide solid results. It can be ascribed to the fact
that for cascade gates, the input slope only has a small effect,
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Table 3. Average errors for some cascade gates. The settings are the
same as in Table 3. Only results from the proposed statistical CGDM
and the global 2-RSM are listed to save space.

Via statistical
CGDM (% �/

Via global
2-RSM (% �/

Gate #smpl � � � �

XOR 200 7.56 4.59 7.09 5.03
500 6.23 3.83 7.28 4.18

BUF 200 4.60 5.59 5.04 2.58
500 4.32 4.60 5.17 2.77

AND2 200 4.43 4.40 6.74 2.24
500 4.38 3.80 6.68 2.51

OR2 200 3.62 5.25 3.85 2.33
500 2.72 3.11 3.57 1.85

AND2@65 200 5.62 5.71 7.31 4.58
500 5.25 4.34 6.99 2.40

and the gate delay depends almost linearly on the output load in
the test range. However, it is still of some risk to use 2-RSM’s
when the concerned range changes.

We just mentioned in Section 4.3 that we can rely the SSTA
on those 2-RSM’s with respect to reduced variables, i.e., vecp
and vecn, which is a more natural approach with our models
and enjoys some theoretical advantages. As a simple test to see
how well the 2-RSM’s with reduced variables will do in SSTA,
we use thesemodels to predict the periods of inverter ring oscil-
lators (RO). The correlation of each device parameter between
gate i and gate j is assumed to have a linear form cij Dmax(1–
k*ji � j j, 0). The gradients k for different random sources are
listed in Table 1. The correlation between reduced variables
of different gates can be drawn from these correlation values.
We then perform principal component analysis (PCA)Œ2� to get
a further reduction of random variables in the circuit. Finally,
we use the resulting principal components and the 2-RSM to
predict the period of the RO in the same way as in SSTA. The
results are listed in Table 4 compared with the SPICE MC re-
sults. Errors of less than 4% sigma can be observed in most
cases. The pdf and cdf are plotted in Fig. 6.

Actually, our model will offer good accuracy even when
the variations are quite large. The variations being as large as
those listed in the last line of Table 1, the average errors in gate
delay 2-RSM’s of an inverter fitting from a statistical CGDM
are 1.3% and 4.0% for mean and sigma, respectively. In this
test, 300 SPICE data are used to fit the model.

Finally, to address the generality of the proposed method,
tests with another 65 nm library were also done. The NMOS
of 150 nm/65 nm (W=L/ and PMOS of 300 nm/65 nm (W=L/

are used in the tests. The ranges of slope and load change to
[5 ps, 100 ps] and [0.2 fF, 4 fF] accordingly. The results on a
few gates are listed in Tables 2 and 3 with the gate names suf-
fixed with ‘@65’. We come to the same conclusion with the
different library.

5.3. On the extraction of reduced RV’s

The reduced RV’s are important to both of our models. The
cost of extracting those reduced variables is thus worth discus-
sion since it adds to the total cost of those models and thus
to the polynomial gate delay model characterization procedure
using those models as intermediaries.

Fig. 6. PDF and CDF for distribution of INV ROs periods. MC re-
sults and the results predicted using 2-RSM with reduced variables
and generalized reduced variables are presented.

Table 4. Errors in some statistics of the predicted RO periods normal-
ized to sigma. Results in parentheses are with generalized reduced
variables.

Num. Mean (% �/ Sigma (% �/ CDF (% �/

21 0.18 (5.08) 1.81 (5.71) 3.55 (4.67)
31 3.12 (3.85) 0.15 (7.23) 1.91 (6.68)
51 1.77 (3.01) 3.99 (4.75) 4.01 (4.71)
101 7.12 (2.30) 1.85 (9.07) 3.02 (7.71)

In our experiment, we extract the reduced variables from
1000 random data, which take about one hour on a personal
computer (single core) with most of the time spent on file I/O
and parsing. Furthermore, we find that the reduced variables do
not need to be very accurate to get good models for gate delays.
A set of 300 samples seems enough, since the cosine values of
the angle between the first reduced directions obtained from a
run of 1000 data and a run of 300 data is always more than 0.96
in our test.

For practical libraries consisting of an amount of different
sized transistors, we do not need to extract reduced variables
for every single transistor. Transistors of similar physical size
can be grouped and we only need to draw generalized reduced
variables for each group. To do this, we only need a way to
express the variations on different transistors with a uniform
random variable. This relies on the properties of process varia-
tions, i.e. for each parameter, whether relative or absolute vari-
ation is constant, or the variation obeys Pelgrom’s formula, etc.
When the transistors in a gate are not the same (but close to each
other, as in most practical cases), we can also describe the vari-
ations with generalized reduced variables. The extra effort of
extraction of reduced variables is further cut down by using
generalized reduced variables. For example, we draw general-
ized reduced variables from NMOS of 0.3 �m/0.13 �m and
of 0.6 �m/0.13 �m, assuming that the relative variations are
the same. Generalized reduced variables are also drawn from
PMOS of 0.6 �m/0.13 �m and of 1.2 �m/0.13 �m. The pre-
dicted periods of inverter ROs using these generalized reduced
variables are still of good quality, as shown in Table 4 and
Fig. 6.
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6. Conclusion

In this work, we have proposed an artificial neural network
based model and statistical comprehensive gate delay mod-
els, which stem from physically meaningful models to support
the statistical timing analysis, such as providing an efficient
method to build a statistical polynomial gate delay library as
required in block based SSTA or being used directly in Monte
Carlo based SSTA. The major enabler of those models is the
use of an effective dimension reduction technique in statisti-
cal gate delay modeling, cutting down the number of variables
sharply.

Those models take into account the effect of both process
variation and gate operation conditions including input slope
and output load, and they exhibit good accuracy over a practi-
cal scope, even though the fluctuations in device parameters are
large. The characterization cost of those models is well under
control and only 100–200 SPICE runs will be enough to cover
all operation conditions, especially in the case with the statisti-
cal CGDM. The physical meaning of the model also provides
a manner to connect process variation with gate delay directly.

We have shown how to extract 2nd order response surface
models with the proposed models. The resulting accuracy is
much better than an existing method of a close characteriza-
tion cost. We have also argued that the extra cost of our method
is very low. The EDR method is among the key techniques in
developing this model and we are hopefully to see more appli-
cations of this technique in the study of process variation.
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