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Novel closed-form resistance formulae for rectangular interconnects�
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Abstract: Two closed-form formulae for the frequency-dependent resistance of rectangular cross-sectional inter-
connects are presented. The frequency-dependent resistance R.f / of a rectangular interconnect line or a intercon-
nect line with a ground plane structure is first obtained by a numerical method. Based on the strict numerical results,
a novel closed-form formulaR.f / for a rectangular interconnect alone is fitted out using the Levenberg–Marquardt
method. This R.f / can be widely used for analyzing on-chip power grid IR-drop when the frequency is changing.
Compared to the previously published R.f / formula for an interconnect, the formula provided here is more accu-
rate during the frequency transition range. Also for a bigger width to thickness ratio, this formula shows greater
accuracy and robustness. In addition, this paper fits out the closed-form R.f / formula for a micro-strip-like inter-
connect (an interconnect with a ground plane), which is a typical structure in the on-chip or package power delivery
system.

Key words: interconnect; resistance; Levenberg–Marquardt method
DOI: 10.1088/1674-4926/32/5/054008 EEACC: 2570

1. Introduction

Decades of remarkable technology scaling-down has re-
sulted in the fabrication of integrated circuits (ICs) with smaller
feature sizes, higher levels of integration, faster operating fre-
quencies and shorter response times. Although these advances
largely benefit IC performance, they also lead to complications
that pose significant challenges to on-chip interconnect design,
such as delay, power integrity, and signal integrityŒ1�.

In the transient simulations of interconnects, the
frequency-dependency of the p.u.l. (per-unit-length) para-
meter R.f / of transmission lines must be extracted for both
on-chip and package interconnectsŒ2�. A simple and accurate
interconnect resistance model is the basic requirement in
advanced simulation. In order to achieve high simulation
efficiency, closed-form formulae are widely used to represent
the frequency-dependent resistance of interconnects and some
formulae have been presented in Refs. [3–5]. However, after
we developed a strict numerical calculation for the intercon-
nection’s resistance, we found that the published formulaeŒ3�5�

have many limitations. The accuracy is also a concern in the
frequency transition rangeŒ3�. This is the motivation for the
work reported here. We are trying to provide a novel R.f /

formula for an interconnect or for an interconnect with ground
plane with higher accuracy, bigger line width-to-thickness
ratio, and wider frequency range.

In this paper, we first develop a numerical method to calcu-
late the resistance of a rectangular copper line and try to figure
out how the finalR.f / is changing based on which parameters
and in which way. We also give the current distributing in the
cross section of the conductor. Then two closed-form formu-
lae are fitted out using the Levenberg–Marquardt method based

on the numerical results. The final comparison proves that the
formulae have obvious advantages in their accuracy and effi-
ciency in simulation.

2. The numerical method for resistance extrac-
tion considering the skin effect and the prox-
imity effect

To capture the interconnect skin effect and proximity ef-
fect accurately, we first develop a numerical method to cal-
culate frequency-dependent resistance for a rectangular cross
sectional interconnect. To this simple resistance extraction, as
shown in Fig. 1, the rectangular line is discretized into many
filaments.

The system equation can be generated as

V D zI; (1)

where V is the per-unit length voltage drop on the line and I

is the current density. V and I are the vector with number of

Fig. 1. Rectangular line and its discretization of mesh. Optional
ground plane and line image are also shown in the dot-line.
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N and N D Np C Ng, Np and Ng are the rectangular line
discrization number and its image line’s discretization number
if you have the optional ground plane. For each filament, it has
a resistance r and inductance l , between the different filaments
there are inductance coupling. The impedance matrix z can be
expressed as

Œzij �N �N D Œrij �N �N C j!Œlij �N �N ; (2)

where

rij D

8<:
1

�Ai

; i D j;

0; i ¤ j ;
(3)
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i
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(4)
where Ai is the cross sectional area of filament.

The 2D boundary elemental method (BEM) is used to cal-
culate Eq. (4) and the formula is
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(5b)

In Eq. (5b), N1; N2; N3; N4 are the Gaussian quadrate or-
ders in x and y directions, and wm; wn; wm0 ; wn0 are the corre-
sponding weights. To ensure the accuracy, we use Eq. (5a) to
calculate the self inductanceŒ6�. Define f .x/j

y
x D f .y/�f .x/

and
f .X; Y / D

�0

96�A2
i

˚�
X4 C Y 4 � 6X2Y 2

�
ln.X2 C Y 2/

�8XY
�
X2 tan�1 .Y=X/ C Y 2 tan�1 .X=Y /

�	
;

X D x � x0; Y D y � y0:

All of the filaments in the rectangular line have the same
cross voltage and voltage drop along the line length. The fil-
aments in the rectangular line have their own current, and the
summation of all the filaments’ current is the final rectangular
line’s current. Therefore, by solving Eq. (1), one can obtain the
current distribution as

I D z�1V D yV: (6)

Based on the above assumptions, the N � N filaments l

and r matrices can be size reduced to 2 � 2 matrices by the
following approach,

Œyij �N �N D Œzij ��1; (7)

ŒYij �2�2 D

�
Ypp Ypg
Ygp Ygg

�
; (8)

where

Ypp D

NPX
iD1

NPX
j D1

yij ; Ypg D

NPX
iD1

NX
j DNPC1

yij ;

Ygp D

NX
iDNPC1

NpX
j D1

yij ; Ygg D

NX
iDNPC1

NX
j DNPC1

yij : (9)

Fig. 2. 2D topographic plot of current density distribution over the
cross section of a single line.

Fig. 3. 2D topographic of current density distribution over the cross
section of a single line with a ground plane.

Fig. 4. 2D topographic of current density distribution over the cross
section of two lines with a ground plane.

Then inverse the 2 � 2 Y matrix you get the 2 � 2 Z matrix,

ŒZij �2�2 D R C j!L D

�
rpp C j!lpp rpg C j!lpg
rgp C j!lgp rgg C j!lgg

�
D

�
Ypp Ypg
Ygp Ygg

��1

: (10)

Finally, real.Z11/ is the rectangular line’s per-unit-length
frequency dependent resistance. The technique has been used
by some software, such as FastHenry, to calculate the rectangle
line’s frequency-dependent p.u.l. resistanceŒ7� and the results
are accurate.

Figure 2 is the 2D topographic of current density distribut-
ing over the cross-section of a single line. Clearly, the current
density distributing is symmetric with respect to the x D w=2

and y D t=2 lines (where w is line width, t is line thickness).
Moreover, an explicit edge behaviour is observed. Figures 3–5
are the 2D topographic of current density distributing over the
cross-section of conductors with a ground plane. In the pres-
ence of a ground, the current density distributing of the con-
ductor can be somewhat different from that of the isolated case
due to the proximity effect.

Figure 6(a) presents the frequency-dependent resistance
obtained by the numerical method for a single rectangular line.
In the picture, we do the normalization whichmeans the picture
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Fig. 5. 2D topographic of current density distribution over the cross section of four lines with a ground plane.

Fig. 6. Normalized frequency dependent per unit length resistance (R(f )/Rdc).

shows R.f /=Rdc instead of R.f /. For different w=t (width
to thickness) ratios, we can see all of the R.f / convergent to
the Rdc at low frequency. As the frequency is increased, the
wider line first shows skin effects while the fine line shows the
skin effect later. Figure 6(b) shows the R.f /=Rdc for a sin-
gle line with a ground plane nearby (where d is the distance
between the center of the line and the ground place surface).
From the picture, one can see that as the ground plane intro-
duction, the R.f / start increase at early frequency. Also, if the
ground plane is closer, the proximity effect is heavier. The line
dimension used in Fig. 6(b) is w D 6 �m, t D 4 �m.

3. The closed-form formulae

3.1. Resistance of single line with rectangular cross section

The frequency-dependent resistance of a single line is rep-
resented as(

Rs
l .f / D Rdc C nsf C msf 2; f < fb; (11a)

Rs
h.f / D ecsCbs

1
ln.f =f0/Cbs

2
Œln.f =f0/�2 ; f > fb; (11b)

where Rdc is the direct resistance, f0 is the break frequency
f0 D

4
��0�

�
wCt
wt

�2, � is the conductivity and � is the per-
meability, and ms; ns; cs; bs

1; bs
2 are constants to be described.

Equation (11a) is used to compute resistance in the range of low
frequency it ensures R.f / equals to Rdc at zero frequency, and
Equation (11b) corresponds to the high frequency resistance.

To maintain the continuity of the two formulae of R.f /

at fb, we use two equations to get the parameters ms; ns in
Eq. (11a). �

Rs
l .f / D Rs

h.f /
� ˇ̌

f Dfb ; (12)(
d

�
Rs

l .f /
�

df
D

d
�
Rs

h.f /
�

df

)ˇ̌̌̌
ˇf Dfb ; (13)

where Equation (12) shows the continuity of the R.f / and
Equation (13) shows the smoothness at the turning points.

Then it can be found that

ns
D

�Rs
h.fb/

�
bs

1 C 2bs
2 ln .fb=f0/ � 2

�
� 2Rdc

fb
; (14)

ms
D

Rs
h.fb/

�
bs

1 C 2bs
2 ln .fb=f0/ � 1

�
C Rdc

f 2
b

: (15)

DwightŒ8� introduced the principle of similitude, which
states that the ratio of ac to dc resistances for an isolated rect-
angular strip conductor is a function of two variables, namely,
the ratio of strip width to thickness (w=t/, and the frequency.
So the parameters cs; bs

1; bs
2; f s

b are determined by the size of
the dimension of the line and their values can be calculated by
the Levenberg–Marquardt method.

The Levenberg–Marquardt methodŒ9; 10� is an iterative
technique that locates the minimum of a multivariate function
that is expressed as the sum of squares of non-linear real-valued
functions. It has become a standard technique for non-linear
least-squares problems.

Using the Levenberg–Marquardt method, we obtain large
numbers of values of cs; bs

1; bs
2; f s

b . Figure 7 represents the
changing rule of cs. Obviously, cs is linear to ln.w=t/ and
ln rdc. Then we can use a multiple linear function to express
cs, as shown in Eq. (16). Similarly, we receive Eqs. (17)–(19).
Taking Eqs. (16)–(19) into Eq. (11b), we can calculate the re-
sistance in the high frequency range.

cs D 0:468 C 0:974 � lnRdc C 0:09 � ln
w

t
; (16)

bs
1 D 0:375 � 0:021 � ln

w

t
C 5 � 107

� wt; (17)
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Fig. 7. Parameter cs is linear to the value (a) ln.w=t/ and (b) ln rdc.

Fig. 8. Values of the parameters are changing with different distance (a) ct, (b) bt1, and (c) bt2.

bs
2 D 0:048 � 3653:417t; (18)

fb D 4 � 107
C 2297833 Rdc C 1300194 �

w

t
: (19)

The coefficients in Eqs. (16)–(19) are also obtained by the Lev-
enberg–Marquardt method.

So Equation (11a) combined with Eq. (11b) constitutes our
final closed-form formula for single rectangular line’s p.u.l.
R.f / and the parameters in Eq. (11) can be calculated by
Eqs. (14), (15) and (16)–(19).

3.2. Formula of line considering the proximity effect

In the presence of a ground or other nearby lines, the re-
sistance of a line can be somewhat different from that of the
isolated case due to the proximity effect. So the frequency-
dependent resistance is a function of three variables: the di-
mension of the line, the distance and the frequency.

To consider the ground plane effect, the final rectangular
interconnect with a nearby ground plane’s frequency dependent
p.u.l. resistance R.f / is represented as8<:Rt

l .f / D Rdc C ntf C mtf 2; f < fb; (20a)

Rt
h .f / D Rdc

h
ct C bt

1 lnp C bt
2 .lnp/2

i
; f > fb; (20b)

where p D
p

2��fA, and A is the cross-section area of the
line.

The parameters ct; bt
1; bt

2 in Eq. (20b) correspond to the
size of the conductor and the distance between the conduc-
tor and the ground plane. They are also fitted by the Lev-
enberg–Marquardt method. Figure 8 represents the relation

between parameters ct; bt
1; bt

2 and the distance from numeri-
cal computations. Obviously the curves can be differentiated
by dimension, so the parameters b01; b02; b11; b12; b21; b22 in
Eqs. (21)–(23) can be described by dimension, as shown in
Eq. (24)–(29). The derivation of Eq. (20a) is similar to
Eq. (11a).

ct D eb01C
b02

d ; (21)

bt
1 D �eb11C

b12
d ; (22)

bt
2 D �eb21C

b22
d ; (23)

b01 D �0:119 C 204:304=Rdc; (24)

b02 D .0:582 C 1104:015=Rdc/ � 10�6; (25)

b11 D �0:884 C 419:6024=Rdc; (26)

b12 D .1:584 C 1003:585=Rdc/ � 10�6; (27)

b21 D �0:442 C 116:167=Rdc; (28)

b22 D .1:827 C 863:608=Rdc/ � 10�6; (29)

where d is the distance between the center of the line and the
ground place surface. The ground plane is regarded as the PEC
plane. For the two parameters mt; nt in Eq. (20a), their values
can also be obtained by the two equations�

Rt
l.f / D Rt

h.f /
�

j f Dfb ; (30)
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Fig. 9. Comparison R.f / between our Eq. (11), Chen’s formulaŒ4� and the numerical method. In (a), the line size is 20 � 2 �m2. In (b), the line
size is 200 � 200 �m2.

Fig. 10. Comparison R.f / between our Eq. (20), the BalachandranformulaŒ5� and the numerical method. The line size is 6 � 4 �m2.

(
d

�
Rt

l.f /
�

df
D

d
�
Rt

h.f /
�

df

)ˇ̌̌̌
ˇf Dfb : (31)

And they (mt; nt/ are

mt
D

0:5Rdc

�
bt

1 C 2bt
2 ln

p
2��fbA C 2

�
� Rt

h.fb/

f 2
b

; (32)

nt
D

2Rt
h.fb/ � 0:5Rdc

�
bt

1 C 2bt
2 ln

p
2��fbA C 4

�
fb

: (33)

So Eq. (20a) combined with Eq. (20b) constitutes the fi-
nal closed-form formula for a single rectangular line with a
nearby ground plane’s frequency-dependent p.u.l. R.f / and
the parameters in Eq. (20) can be calculated by Eqs. (21)–(29)
and (32)–(33).

4. Results and discussion

Equation (11) is an explicit expression that contains the
frequency and the line size as variables. To validate the for-
mula, we compare it with the numerical results and Chen for-
mulaŒ4�.

Figure 9 shows the comparison between the different re-
sistance values of a single line: the proposed formula (11) re-
sults, Chen formulaŒ4� results and the numerical results. The nu-
merical results are regarded as the standard true results. From

the picture, one can see our proposed formula results always
agree well with the numerical results in all frequency ranges
and with different dimensions. The maximum relative error is
less than 5%. While for Chen formulaŒ4�, for 20 �m width and
2 �m thickness line, it matches well with the numerical results
(Fig. 9(a)) with about 10% error in the transition frequency
range; but in the case of a 200 �m width and 2 �m thickness
line, Chen’s formula results are far away from the numerical
results which show more than 50% error in Fig. 9(b). These
experiments show that our equation (11) is valid in the larger
line geometry range and is much better than Chen’s formula.

BalachandranŒ5� derived a formula to calculate the resis-
tance while taking the ground plane into account. Figure 10
compares the frequency-dependent resistances considering the
proximity effect with Eq. (20) proposed in this paper and the
Balachandran formulaŒ5�. It can be seen that when the distance
between the conductor and the ground changes, Equation (20)
agrees fairly well with that from numerical computation. Also,
Figure 10 shows our formula’s accuracy advantages over the
Balachandran formula in large line w=t ratio ranges.

5. Conclusion

In this paper, a new formula for frequency-dependent
resistance of a rectangular cross-sectional conductor is pre-
sented in Eq. (11); frequency-dependent resistance of rect-
angular line with a nearby ground plane is presented in
Eq. (20). Both closed-form formulae are fitted out in the Lev-
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enberg–Marquardt method based on the accurate numerical re-
sults. Compared to the former formulae found in the literature,
these two formulae have obvious advantages in the accuracy
and application dimension varying ranges. The proposed for-
mulae can be used widely in IC, package and board level CAD
simulation for power or signal integrity.

References
[1] Wong B P, Mittal A, Cao Y. Nano-CMOS circuit and physical

design. New York: John Wiley & Sons, 2004
[2] TsukM J, Kong JA.A hybridmethod for the calculation of the re-

sistance and inductance of transmission lines with arbitrary cross
sections. Microwave Theory and Techniques, 1991, 39(8): 1338

[3] Clayton R P. Analysis of multiconductor transmission lines. New
York: John Wiley & Sons, 1994

[4] Chen H, Fang J. Modeling of impedance of rectangular cross-
section conductors. Electrical Performance of Electronic Pack-

aging, 2000: 159
[5] Balachandran J, Brebels S, Carchon G. Compact broadband re-

sistance model for microstrip transmission lines. Electrical Per-
formance of Electronic Packaging, 2004: 83

[6] Weeks W T, Wu L L, McAllister M F, et al. Resistive and induc-
tive skin effect in rectangular conductors. IBM Journal of Re-
search and Development, 1979, 6: 652

[7] Wei Hongchuan, Yu Wenjian, Yang Liu, et al. Fast inductance
and resistance extraction of 3-D VLSI interconnects based on the
method of K element. Acta Electronica Sinica, 2005, 8: 1635

[8] Faraji-Dana R, Chow Y. Edge condition of the field and AC re-
sistance of a rectangular strip conductor. Microwaves, Antennas
and Propagation, 1990, 137(2): 133

[9] Madsen K, Nielsen H B, Tingleff O. Methods for non-linear least
squares problems. Informatics and Mathematicl Modeling Tech-
nical University of Denmark, 2004: 24

[10] Chen Baojun, Tang Zhen’an, Yu Tiejun. A novel closed-form re-
sistancemodel for trapezoidal interconnects. Journal of Semicon-
ductors, 2010, 31(8): 084011

054008-6


