Vol. 32, No. 5 Journal of Semiconductors

May 2011

A software solution to estimate the SEU-induced soft error rate for systems
implemented on SRAM-based FPGAs*

Wang Zhongming(F £51)12 T, Yao Zhibin(%k:£5#)?, Guo Hongxia(3541.85)?,
and Lii Min(2)" 2

IDepartment of Engineering Physics, Tsinghua University, Beijing 100084, China
2Northwest Institute of Nuclear Technology, Xi’an 710024, China

Abstract: SRAM-based FPGAs are very susceptible to radiation-induced Single-Event Upsets (SEUs) in space
applications. The failure mechanism in FPGA’s configuration memory differs from those in traditional memory
device. As a result, there is a growing demand for methodologies which could quantitatively evaluate the impact
of this effect. Fault injection appears to meet such requirement. In this paper, we propose a new methodology to
analyze the soft errors in SRAM-based FPGAs. This method is based on in depth understanding of the device
architecture and failure mechanisms induced by configuration upsets. The developed programs read in the placed
and routed netlist, search for critical logic nodes and paths that may destroy the circuit topological structure, and
then query a database storing the decoded relationship of the configurable resources and corresponding control bit
to get the sensitive bits. Accelerator irradiation test and fault injection experiments were carried out to validate this

approach.

Key words: radiation effect; single-event effect; SRAM-based FPGAs; fault injection

DOI: 10.1088/1674-4926/32/5/055008

1. Introduction

Reconfigurable SRAM-based FPGAs have already be-
come an appealing solution for space electronic equipments.
However, the large amount of SRAM cells brings high sensi-
tivity to radiation-induced Single-Event Upsets (SEUs). When
considering the SEU effect in FPGAs, two kinds of upsets
should be considered respectively. The first one happens in the
embedded user memory, which can be viewed as a temporary
effect. The disruption disappears as soon as a new value is writ-
ten into the affected element. The second type of SEU happens
in the configuration memory, which is much severer in prac-
tice. They can permanently modify the topological structure of
the user circuit until the bitstream is reloaded. Fault tolerant
design techniques, such as triple modular redundancy (TMR)
and periodic scrubbing, were suggested to mitigate this kind of
upset!!-2,

Generally, the SEU tolerance is characterized using the
concept of upset cross section. The cross section varies as
a function of the impinging particle’s linear energy transfer
(LET) or proton’s energy, which can be fitted by a Weibull
curve. The parameters of this curve can be used as input of
programs like CREME96 to predict the system failure rate in
different orbits. In radiation test, the device static cross section
is computed as the upset number divided by the incident parti-
cle fluence.

Number of Upsets

(M

Ostatic = . .
statie Particle Fluence

However, a design never spends all the configurable re-
sources in a specific device. As a result, not all upsets have

EEACC: 2550;2530; 2570

impact on the designed system. If the device upset cross sec-
tion is used to predict the system failure rate, the result will be
too conservative. The concept of dynamic cross section is sug-
gested to estimate the system dependability in SRAM-based
FPGAs, in which the number of upset is replaced by the num-
ber of system failures!?].

Number of System Failures

2

Odynamic — N
i Particle Fluence

On the other hand, if we define “sensitive” bits as those
which may induce modifications to the implemented design,
the difference between system failure and configuration up-
set would be equal to the number of sensitive bits over the to-
tal number of configuration bits!), as shown in the following
equation:

Odynamic __ Number of Sensitive Bits

Osaic Number of Configuration Bits’

3)

The static cross section should only be characterized us-
ing accelerator irradiation test. However, if different systems
built on FPGAs have to be verified using accelerator test, it
would be too expensive and unpractical. Therefore, simulation
approaches are developed to evaluate the dynamic SEU effect
for a specific design.

Several fault injection systems have been reported!
Generally, a reference device is needed and the output mis-
match of the two device is monitored. The only difference be-
tween fault injection and real SEUs is that the upsets are not
introduced by real particles but artificial modification of the

5-7]

* Project supported by the National Natural Science Foundation of China (No. 10875096).

1 Corresponding author. Email: wang-zm02@mails.tsinghua.edu.cn
Received 8 November 2010, revised manuscript received 4 December 2010

© 2011 Chinese Institute of Electronics

055008-1

J. Semicond. 2011, 32(5)

Wang Zhongming et al.

XDL Netlist of the Design > Netlist Parser

Configured Resources

For each resource, recognize it’s possible
failure mode according to the resource type

| LUT bit upset Mux mis-select

PIP open PIP short

according to the failure mode

For each resource, find all the relative resources |

Configurable

(might provoke failures)

Resource List

Y

The relational database is built on MySQL DBMS

I Indexes are created for later query

Bitstream Decoding Tool atabase about configurablg
Based on APIs in JBits SDK resources and bit location
R

Query the sensitive bit location from the database

Sensitive Bits

Fig. 1. The flow chart of the proposed analysis tool.

bitstream. Bits are flipped one by one before written into the
configuration memory. Fault injection is very attractive for its
great flexibility and has become a standard tool to study the
effectiveness of redundant mitigation methods(® %!, However,
there are still some drawbacks of fault injection. First, it treats
the device as a black box and there is no prior information about
where the sensitive bits may locate and how they affect the sys-
tem behavior. As a result, the injection procedure is time con-
suming. Second, the injection result does not contain enough
information for improving the mitigation strategies. Moreover,
if the look up table (LUT) is configured as user memory, the
bit injection into these places may alter current circuit state and
cause persistent output error, which would interrupt the auto-
matic injection flow.

There are also some other simulation approaches be-
sides fault injection. STAR-LX is proposed in a series of
works[19=12] in which a graphic model of the FPGA archi-
tecture is developed, and then an algorithm is used to search
for sensitive nodes in the graph. This program only deals with
the routings of the device. The failures inside a logic node is
not mentioned. Another tool named STARC was also designed
to analyze the reliability issue in FPGAs with the emphasis of
domain cross errors in TMR structurel'3]. It uses the industry
standard EDIF circuit representation as input and a dependency
graph of the circuit is created during a hierarchical exploration.
The limitation of this method is that EDIF does not contain
placement and routing information. STARC has to use statis-
tical model to estimate the sensitive bit for each routing logic.
By the way, these two projects are kept as a closed property
and not available for public usage. The drawbacks of existing

tools drive us to find alternative solution to assess the reliability
issue of systems build on SRAM-based FPGAs.

2. Overview of the proposed methodology

After acomprehensive review of literatures, we realize that
if we can model FPGAs in different hierarchies using objective
orient manner and achieve information about which and how
the resources are programmed, the critical part of the circuit
might be located more directly.

The developed approach is composed of three modules, as
shown in Fig. 1. The first part is a bitstream decoding tool.
The decoded result is the relationship of programmable re-
sources and corresponding control bits. The second part is a
netlist parser, which reads in the placed and routed netlist to get
all the configuration state of programmed resources. The third
part defines an SEU propagation rule. For each configured re-
source, we identify all the relative logic nodes and paths, which
may destroy the circuit topological structure. The control bits
of these critical resources are considered to be “sensitive” .
If upset occurs in these places, the circuit description might be
affected. In the following sections, we will describe how each
part are implemented to constitute our analysis tool.

2.1. Basic structure of the Xilinx FPGAs

Xilinx FPGAs have a regular array of configurable logic
blocks (CLB), surrounded by configurable I/O blocks (IOB)
and on-chip user BlockRAMs['413] as shown in Fig. 2. The
CLBs are programmed to implement different digital logic

055008-2

J. Semicond. 2011, 32(5)

Wang Zhongming et al.

DLL 10B DLL
Ei = 1 framne data
. 1CLB
18bit 1ﬁ
1044 101/

= c

S =

=2 c =2
=
£ 3 E c S £
2 0 oW 0 w o= ERmy

o (o] E o n @

SEl = [2€ ~£|3E cg| = [B¢€
ozl g 6 8 | --CLB Columns-*- o o| 8 8| CBColumns-|§ & S P
94l & |8 O | o cE| & RF
§9 {28 3= 32 L

£ Z = .

= g s 4

= =

o o
D o8 T |

Fig. 2. The simplified architecture and bitstream organization manner in Xilinx FPGAs.

and sequential functions. The IOBs provide interfaces between
CLB and package pins. Figure 3 provides a schematic view into
a Slice with the alphabets emphasis on the programmable bits.
In addition to the resources inside the Slice, there are also large
amount of programmable routings around the Slices in CLB.

The CLB routing resource is divided into two parts: the in-
put/output Mux and the general routing. The input/output Mux
is used to select input/output pins to the general routings, while
the general routings can be programmed to form custom signal
transport lines between CLBs. The wires are each grouped into
busses that extend in the four primary directions. The connec-
tions to neighboring CLBs are straightforward, but two wires
from different directions may have a programmable intercon-
nect point (PIP), which can be open or closed according to
the control bit. The PIPs constitute a switch matrix that allows
wires from different directions to be connected!®l.

2.2. Bitstream decoding using JBits

The association between programmable resource and cor-
responding bit location needs a detailed knowledge of the FP-
GAs architecture and its configuration bitstream. The configu-
ration memory can be visualized as a rectangular array of bits.
The bits are grouped according to its corresponding resource
column, as shown in Fig. 2. One-column bits are further di-
vided into several one-bit wide frames. Each frame is num-
bered with an index according to certain rule and then sequen-
tially arranged into the bitstream according to that index. If the
relative location of a bit inside a CLB (or IOB) is known, the
bit address in the whole bitstream can be calculated.

The problem is how to get the relative bit location of a
certain resource. One of the decoding method was described in

literatures[' 7> 18]It is based on JBits, which contains a set of ap-
plication program interfaces (APIs) to set or probe the state of
the programmable resources in Xilinx FPGAs. The resources
are modeled using Java classes in JBits. Therefore, it provides
the lowest level interfaces into the device architecture. The ba-
sic design flow of JBits is to read in an original bitstream, mod-
ify portion of the circuit and generate a new bitstream. We can
modify the value of a certain resource once at a time, generate
the modified bitstream and then compare it with the original
one. This procedure is repeated until all the resources in one
CLB or IOB are identified. The result can be easily general-
ized to the whole device according to the regular structure of
FPGAs.

2.3. Netlist parser

Another important issue is to find the resources used in a
specific design. The placed and routed netlist is stored in Na-
tive Circuit Description (ncd) file in Xilinx EDA tool chain. It
contains the structural and layout description of the circuit. The
ncd file has a closed binary format. Xilinx provides another tool
named xdl, which could convert ncd file into an ASCII text file
written in Xilinx design language (xdl).

The xdI netlist is quite easy to understand. There are two
kinds of object in xdl netlist: instance and net. Instance de-
scribes the configuration state of employed CLBs and IOBs.
The configuration string contains information of how the in-
ternal LUT and control logic are used inside a Slice. A net in
the xdl netlist corresponds to a real connection line in the de-
sign, which contains an input pin, one or more output pins and
several PIPs in the routing matrix. A netlist parser is developed
to get the information about which and how a Slice or routing

055008-3

J. Semicond. 2011, 32(5)

Wang Zhongming et al.

LUT/RAM/ROM/SHIFT —YB
8%2— 2% O —Y
G2= A2
Gl= A1

WS o
e LD
BYD—Eﬁj
E DS QF—=YQ
Y #
CLKD—F—OE [— B 7 &
Write 1 IDate In
F —1]Sd'goibf +{Multiplgx
[L.OgIC
I o Fhbtos
CE [
G
SRD_Ij% K B
. GSR
F5 from other slice s L
Position of = XB
0 *F5 top on
other Slicg
X\;S DI Il_'ﬁ—/? R =
F=——————— u]
PRo—A3 . AR
Rl A2 * E)j >—| S
Fl= AT 0 D > Q—=XQ
LUT/RAM/ROM/SHIF] 1 “ER W
X #*
. D —
BXD—q% Shared men cells with

.
,

Another resource

Fig. 3. The internal structure and the configurable resources inside the Slice, viewed from the FPGA Editor.

Fig. 4. A sketch map of the PIP open and short cut failure.

structure is programmed.

2.4. SEU propagation rule

The elements used in a certain design are available after the
placed and routed netlist is parsed. However, these elements are
not the only sensitive resources according to the failure mecha-
nisms in FPGAs['®~21 Tt is worth mentioning that the SEUs in
adjacent elements may also provoke contentions to the circuit
structure. The SEU propagation rule will discuss how different
types of resource are treated to find relative critical elements.

The logic functions in Xilinx FPGAs are implemented in-
side CLB Slices. A truth table is stored in LUTs and the value
is read out according to the combination of the inputs. The first
kind of failure in FPGAs is the bit flip in LUTs. The configu-

ration string in the instance of xdl netlist gives a detailed de-
scription of which LUT is employed and the logic function it
implements. All the employed LUT bits are considered sensi-
tive.

The second type of failure comes from the control bits in-
side the CLBs or IOBs as shown in Fig. 3. They perform im-
portant functionality, such as internal Mux selection and LUT
functional control. When upset happens in these places, the im-
pact is unpredictable. The configured detail is also included in
the configuration string of the instance. The Slice internal con-
trol logic and routings whose state is not “OFF” are consid-
ered to be sensitive.

Typically, the routings outside Slices constitute over 80%
of the configuration bits, among which the largest contribution
comes from the input, output and hex multiplexer. The multi-
plexer and corresponding control bits is not a one-to-one rela-
tionship. For example, a Mux with four sources and one sink
is likely to be controlled with only two bits. Any upset in these
two bits may lead to a different connection. When consider-
ing the SEU effect, all the bits in charge of one Mux should be
considered sensitive.

A PIP in the Single Switch Matrix of the General Routing
is controlled exactly by one bit, which differs from multiplexer.
When a PIP is found in the netlist, there is a connection be-
tween two existing lines. If this bit is flipped by SEU, an open
failure occurs. As a result, these PIP control bits are classified

055008-4

J. Semicond. 2011, 32(5)

Wang Zhongming et al.

as sensitive. The left figure in Fig. 4 is a sketch map of this
situation.

There is another possibility that a PIP is off at the begin-
ning and it happened to bridge two existing signal lines after
opened by a flip, as the right figure in Fig. 4. We developed
an traversal algorithm to search for this kind of short cut. Note
that, this type of PIP is not included in the netlist at the begin-
ning.

3. Development and validation of the proposed
method

The proposed approach has been developed as a software
project and validated using fault injection and accelerator irra-
diation test.

3.1. Overview of the project

The SEU analysis tool is written in objective-oriented way
to model actual structures inside Xilinx FPGAs. The whole
project is composed of over 40 classes in Java in order to get
seamless integration with JBits. The relationship between con-
figurable resources and bitstream addresses is stored and man-
aged using a MySQL database. The client program read in the
placed and routed netlist, parse it to get the utilized resources
and their configuration states, treat them separately to get the
critical elements according to the SEU propagation rule, then
communicate with the database to get the sensitive bits. The
project is now compatible with several Xilinx device series.
The flow chart of the SEU analysis tool is shown in Fig. 1.

3.2. Development of validation platform

The effectiveness of the developed tool need to be vali-
dated. A radiation test and fault injection hardware platform
was built. It is composed of three parts, a control board, two test
boards and a controlling GUI program. The internal memory
upset is monitored through periodic readback. The test boards
contain two identical FPGAs. When a dynamic test mode is
chosen, the two devices are programmed with the same design
and run synchronously. The outputs of these two devices are
being monitored continuously. The device under test (DUT)
is irradiated under accelerator beam and the other golden de-
vice runs as a reference. As soon as a discrepancy is detected,
a functional failure is recorded and the device is reconfigured
automatically.

The fault injection system is built on the same hardware.
Partial reconfiguration technique of advanced Xilinx FPGAs
is exploited to inject upset into the configuration memory. One
bit of the injected frame has already been flipped before down-
loaded, and the output is being monitored until the test vector
runs to the end. If functional failure occurs, the injected bit is
classified to be sensitive.

3.3. Benchmark design

Three benchmark circuits are designed for the dynamic
test. The first design BO1 is a simple 16-bit latch, which uses
less than 1% of the resources. It was originally designed to ver-
ify the test system. The second benchmark B02 is a 1024 x 16
bit shift register chain, which uses about 16% of the entire flip

flops, but without any LUTs. This design is meant to detect the
upset of flip flops. The third design B03 is a resource balanced
one, which uses three kinds of IP cores: two linear shift reg-
isters, two multiply accumulators and two FIFOs. This design
occupies about 12% of the LUTs and 31% of the Flip Flops.

3.4. Experiment setup

Xilinx Virtex XCV300 is adopted as DUT in our experi-
ment. This device is manufactured in a 0.22 um commercial
fabrication technology with over 0.3 M gates and 1.5 M bits of
SRAM cells in the configuration memory. It has been widely
applied both in industry and research field.

The experiment was carried out at HI-13 Tandem Accel-
erator in Beijing. Device was irradiated under 175 MeV Cl
ions with an LET of 12.6 MeV/(cm™2-mg). During the static
test, the bitstream was read back to detect errors. During the
dynamic test, the system function is monitored continuously.
Once a functional failure occurs, the device is reprogrammed
automatically to fix the upset and the fluence is recorded. The
ion flux was set to a relatively low level (about 200-1000
(cm?-s)~1) to prevent failures from happening too fast. Note
that the functional errors are less than the upsets, especially
when the design resource utilization is not severe. Therefore,
sometimes it is rare to see. We decided to accumulate about 30
errors due to the time limitation of the beam.

Fault injection is also deployed to these benchmarks. Dur-
ing the injection, we modified the bitstream using partial re-
configuration technique. After injecting one bit at a time, a test
vector is generated using random numbers. The output is mon-
itored using another identical FPGA running the same design
synchronously. Once a mismatch is found, the bit is identified
to be sensitive. About 1.5 h is needed to complete an exhaustive
injection flow.

Finally, the code developed in this paper runs to analyze
the sensitive bits in these three designs. After the optimization
of the database for unique query demand, the analysis tool runs
at a very fast speed. It takes only about 20 min, 5 min and less
than 1 min to finish the three cases on an ordinary personal
computer.

3.5. Test result and discussion

The result of radiation test is listed in Table 1. Equation (1)
is used to calculate the static upset cross sections and Equa-
tion (2) for the dynamic cross sections. The coefficient € is
calculated using the ratio of dynamic and static cross sections
here. It is the probability that the system will be affected when
the configuration memory is randomly flipped by one bit. The
dynamic cross section can be estimated from the static cross
section and €.

In fault injection and software analysis, € is calculated us-
ing the number of sensitive bits divided by the number of total
configuration bits, as Eq. (3). The experiment result is listed in
Table 2. The coefficient of fault injection and radiation test is
close, but 1.x times higher in software analysis. This result is
mainly because the defined SEU propagation rule is too strict
in some situations. It will detect every single bit which might
provoke disturbance to the user circuit. However, due to the
limitation of the test vector and extra control bits of a multi-
plexer, the analysis results tend to be conservative in practice.

055008-5

J. Semicond. 2011, 32(5)

Wang Zhongming et al.

Table 1. The static and dynamic test result of the three benchmark circuits.

Design Fluence Functional errors Static cross section Dynamic cross section Coefficient €
BO1 1.00 x 10° 24 3.11x1072 2.40 x 107° 7.72 x 1074
B02 1.16 x 10° 31 3.11x 1072 2.67 x 1074 8.59 x 1073
BO3 6.97 x 10* 107 3.11x 1072 1.54 x 1073 4.94 x 1072
Table 2. The fault injection and software analysis result of the three benchmark circuits.
Design Configuration bits Injection errors Coefficient € Sensitive bits of analysis Coefficient €
BO1 1.47 x 10° 894 6.27 x 1074 899 6.31 x 1074
B02 1.47 x 10° 17000 1.19 x 1072 26768 1.82 x 1072
BO3 1.47 x 10° 69870 4.90 x 1072 133939 9.10 x 1072
o : the sensitive bits.
% %f&# ﬁ#i . % ?T: + At
100p i + 4. Conclusion
b T it 3 F+ ++ £ :
E 2001 T R N In this paper, we developed a speedy and handy tool for
§ 300l Lt system engineers to assess the reliability of designs imple-
i< N mented on SRAM-based FPGAs. The central idea is to find
é 400k + the critical placement and routings from the netlist, so that it
>~ B could avoid traversing the bit locations and test patterns as tra-
500t * ditional fault injection. The result can be used to predict the
Single-Event induced soft error rate in space applications.
600} # # R
0 500 1000 1500 2000 References

X-Coordinate (bit)

Fig. 5. Mapping the sensitive bits from fault injection to its real loca-
tion.

OF + F + Fand a3
£ 4 +
i, ot 8 " i3
L o - S Lt
H+ '

100F "+ ++ &

200F

300f

4001

Y-Coordinate (bit)

500+

600F + + RSy +# 3 *

0 500

1000 1500
X-Coordinate (bit)

Fig. 6. Mapping the sensitive bits from netlist analysis to its real lo-
cation.

The coefficient € reflects the statistical information of the
sensitive bits. The bit addresses are also available both in fault
injection and software analysis. We made a further comparison
of these details in an intuitive way. The physical location of the
sensitive bits of benchmark B02 is plotted in Fig. 5 and Fig. 6
using the coordinate transformation rule described in Xilinx
Application Notes. As we can see from these two figures, most
of the sensitive bits in fault injection are also identified by the
software analysis. The analysis tool provides an upper limit of

[1] Xilinx Inc. Triple module redundancy design techniques
for virtex FPGAs, Xilinx application note XAPP197. Ver-
sion 1.0.1, 2006, http://www.xilinx.com/ support/ documenta-
tion/application notes/

[2] Xilinx Inc. Correcting single-event upsets through virtex partial
configuration, Xilinx application note XAPP216. Version 1.0,
2000, http://www.xilinx.com/support/documentation/application
notes/

[3] Morgan K, Caffrey M, Graham P, et al. SEU-induced persistent
error propagation in FPGAs. IEEE Trans Nucl Sci, 2005, 52(6):
2438

[4] Violante M, Sterpone L, Ceschia M, et al. Simulation-based anal-

ysis of SEU effects in SRAM-based FPGAs. IEEE Trans Nucl

Sci, 2004, 51(6): 3354

Johnson E, Wirthlin M, Caffrey M. Single-event upset simula-

tion on an FPGA. Engineering of Reconfigurable Systems and

Algorithms (ERSA), Las Vegas, Nevada, USA, 2002

[6] Alderighi M, Casini F, Angelo S, et al. A tool for injecting SEU-
like faults into the configuration control mechanism of Xilinx
Virtex FPGAs. 18th IEEE Defect and Fault Tolerance in VLSI
Systems, 2003

[7] Johnson E, Caffrey M, Graham P, et al. Accelerator validation
of an FPGA SEU simulator. IEEE Trans Nucl Sci, 2003, 50(6):
2147

[8] Morgan K, McMurtrey D, Pratt B, et al. A comparison of
TMR with alternative fault-tolerant design techniques for FP-
GAs. IEEE Trans Nucl Sci, 2007, 54(6): 2065

[9] Alderighi M, Casini F, Weigand S, et al. Evaluation of single-
event upset mitigation schemes for SRAM-based FPGAs using
the FLIPPER fault injection platform. 22nd IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems
(DFTO07), 2007

[10] Sterpone L, Violante M. A new analytical approach to estimate

the effects of SEUs in TMR architectures implemented through

—
W
—_

055008-6

J. Semicond. 2011, 32(5)

Wang Zhongming et al.

SRAM-based FPGAs. IEEE Trans Nucl Sci, 2005, 52(6): 2217

[11] Sterpone L, Violante M, Sorensen R, et al. Experimental valida-
tion of a tool for predicting the effects of soft errors in SRAM-
based FPGAs. IEEE Trans Nucl Sci, 2007, 54(6): 2576

[12] Alderighi M, Casini F, Angelo S, et al. Soft errors in SRAM-
FPGAs: a comparison of two complementary approaches. IEEE
Trans Nucl Sci, 2008, 55(5): 2267

[13] Quinn H, Graham P, Pratt B. An automated approach to estimat-
ing hardness assurance issues in triple-modular redundancy cir-
cuits in Xilinx FPGAs. IEEE Trans Nucl Sci, 2008, 55(4): 3070

[14] Xilinx Inc. Virtex FPGA series configuration and read-
back, Xilinx application note XAPP138, Version 2.8, 2006.
http://www.xilinx.com/support/documentation/application notes

[15] Xilinx Inc., Virtex Series Configuration Architecture User
Guide, Xilinx Application Note XAPP151, Version 2.8, 2004.
http://www.xilinx.com/support/documentation/application notes

[16] Xilinx Inc. The JBits 2.8 SDK for Virtex, 2001. http:/
www.xilinx.com/labs/projects/jbits

[17] Filho C, Kastensmidt F, Carro L. Improving reliability of SRAM-
based FPGAs by inserting redundant routing. IEEE Trans Nucl
Sci, 2006, 53(4): 2060

[18] Filho C, Kastensmidt F, Carro L. Improving reliability of
SRAM-based FPGAs by inserting redundant routing. Military
and Aerospace Applications of Programmable Logic Devices
(MAPLD), Las Vegas, Nevada, USA, 2005

[19] Graham P, Caffrey M, Zimmerman J, et al. Consequences and
categories of SRAM FPGA configuration SEUs. Military and
Aerospace Programmable Logic Devices International Confer-
ence(MAPLD), Washington DC, 2003

[20] Ceschia M, Violante M, Reorda M, et al. Identification and clas-
sification of single-event upsets in the configuration memory of
SRAM-based FPGAs. IEEE Trans Nucl Sci, 2003, 50(6): 2088

[21] Asadi G, Tahoori M. An analytical approach for soft error rate es-
timation of SRAM-based FPGAs. Military and Aerospace Appli-
cations of Programmable Logic Devices (MAPLD), Washington,
D.C., 2004

055008-7

