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Abstract: A transmission line (TL) model of a carbon nanotube (CNT) is analyzed through the Boltzmann trans-
port equation (BTE). With the help of a numerical solution of the BTE, we study the kinetic inductance (L),
quantum capacitance (Cq) and resistivity (Rs) of a CNT under a high frequency electric field. Values of Lx and
Cq obtained from BTE accord with the theoretical values, and the TL model is verified by transport theory for
the first time. Moreover, our results show that the AC resistivity of CNTs deviates from DC, increasing along with
shorter electric field wave length. This shows that changes in Rg in the high frequency condition must be considered

in the TL model.
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1. Introduction

As an emerging material of interconnects in future ICs,
the metallic carbon nanotube (mCNT) has attracted intense
research attention in recent years. In previous works, sev-
eral characteristics of mCNTs used as interconnects, such as
impedance, signal delay, and thermal effects, have been stud-
ied and compared with Cu interconnects!! ~3]. These works are
primarily based on the lumped transmission line (TL) model
first suggested by Burkel*°], as shown in Fig. 1. What calls
for our attention is that, despite many works having been done
on the basis of the TL model, few have investigated this gen-
erally accepted model in any great depth, whether regarding
its accuracy, its applicability or its intrinsic physical proper-
ties. Nowadays, experiments towards the RF characteristics
of CNTs are proving to be difficult due to the high intrinsic
impedance of CNTs as well as the influence of huge electrode
capacitancel® 7). Experimental data of Ly and Cq obtained in
Ref. [8] do not accord with the theoretical values in the TL
model. Considering the difficulties confronted in experiments,
further theoretical methods serve as an alternative to exam-
ine the TL model and study its merit or demerit. The Boltz-
mann transport equation (BTE) takes fundamental physics in
the transport process into consideration, such as phonon scat-
tering and band structure.

In Ref. [9], the transmission line equation (TLE) of quan-
tum wire is derived from the BTE through analytical deduction,
and kinetic inductance (L) and quantum capacitance (Cq) are
analytically derived and expressed. However, in order to ob-
tain direct and concise expressions, their analytical deduction
includes certain assumptions and simplifications. Therefore it
is not able to fully consider much important physics, such as
phonon scattering and charge’s non-equilibrium distribution.
Analysis of a specific nano-structure in detail is still inacces-
sible. Considering this limit of analytical study, numerical cal-
culation is capable of carefully treating this physics and can
be extended into the AC condition. In this paper, we provide
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a numerical method for solving the BTE under excitation of a
periodic AC electric field F' and calculating the current pro-
file I(x,t) in CNTs. Good agreement between the BTE and
the TLE is shown; we also obtained values of Lk, Cq and Rs
by fitting parameters in the TLE. Our results conform to Lk
and Cq’s theoretical values, therefore verifying the TL model.
Based on numerical results of the BTE, Rg is shown to deviate
from the value in the DC condition, and it depends on the wave
length of the electric field.

2. Analysis of transmission line model

Reference [9] shows that electrochemical potential ¢,
rather than electrostatic potential €, should be used in the TLE
of nano-structure, as the following formula,
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Fig. 1. TL model of a CNT. Rg is the scattering resistivity, G is the
conductance between the CNT and the substrate, Lk is the kinetic
inductance, Ly is the magnetic inductance, Cg is the quantum capac-
itance, and Cg is the electrostatic capacitance.
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We neglect magnetic inductance Ly in Eq. (1) because it
is far smaller than Ly (10™* times less). This is different from a
traditional 3D conductor because of the finite density of state in
a quasi-1D nano-structure, ¢ is no longer equal to ¢ and satis-
fies the relation Cgde = Cd¢, where C is the shunt of electro-
static capacitance Cg and quantum capacitance Cq. Equation
(1) could be rewritten with ¢ and electric field F as

al CE de
Lxk— 4+ RI = ———, 3
Ko T C o1 )
al
LKlnormE + RSlnorml = —F. (4)

We have LK\norm = LK/(l + CE/CQ)a RSlnorm = R/(l +
Cg/Cq) asnormalized Lk and Rg. We prefer to use ¢ instead of
¢ in Eq. (4) because ¢ is directly related to F. The current pro-
file can be calculated from Eq. (4) if the electrical field profile
F(x,t) is known. Next we turn to the BTE to get the numerical
relation between F and /(x, ¢). The BTE can be written as

af af af
E + Vea + 1)eeFa_E = atfscata Q)

where v, is the charge velocity. We noticed that the wave ve-
locity of F is vp = 1/+/LC. Lg and Cq are decided by band
structure and Fermi level, thus Cg is the main factor responsi-
ble for a change in velocity of field in the CNT. So when Vg
changes, equivalently we have changed Cg, and accordingly
the values of Lgjnorm and Rgjnerm Will alter, as in the relation
below,

Ly
Lyjnorm = , 6
K] 1+ 1/(CoLxv? — 1) ©
Rs
RSInorm = (7)

1+ 1/(CQLKU2 - 1)

The resistivity of CNTs (Rg) in the DC condition has al-
ready been widely studied in many previous works. An analyt-
ical expression based on the theory of mean free path (MFP),
suggested by Pop in Ref. [10], writes Rs as

1 1 n 1 n 1 ®)
GO /\c Aac E op 4 A )
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Equation (8) is derived on the premise that electric field
wave length A is longer than the charge’s electric field acceler-
ating length. This assumption becomes really dubious when A
becomes very short (nearly 10 nm). The BTE does not include
such an assumption, so Rgs can be studied by BTE free of such
restriction. In the following sections, Rg is shown to deviate
from values given by Eq. (8) when A drastically decreases.
With the numerical method of solving the BTE under pe-
riodic electric field F(x,t), we could calculate /(x, ) along
the CNT at each time step within a period. Equation (4) gives
a relation between F(x,?) and I(x,t). As Eq. (4)’s free para-
meters, a particular set of Lgjnom and Rgjnom gives the mini-
mum difference of /(x, t) between the TLE and the BTE. Ac-
cordingly Lk, Cq and Rg can be calculated by Eqgs. (6) and (7),
and they fit the results of the BTE.
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Fig. 2. Resistivity of a CNT under different F'. The solid line is cal-
culated by Eq. (8), and the dots are calculated by the BTE. The length
of the CNT changes from 85 nm to 1 pum. Equation (8) accords well
with the BTE in each case. The inset figure is a comparison between
experimental datal12] (circle) and calculation of the BTE (solid line).

3. Numerical method

We use the method of treating phonon scattering as in
Ref. [10]. Scattering terms in the right of Eq. (5) are written
as the sum of three terms, separately concerning elastic scat-
tering, forward scattering and backward scattering. They are

ath|e = (ve/A)(fr — fL)s ©)
dfupy = We/Ap)[(1 — ) fi = fLl = fOl. (10)
Ifrpr = We/Apd)[(1 = f) 7 = Sl = fD]. D)

We employ an up-wind difference method similar to
Ref. [11] in the numerical calculation. The BTE is solved
through integration on time in the DC condition. When it
comes to the AC condition, though the field on the CNT varies
with time and location, time integration can also determine the
correct results when a self-consistent distribution function of
electrons f(x, E,t) is obtained. Before a stable solution is
achieved, f(x, E,t) in the last time step of the previous pe-
riod serves as the initial value of the next period. A stable so-
lution of f(x, E, ) is achieved when the difference of two ad-
jacent periods is less than the permitted error. A stable current
profile along the CNT in each time step can be obtained from
I(x,t) = (4e/h) [ f(x,E,t)dE.

First we solve Rg in DC through the BTE. Figure 2 shows
that our calculation accords well with experimental data in
Ref. [12], and Equation (8) accords well with the results of the
BTE. Then we turn to the AC case. An example of solving the
BTE under an AC field is shown in Fig. 3. The length of the
CNT L and A is 1 um in both cases. In numerical calculation,
L is discretized into 100 sections and the period (10713 s) of
F is discretized into 100 steps. Figure 3(a) plots /(x, ) calcu-
lated from the BTE in each location and time step, Figure 3(b)
gives the result solved from Eq. (4), and Figure 3(c) gives their
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Fig. 3. An example of the numerical solution of the BTE. In our numerical calculation, the CNT length is discretized into 100 sections and the
field period is discretized into 100 steps. The electric field F is of a sin function form with A = 1 um, T = 10713 s and amplitude of 10°> V/m,
as shown in (d). (a) and (b) show a full /(x, t) calculated by the BTE and the TLE, respectively. I(x, ?) also has a sin form as F(x, ), whereas
a phase shift happens due to Lk . The difference between the BTE and TLE solutions is plotted in (c), and except for two contact parts of the
CNT, a very small difference can be achieved by adjusting the free parameters in Eq. (4).
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Fig. 4. (a) The solid curve gives values of Ly|norm from Eq. (6), the dots indicate results from the BTE and the dashed curve is results from
Eq. (6) using Lx = 3.89 nH/um, Cq = 420 aF/um as the best fit. (b) The solid curve gives Rgjnorm from Eq. (6) and the dots are results from

the BTE.
Table 1. Fitting results of BTE (A =1 um). Table 2. Fitting results of BTE (A = 1/9 um).
Ve T Ce RS|norm LKInorm VF T Ce RS\norm LKlnorm
(107 m/s)  (10713s) (aF/um)  (BTE) (BTE) (107 m/s)  (10713s)  (aF/um)  (BTE) (BTE)
(k2/pm) (nH/pm) (k2/pum) (nH/pum)

1 1 2.6 20.3 3.85 1 1/9 2.6 40 3.84

1/3 3 4.9 17.0 3.68 2/3 1/6 59 39 3.83

1/5 5 78.8 15.6 3.33 1/3 173 249 37 3.65

1/7 7 194.6 15.0 2.73 1/6 2/3 125.4 30 2.93

1/9 9 491.2 14.3 1.87 1/9 1 491.2 25 1.70

relative difference. We can see that the difference between the
result from the BTE and Equation (4) is very small in most lo-
cations within a period. Those errors mainly exist in the two
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contacts of the CNT, because the BTE model treats the contact
as a charge source and it is in equilibrium distribution, so an
inexact current profile is obtained.
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Fig. 5. (a) Solid curve shows values of Li|norm from Eq. (6), dots indicate results from the BTE and the dashed curve is results from Eq. (6)
using Lx = 3.88 nH/um, Cq = 400 aF/um as the best fit. (b) The solid curve gives Rjporm from Eq. (6) and the dots are results of the BTE.
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Fig. 6. Difference in /(x, 1) between BTE and TLE along the CNT within a period. Lg|norm = 1.87 nH/um, Rgjporm = 14.3 k2/um. (a) gives
very small difference, however the DC value Rgjnom = 6 k2/um. (b) gives poor accordance. This suggests that under a high frequency and

short wave length electric field, Rg deviates from its DC value.
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Fig. 7. Relation between Rg and A. As A becomes comparable with
the MFP of the electrons, Rg rapidly rises along with deducing A.

A limit of the BTE’s application in the AC region is, in
order to get the current profile I(x,?), electric field profile
F(x,t) must be given ahead. F should be calculated from
the excitation of an external signal source in a more rigor-
ous method. However, if the TL model is accurate enough and
equivalent to the BTE, the responding /(x, ) should be the

same under all kinds of electrical field. This approach can be
used to study the TL model under an arbitrary periodic electri-
cal field.

4. Transport simulation

We obtain sets of Lg|norm and Rgjnorm under different F by
fitting I (x, t) of the BTE and the TLE, and they are regarded as
BTE results of the BTE. F has a standard form of sin function
as a general condition. Our goal is to verify the generally used
value in the TLE, Lx = 3.85 nH/um and Cq = 368 aF/um. In-
corporating this value into Eqgs. (6) and (7), Lknorm and Rsjnorm
can be obtained, and we regard them as results of the TLE. The
difference between the BTE and TLE results examines the ac-
curacy of the TL model.

First we use A = 1 um longer than the accelerating length
of the charge, and period 7 changes from 1 x 107!3 to 9
x 10713 5. The calculation results are listed in Table 1. In
Figs. 4(a) and 5(a) we found that the fitting values of Lgjnorm
accord well with theoretical values given by Eq. (6); that is to
say that analytical deduction gives identical values of Ly and
Cq as the BTE. This establishes the influences of Lk and Cq on
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carrier transport in a quasi-1D structure, and identical current
profiles with the BTE illustrate that the TL model is effective
in considering such effects in the ac condition.

However, fitting value of Rs does not agree with Eq. (7)
well. The BTE results illustrate that Rg increases when the fre-
quency of F becomes very high, as shown in Figs. 4(b) and
5(b). The process of fitting would include a certain error. Be-
cause of the huge inductive impedance caused by the high fre-
quency, Rs plays a more subordinate role than L. So very
little fluctuation in the current profile is presented when Rg
changes. This leads to inaccuracy of the fitting values of Rsg,
and this fluctuation is within 1 k€2/um when the fitting pro-
cess is carefully treated. When A = 1 jum, we obtained Rgjnorm
= 14.3 k2/um, while Equation (7) gives a value of 6 k2/um.
The difference in current profile between the BTE and the TLE
is illustrated in Fig. 6. Rs provided by Eq. (7) could not achieve
the same current profile as BTE, but fitting Rg does. This ev-
ident deviation of Rg is out of the region of the fitting fluctu-
ation and should be attributed to a change of Rg in the high
frequency condition.

Then we use an electric field of a shorter wavelength (A =
1/9 pum) in order to study the influence of A on Rg. This very
short A is comparable to the acceleration length of the charge.
Corresponding results are given in Table 2 and Fig. 5. We can
see that when A is as short as 1/9 pm, the fitting value of Rgjnorm
rises to 40 k€2/pum, much larger than Rgjporm = 14.3 k2/um
when A = 1 pum. This difference indicates the influence of
wavelength of field on the CNT’s resistivity. To investigate
the relation between Rs and A, we have a constant period T
= 10713 s, and their wavelengths change from 1/9 to 1 um, as
illustrated in Fig. 7. Rs increases evidently when A is drasti-
cally reduced.

5. Conclusion

For a CNT interconnect operated in high frequency condi-
tion, the expression associating F'(x,?) and I(x,t) (Eq. (4))
becomes different from the traditional TLE, due to current
phase delay caused by L, and the difference between electro-
chemical and electrostatic potential caused by Cq. A numer-
ical method of solving the Boltzmann transport equation un-

der periodic electric field F is presented. Based on numerical
calculation of the BTE, we verify Eq. (4) by introducing two
terms, Lgjnorm and Rgjnorm, Which incorporate the effects of Cq
into the TLE (Eqgs. (6) and (7)). Lk and Cq calculated by the
BTE accord well with theoretical values in the TL model. Rg is
shown to change with field wave length. More work is needed
for further study of the CNT’s resistivity under high frequency
field, especially when wave length becomes comparable to the
charge’s MFP. The TL model must take changing Rg into con-
sideration to address concerns about accuracy.

References

[1] Srivastava N, Li H, Kreupl F, et al. On the applicability of single-
walled carbon nanotubes as VLSI interconnects. IEEE Trans
Nanotechnol, 2009, 8(4): 542

[2] Li H, Yin W Y, Banerjee K, et al. Circuit modeling and perfor-
mance analysis of multi-walled carbon nanotube interconnects.

IEEE Trans Electron Devices, 2008, 55(6): 1328
[3] Pop E, Mann D A, Goodson K E, et al. Electrical and thermal

transport in metallic single-wall carbon nanotubes on insulating
substrates. J Appl Phys, 2007, 101(9): 093710
[4] Burke P J. Liittinger liquid theory as a model of the Gigahertz
electrical properties of carbon nanotubes. IEEE Trans Nanotech-
nol, 2002, 1(3): 129
[5] Burke P J. An RF circuit model for carbon nanotubes. IEEE Trans
Nanotechnol, 2003, 2(1): 55
[6] LiS D, YuZ, Yen S F, et al. Carbon nanotube transistor operation
at 2.6 GHz. Nano Lett, 2004, 4(4): 753
[7] Gomez-Rojas L, Bhattacharyya S, Mendoza E, et al. RF response
of single-walled carbon nanotubes. Nano Lett, 2007, 7(9): 2672
[8] Nougaret L, Dambrine G, Lepilliet S, et al. Gigahertz characteri-
zation of a single carbon nanotube. Appl Phys Lett, 2010, 96(4):
042109
[9] Salahuddin S, Lundstrom M, Datta S. Transport effects on sig-
nal propagation in quantum wires. IEEE Trans Electron Devices,
2005, 52(8): 1734
[10] Yao Z, Kane C L, Dekker C. High-field electrical transport in
single-wall carbon nanotubes. Phys Rev Lett, 2000, 84(13): 2941
[11] AksamijaZ, Ravaioli U. Boltzman transport simulation of single-
walled carbon nanotubes. J Comput Electron, 2008, 7: 315
[12] Javey A, Guo J, Paulsson M, et al. High-field, quasi-ballistic
transport in short carbon nanotubes. Phys Rev Lett, 2004, 92:
106804

062002-5



