Vol. 32, No. 7

Journal of Semiconductors

July 2011

Reducing test-data volume and test-power simultaneously in LFSR reseeding-based

compression environment*

Wang Weizheng(FE 1), Kuang Jishun(JE4£)0)", You Zhigiang(Ji £ 3#), and Liu Peng(x1/fi)
College of Information Science & Engineering, Hunan University, Changsha 410082, China

Abstract: This paper presents a new test scheme based on scan block encoding in a linear feedback shift regis-
ter (LFSR) reseeding-based compression environment. Meanwhile, our paper also introduces a novel algorithm of
scan-block clustering. The main contribution of this paper is a flexible test-application framework that achieves
significant reductions in switching activity during scan shift and the number of specified bits that need to be gener-
ated via LFSR reseeding. Thus, it can significantly reduce the test power and test data volume. Experimental results
using Mintest test set on the larger ISCAS’89 benchmarks show that the proposed method reduces the switching
activity significantly by 72%-94% and provides a best possible test compression of 74%—94% with little hardware

overhead.

Key words: built-in self-test; LFSR reseeding; test power; test compression; scan block

DOI: 10.1088/1674-4926/32/7/075009

1. Introduction

With the rapid development of very large scale integration
(VLSI) technology, the transistor count per chip increases ex-
ponentially and the testing for integration circuits (ICs) is get-
ting hard to manage. The growing test-data volume increases
test cost due to high automatic-test-equipment (ATE) memory
requirements and long test time. In addition, the power con-
sumed during test mode is often much higher than that during
normal model!!. Prohibitively high power dissipation may lead
to increased noise, IR-drop, overheating, and so on, resulting
in undesired yield loss and reliability problems!2l.

Built-in self-test (BIST) is a powerful solution for testing
the individual intellectual property (IP) cores in system-on-a-
chip (SOC) designs[3’4]. Recently, test compression schemes
based on LFSR reseeding, which can provide very high test
coverage and consume a relatively short test time, have been
widely researched. In these schemes, deterministic test patterns
are generated by expanding LFSR seeds. The seed correspond-
ing to a given deterministic test cube can be computed by solv-
ing a system of linear equations (one equation for each speci-
fied bit) determined by the feedback polynomial of an LFSR.
LFSR reseeding methodology was first introduced to compress
test data in Ref. [5]. It is shown that in order to make the prob-
ability of not finding a solution for the system of linear equa-
tions less than 107, the length of LFSR should be larger than
Smax+20, where Syax is the largest number of specified bits in
any test cube in a test set. To improve the encoding efficiency
in the LFSR reseeding scheme, multiple-polynomial LFSRs or
variable-length multiple polynomial LFSRs are used so that
the total bits of seeds can be reduced further®7]. Dynamic
LFSR reseeding was studied in Ref. [8]. Partial dynamic form
of LFSR reseeding was studied in Ref. [8]. In this method, the
number of bits required for encoding a test set is not propor-

EEACC: 1265A

tional to Sy and can approximate the total number of speci-
fied bits in all of the test cubes in the test set.

Although the LFSR reseeding scheme is an efficient
method for test data compression, it may cause excessive
power consumption. If the don’t care bits in test cubes are filled
with pseudo-random bits generated by an LFSR, there will ex-
ist a very large number of transitions in the circuit under test
(CUT) during scan-shift operations. For deterministic BIST,
several techniques for reducing both switching activity and test
data volume have been developed. The low power schemes
based on scan slice overlapping were proposed in Refs. [9, 10].
In these schemes, each pattern is partitioned into several over-
lapping slice sets; no transition is produced and no specified
bits need to be generated via LFSR reseeding in the overlap-
ping block. Lee et al.l'!] presented a scan test scheme using
hold cubes. In this scheme, each test cube is divided into sev-
eral blocks. If no transition occurs in a block and the data bits of
the block are compatible with the last bit of the previous block,
the scan-in data for the block are simply kept constant from
the last data bit in the previous block. Both the test data vol-
ume and the shift power can be reduced to some extent. Since a
data block becoming a non-transitional block is limited by the
previous data block, its efficiency is compromised.

However, the techniques mentioned above cannot consider
together the problems of test-data compression and low-power
test well or have only limited effectiveness. In this paper, we
present a new test scheme based on scan block encoding for de-
terministic BIST. The encoding algorithm proposed in this pa-
per has some similarity to the algorithm presented in Ref. [11].
Both encoding algorithms divide the scan chains into blocks
and identify data blocks that do not contain transitions. How-
ever, they have a large difference. In the proposed approach a
data block becoming non-transitional block is not limited by
the previous data block and thus it provides a more flexible
mechanism for simultaneous reductions in transitions during

* Project supported by the National Natural Science Foundation of China (Nos. 60673085, 60773207).

1 Corresponding author. Email: jshkuang@163.com

Received 11 December 2010, revised manuscript received 5 March 2011

© 2011 Chinese Institute of Electronics

075009-1

J. Semicond. 2011, 32(7)

Wang Weizheng et al.

(Original test cube)

Block! Block2 Block3 Block4 Block5
X0000X 1 1 X111 X XXXX X X0X11X 0 XXX0X
A A A 4
1 0---- -1]1 I - --- -]X XXXXXX|0 X0X11X]|1 0 - - - - -

(Encoded test cube)

Fig. 1. Example of encoding test data.

a scan shift and the number of specified bits. Moreover, the
scan block clustering method compatible with our encoding
algorithm is also provided in this paper to reduce further the
switching activity and test storage.

2. Test cube encoding

2.1. Test cube encoding algorithm

A transition in a test pattern is defined as a bit 0 (1), fol-
lowed by a bit 1 (0). The number of the transitions in test pat-
terns determines the power dissipation during the scan shift.
And the compression ratio for LFSR reseeding depends on the
number of specified bits. The main idea of the proposed encod-
ing scheme is to take advantage of the don’t care bits (X-bits)
in test cubes to achieve simultaneous reductions in transitions
during a scan shift and the number of specified bits. We divide
each scan chain into several scan blocks. In a test cube, the bits
corresponding to a scan block are called a data block. Thus,
each test cube is partitioned into several blocks. According to
the type of specified bits in a data block, the data blocks can
be classified into three types: non-transitional, transitional and
don’t care blocks. The non-transitional blocks include only one
kind of specified bits (1 or 0). The transitional blocks include
two kinds of specified bits (1 and 0). The don’t care blocks in-
clude no specified bits. For the non-transitional blocks, only
the first data bit is generated by LFSR, and the others in the
block are simply held constant from the first bit. No transition
occurs in non-transitional blocks. Each data block has a 1-bit
control signal, which indicates whether the block is generated
by LFSR. A non-transitional block can be encoded into only
two bits: a 1-bit control signal and a data bit.

An example of the proposed encoding process is shown in
Fig. 1. In this example, the original test cube is divided into
five blocks, including three non-transitional blocks (blocks 1,
2, and 5), one transitional block (block 4) and one don’t care
block (block 3). The control signal bit for a block is shown in
bold along the “encoded test cube” row. As shown in Fig. 1,
the original test cube contains 14 specified bits. However, us-
ing the proposed encoding scheme, the encoded data only have
4 specified control signals and 6 specified data bits, giving a to-
tal of only 10 specified bits. Only one of the 0 s in blocks 1 or 5
needs to be generated directly by the LFSR and others are gen-
erated as a by-product of the fact that the control signal keeps
the input to the scan chain constant at 0. The generation of 1 s

in block 2 is similar to this. Thereby, a high compression ratio
can be achieved in this way. Moreover, no transitions will oc-
cur when generating blocks 1, 2 and 5 because all of the bits
in the blocks keep constant. Thus, the test power can also be
reduced by the scheme.

2.2. Partitioning test sets into control-vector-compatible
subsets

We define the set of control signals for one test cube as
a “control vector”, which consists of 0, 1, and X. The control
vectors also need to be stored. In order to further improve the
overall data compression ratio, a method for reducing the stor-
age of control vectors is introduced. We notice that many con-
trol vectors are compatible with each other—namely, they do
not conflict in any specified bit positions. If several consecu-
tive test cubes have the same control vectors, it is not neces-
sary to reload the control vector. Thus, a control vector could
be shared by multiple test cubes. During testing, the test cubes
should be ordered so that the test cubes with the compatible
control vector will be applied in succession. Thus, the control
vectors only need to be loaded once for each compatible set of
test cubes. One extra bit per test cube is required to indicate
whether the control signals for the current test cube needs to
be updated or not.

Figure 2 shows an example of the compatibility of con-
trol vectors. The original control vectors for each test cube are
shown in Fig. 2(a). Originally, there are 5 control vectors and
the total number of control bits is 25. As shown in Fig. 2(b),
test cubes 1 and 5 have the compatible control vector 01001,
while test cubes 2, 3 and 4 have the compatible control vector
10X11. So the five test cubes are then grouped into two control-
vector-compatible sets. The first set contains test cubes 1 and
5, and the second contains test cubes 2, 3 and 4. As shown in
Fig. 2(c), the test cubes are reordered so that the control-vector-
compatible sets are grouped together. An extra update signal bit
is added to each test cube to indicate whether the control vector
needs to be updated. Only a control vector needs to be stored
for each control-vector-compatible set. By this means, in this
example, the total number of control bits (including two con-
trol vectors and the added update signal bits) is reduced to 15.
It needs to be explained that, in our scheme, Xs in a compatible
control vector are filled with 1 so that the corresponding blocks
become non-transitional blocks.

075009-2

J. Semicond. 2011, 32(7)

Wang Weizheng et al.

Test cube Control vector
1 0 1 0 X 1
2 1 0 X 1 1
3 X 0 X 1 1
4 1 0 X X X
5 X 1 0 0 X
(a)
Test cube Control vector
! 0 1 0 X 1
X 1 0 X
S i iieeeeseesenseessaneantansansanan
) 1 0 X 1 1
3 X 0 X 1 1
1 0 X X X
4
(b)
Test cube Update signal Control vector
1 1 0 1 0 0 1
5 0 _ _ _ _ _
2 1 1 0 1 1 I
3 B . . B .
4

(©

Fig. 2. Compatibility of control vectors. (a) Original control vectors.
(b) Control-vector-compatible subsets. (c) Control vectors after parti-
tioning.

3. Scan block clustering

The number of non-transitional blocks for the test cube set
depends on the location of the scan flip-flops (scan-FFs or scan
cells), i.e. the combination of the scan blocks. If these flip-flops
that are compatible with each other are distributed into a scan
block, a maximum number of non-transitional blocks can be
obtained. Thus, the test power and even test-data storage can
be significantly reduced.

In the clustering operation, a given number of scan-FFs
will be placed into a scan block and several scan blocks form
a scan chain. The operation does not imply any scan cell re-
ordering inside a block. Each block is passed to a standard scan
insertion tool, which keeps the degrees of freedom for place
and route. The layout-aware minimization of the routing over-
head['2- 13! is done after clustering in the usual way. Hence,
scan block clustering does not introduce excessive additional
impact in the routing overhead, especially when the size of the
scan blocks is relatively large.

Figure 3 illustrates scan block clustering. For simplicity,
we consider a single scan chain only. The scan chain contains
8 scan-FFs (Fig. 3(a)), and each test pattern is divided into 2
data blocks (Fig. 3(b)). As can be seen, the four test cubes con-
tains only 2 don’t care or non-transitional blocks, {XXXX} and
{111X}. Next, we cluster scan-FFs 1, 4, 5, and 6 into a block,
and 2, 3, 7, and 8 into another. Meanwhile, we change the val-
ues corresponding to scan-FFs 1, 2, and 4 (marked with a bar

Scan in Scan out
(@)
Scan-FF 1 2 3 4 5 6 7 8
Lo X 1 Xt ixX 1 1 0
Lil X 0 1! iX X X X
4,10 1 0 X 1 1 1 X
il 0 1 Xi 10 0 1 1
(®)
SeanFF L 4 5 6 2 3 7 8
LT X XTI 1T 0
Lo 0 X X iX 0 X X
Lil X 1 1 0 0 1 X
10 X 0 0 1 1 1 1
(0
Scan in Scan out

@

Fig. 3. Example of scan block clustering. (a) Scan chain before cluster-
ing. (b) Data blocks before clustering. (c¢) Data blocks after clustering.
(d) Scan chain after clustering.

Scan-FF
0,1,0,0)

~
iy

~
ENRE

U

(0,0,0,0) (1,0,0,0)

Fig. 4. Example of formalizing scan block clustering.

above) into the complemented data, as shown in Fig. 3(c). As a
result, the number of don’t care and non-transitional blocks is
increased from two to six. By connecting scan-FFs 2 and 4 with
the Q’ output of the previous scan-FF, the values that need to
be produced for scan-FFs 2, 4 and 1 by LFSR will be the com-
plemented of the original values, as shown in Fig. 3(d). Note
that in order to keep the values to be generated for scan-FF 6
and 5 coincident with the original ones, we should connect the
scan-FF 6 with the Q’ output of the scan-FF 2 to change back
their values.

3.1. Formalizing scan block clustering

The aim for clustering scan blocks is to minimize the per-
centage of transitional blocks. We can model this problem as a
hypergraph partitioning problem. In this hypergraph, a vertex
represents a scan-FF and an hyperedge has N weights (W1,
W,, =, Wi, =, Wx), where N is the number of test cubes,
W; =0, 1, and X represents that, for i-th test cube the data
block corresponding to these vertices is a transitional block,
non-transitional block and don’t care block, respectively. Let
S and P be the size of a scan block and the number of scan
blocks, respectively. Because any S scan cells could be placed
together into a scan block, there exists a hyperedge for any S
scan cells in the hypergraph. Formalizing scan block cluster-
ing for the case in Fig. 3 is illustrated in Fig. 4. Some of the

075009-3

J. Semicond. 2011, 32(7)

Wang Weizheng et al.

Algorithm-Clustering Scan Blocks

INPUT: Test set, BlockSize
OUTPUT: B(1 < i < Ng). Mode (g FF,)

1. Sort FF_ in increasing compatibility metric order;
— FE

2. Calculate N _, = BlockSize

3. forifrom 1 to N,

block{
4. Initialize B, = @ ;
!
.
. Initialize i = 1;
- Whilei = N, {
Add e e FF, with maximal compatibility metric to B;

5
6
7.
8. Delete e from FF_ ;
9
1
1

. V=v_

0. While size(B)) < Blocksize {

L. N =0:
12. forge FF_ {
13. N,y = CheckNum_CompatibleBits(V, V)
14. N, > NI
15. temp ~ Vum?
16. FF select=g;
17. Update Mode FF select;

v

ﬁ v
18. Add FF_selectto B,;
19. Delete FF_select from FF,_ ;
20. V' =IndicateData Vec (V, I FF _select);
21. if(FF, = &) break ;
. }
22, i=itl;

}

23, return B(Is i< N set

). Mode (g e FF);

Fig. 5. Procedure for clustering scan blocks.

hyperedges are given in the figure. The corresponding weights
are attached by an arrow in the direction of these hyperedges.
The scan block clustering problem is solved by partitioning
the hypergraph into P sets of vertices whose size is equal to
S. Let B;j be j-th data block of the i-th test cube. If B;; is
a non-transitional block or don’t care block, the function not-
transitional (B;;) equals 1, or else it equals 0. The optimization
objective for this partitioning is to maximize the number of the
global non-transitional blocks and don’t care blocks (NTDCB),

N P
NTDCB = Z Z non-transitional(B;;). (1)
i=0,=0

The hypergraph partitioning problem is a well-researched
problem and it has some solutions, e.g., the hMetis packagel'*.
By taking the specific characteristics of our problem into ac-
count, we propose a more efficient and effective heuristic algo-
rithm. The proposed algorithm forms scan blocks one by one.
Each scan block is formed by selecting scan-FFs from unpro-
cessed scan-FFs under the constraint that the data blocks cor-
responding to the scan block contain as many non-transitional
blocks or don’t care blocks as possible. Each scan-FF is itera-
tively processed until every scan-FF is assigned to a scan block.

A Block / v
r_‘_A'ﬁ

¢) 0 1 0 X 0 X -

(t,) 0 0 0 X X 0

¢ 1 X 1 X 1 1 1

() X X X X X X X

Fig. 6. Example data-vector of a scan block.

3.2. Efficient scan block clustering

We call scan-FF ff; normal-compatible with scan-FF
f f2, if for every pattern the bits corresponding to f f; and
[f> include only a kind of specified bits (1 or 0) or one don’t
care bit at least. We call scan-FF f f; NOT-compatible!!>! with
scan-FF f f,, if for every pattern the bits corresponding to f f1
and f f> include two kinds of specified bits (1 and 0) or one
don’t care bit at least. We call scan-FF f f; compatible with
scan-FF f f5 in this paper if f f1 is normal-compatible or NOT-
compatible with f f>. The compatibility metric of scan-FF f f
is defined as the number of scan-FFs that are compatible with
I

The proposed design procedure for the problem is shown in
Fig. 5. The procedure clustering scan blocks takes the given test
cubes set and the size constraint of a scan block BlockSize as
inputs, and it outputs the partitioned scan blocks and the mode
of scan-FFs (“normal” or “not”). Line 1 sorts the scan-FFs set
FFy in decreasing compatibility metric order. Next, in line 2,
we calculate the number of scan blocks Npjock, Which equals
the total number of scan-FFs Ngr divided by BlockSize. Then
we initialize every scan block B; and variable i before further
processing (Lines 3-5). Inside the loop (Lines 6-22), one scan
block is formed in each iteration. We add the flip-flop e with
maximal compatibility metric in FF to B; and delete it from
FF (Lines 7-8). We denote the values corresponding to e for
all of the cubes as a data-vector V.. We also mark the values
corresponding to a scan block for all of the cubes with a data-
vector V' (the example is shown in Fig. 6). In line 9, V is ini-
tialized as V. Inside the internal loop (Lines 10-21), one scan
FF is selected and added to B; in each iteration. Next, we check
all of the scan-FFs in FF to find out a scan-FF of which the
vector has the maximal number of compatible bits with cur-
rent data-vector V' (Lines 11-16). When doing experiments,
we find that there often exist multiple scan-FFs that share the
same maximum in each run. In order to decrease the routing
overhead, we can choose a scan-FF that has minimal average
distance with selected scan-FFs in the current block. In the
procedure, we consider NOT-compatibility between scan-FFs.
Thereby, a variable Modegg_select 1S used to label the selected
scan-FF (Line 17). Modepr _seject €qualing “NOT” implies that
FF _select should be connected to the Q’ output of the previ-
ous scan-FF. Next, FF_select is added to B; and deleted from
FFg (Lines 18—19). At the same time, the current data-vector
V is updated by function IndicateDataVec (V, V gp_select) (Line
20), which is the same as the principle of the example in Fig.
6. After a scan block is completed, the procedure is repeated
to form another scan block (Line 22). Finally, the procedure
returns B; (1 < i < Npiock) and Mode, (g€ FFy), i.e. all of

075009-4

J. Semicond. 2011, 32(7)

Wang Weizheng et al.

Table 1. Experimental results for proposed scheme and comparison with low-power data-compression scheme in Ref. [11].

Circuit Test storage Test power
Name #Pattern #Block #SC CSSR # Control ~ #Specified #Control #Total Percent Percent #Transition Transition Transition
vectorset data bit bit bit change change[“] Red. (%) Red.[“](%)
5 5 1 9 6094 156 6250 392 28 97423 60.02 31.6
10 10 1 24 5795 351 6146 —-552 +40.7 30652 74.46 38.7
§5378 11 5 10 2 55 5191 1211 6402 —158 +5.1 25553 7890 479
30 10 3 61 4918 2002 6920 +6.38 +15.0 26023 77.23 50.8
5 5 1 10 9529 209 9738 —8.14 33 190190 59.49 26.5
10 10 1 43 8818 589 9407 —11.26 —4.9 63816 72.13 343
$9234 19 0 10 2 98 7901 2217 10118 —4.56 —1.5 47021 7837 463
30 10 3 79 7666 2608 10274 -3.08 —0.9 44727 79.65 50.6
5 5 1 11 10002 291 10293 —-9.02 -2.5 1405962 75.42 34.0
10 10 1 23 9332 466 9798 —13.39 —-2.6 367171 87.15 36.3
13207236 30 20 2 46 8124 1616 9740 —13.90 —1.8 171169 9403 487
50 20 5 44 7534 2436 9970 —11.87 42.2 220803 92.21 51.5
10 10 1 28 10455 434 10889 —13.97 —2.6 227847 79.99 34.6
20 20 1 55 9310 1226 10536 —16.76 —1.6 71705 87.26 40.1
SIS850 126 49 20 2 63 8538 2709 11247 —11.14 +1.7 61823 8872 475
60 20 3 60 8083 3846 11929 —=5.75 +2.5 61563 88.77 49.5
10 10 1 37 38832 469 39301 —25.26 —6.2 1798090 68.87 25.0
30 30 1 76 32671 2379 35050 —33.34 —5.2 365815 81.07 33.7
538417 99 60 30 2 94 28749 5739 34488 —3441 —36 281248 8552 414
90 30 3 95 25891 8934 34825 —33.77 —4.6 258343 86.15 45.7
10 10 1 53 31581 666 32247 —-8.62 +1.2 2698023 62.21 20.3
30 30 1 85 29466 2686 32152 —8.88 +11.6 537590 77.06 28.4
§38584 136 6o 30 2 99 27967 6175 34142 —324 +17.6 380312 8340 33.1
90 30 3 104 26225 9704 35929 +1.82 +421.7 360743 84.25 46.7
FSM stored data consists of LFSR seeds, update signals and con-
[LFSR sced [Update signal [Control signals] trol signals. If the update signal is 1, then the control signal
. is shifted into CSSR. Meanwhile, the LFSR seed is shifted
HESM] into LFSR. If the update signal is 0, then the control vector
is reused, and it is not necessary to shift the new control vector
U into CSSR. There is a small finite-state machine (FSM) con-
0 [| troller that controls whether the CSSRs need to be loaded or
; not. Next, the LFSR generates the test data. Let the length of
TSR each scan block be L. For each L clock cycles, if the corre-
1 sponding control signal for a scan chain is 0, then the scan
Phase 0 chain is loaded from the LFSR. If the corresponding control
LFSR shifter [1 | signal is a 1, then the first value for the current data block is
' ' ' shifted into the scan chain from LFSR, and the value will be
' 1 ' repeatedly shifted into the scan chain for the following L—1
' ' ' clock cycles, and the data from the LFSR are ignored. There

CSSR
)
1 |

Fig. 7. Hardware implementation for the proposed scheme.

the scan blocks and the mode of each scan-FF. It is clear that
the clustering algorithm takes only O (N2) time.

4. Hardware implementation for the proposed
scheme

The hardware implementation for the proposed scheme is
shown in Fig. 7. Each scan chain is composed of one or more
scan blocks. Each scan chain has a “control signals shift reg-
ister (CSSR)” whose size is equal to the number of blocks per
scan chain. LFSR reseeding is used to generate test data. The

is another small FSM controller that generates a 0 for the first
of each L clock cycles and a 1 for the rest. After each L clock
cycle, the CSSR is shifted so that the next control signal be-
comes active for its corresponding block and is used to control
the behavior of MUX. After the scan chains have been filled,
the test pattern is applied to CUT, and the response is captured
into the scan chains. The process is then repeated to generate
the next test pattern.

5. Experimental results

Compared to the STUMPS structurel!6], additional hard-
ware overhead consists of one 2-to-1 multiplexer (MUX), a
CSSR and an AND gate per scan chain, and two small FSM
controllers. The FSM controller consists of a counter and
some small combinational logic. The hardware overhead in this
scheme depends on the number of scan chains and the total

075009-5

J. Semicond. 2011, 32(7)

Wang Weizheng et al.

Table 2. Results comparing proposed scheme with previous BIST schemes for same test set.

10]

Circuit Test data Scan slice overlapping[9] Modified scan slice overlapping[Proposed scheme
Compression Power reduc- Compression Power reduc- Compression Power reduc-
(%) tion (%) (%) tion (%) (%) tion (%)
S5378 23754 — — 63.75 76.09 74.13 74.46
S9234 39273 71.04 41.90 72.33 70.89 76.05 72.13
S13207 165200 90.42 83.04 90.57 92.09 94.10 94.03
S15850 76986 81.02 67.25 81.55 78.84 86.31 87.26
S38417 164736 70.13 61.77 71.49 72.13 79.06 85.52
S38584 199104 79.92 70.78 80.51 76.35 83.85 77.06
Table 3. Test compression and power comparison with previous nonlinear code-based schemes for same test set.
Scan-chain partition for high test-data compressibility and low shift power[21] Proposed scheme
Circuit Storage Power re- Storage Power re-
For Huffmancode For opt. selective ~ For Golomb code ~ For FDR code
Huffman code duction (%) duction (%)
S5378 8721 9492 9724 9066 36.0 6436 75.5
S9234 10899 11688 12183 11442 52.3 9992 72.8
S13207 30794 31636 48226 22264 57.7 10427 93.2
S15850 16602 17392 21422 16350 61.8 10799 89.1
S38417 46957 50393 52054 48716 38.6 35216 86.7
S38584 59920 63660 68927 61686 52.8 33245 78.4

number of blocks. It is worth noting that the additional logic
required by the proposed scheme will not be placed into func-
tional paths. Therefore, the timing overhead will not be intro-
duced by such a test scheme. Moreover, the DFT logic is in-
serted only at the inputs of the scan chains and is thus compat-
ible with conventional scan chains. The proposed scheme is of
general applicability for based-scan test.

To analyze the effectiveness of the proposed approach, ex-
periments were performed on several big ISCAS’89 bench-
mark circuits. Test sets used in these experiments were ob-
tained using Mintest dynamic compaction!!7].

Table 1 presents the results of the proposed scheme. Each
test cube is divided into different numbers of data blocks
(shown in Column #Blocks). The test cubes were partitioned
into control-vector-compatible sets, and the number of such
sets is shown in each case (Column #Control Vector Sets). The
number of total specified bits and the number of transitions re-
quired for the proposed scheme are compared with those for
the original test cubes. The number of transitions is calculated
as described in Ref. [18]. Column #Patterns, #SC and CSSR
show the number of patterns, the number of scan chains and
the size of CSSR, respectively.

Column #Specified Data Bits, #Control Bits and #Total
Bits present the number of specified bits in encoded data bits,
the number of control signals and update signals, and the to-
tal number of specified bits (the sum of #Specified Data Bits
and #Control Bits). The last 2 columns of test storage indicate
the change percentage of the total number of specified bits for
our approach and the method in Ref. [11]. The column headed
Test Power lists the number of transitions after our scheme is
applied, the reduction in transitions and the result in Ref. [11],
respectively. As can be seen, in almost every case, the total
number of specified bits is reduced. The more blocks are used,
the fewer specified data bits in the encoded test cube but the
more control bits. The total number of specified bits will reach

the minimum when the number of blocks goes to a middle
point. And our scheme yields significant reduction in transi-
tions. The reduction ratio increases as the number of blocks in-
creases. However, the hardware overhead also increases in this
case. In these experiments, the number of scan chains is cho-
sen according to the circuit size. Compared with the scheme of
Ref. [11], the proposed scheme leads to greater reduction not
only in the number of total specified bits but also in the test
power for all of the cases.

Table 2 provides a comparison between the proposed
scheme and the best previous BIST schemes!® 1%, The com-
pression rates for these three schemes are computed by divid-
ing the total number of specified bits in encoded cubes by the
total original test data. The second column gives the size of
the original test set. With the exception of one case when the
proposed scheme has lower power reduction than the scheme
in Ref. [10] (S5378), the results clearly show that the proposed
method leads to higher compression ratios and lower test power
than the two approaches.

The proposed encoding scheme can be used in conjunc-
tion with any LFSR-reseeding scheme. In the following ex-
periments, we integrate the proposed scheme with the partial
LFSR-reseeding scheme described in Ref. [8]. The results for
final test storage (the sum of LFSR seeds, control signals and
update signals) and test power are shown in Table 3. We also
compare the results for the proposed scheme with previous
nonlinear code-based schemes?!. In Ref. [21], four encod-
ing schemes, including full Huffman coding!'®!, optimal selec-
tive Huffman coding?? (fixed-symbol-length code), Golomb
encoding and FDR encoding (variable-symbol-length codes),
are tried. In these encoding schemes, the test data are encoded
with partitioned scan chains. When compared to the scheme
in Ref. [21], the proposed scheme requires much less test stor-
age and obtains up to 19.8%—46.9% better power reduction.
Therefore, the proposed approach is much more effective than

075009-6

J. Semicond. 2011, 32(7)

Wang Weizheng et al.

the approach in Ref. [21].

6. Conclusions

The deterministic BIST based on LFSR reseeding is an
efficient approach to compressing test data. For scan-based
BIST, the proposed encoding scheme with scan-block clus-
tering provides a way to further reduce the test storage for
LFSR reseeding while significant reduction in test power can
be achieved. The proposed technique can be combined with
other techniques, such as partial reseeding, to obtain better re-
sults. The time complexity of the scan-block-clustering algo-
rithm is low. Thus, the proposed technique is also practical to
test large industrial circuits.

References

[1] Zorian Y. A distributed BIST control scheme for complex VLSI
devices. Proc 11th IEEE VTS, 1993: 4

[2] Saxena J, Butler K M, Jayaram V B, et al. A case study of ir-
drop in structured at-speed testing. Proc IEEE International Test
Conference, 2003: 1098

[3] Agrawal V D, Kime C R, Saluja K K. A tutorial on built-in
self-test. Part 1: principles. IEEE Design and Test of Computers,
1993, 10(1): 73

[4] Agrawal V D, Kime C R, Saluja K K. A tutorial on built-in
self-test. Part 2: principles. IEEE Design and Test of Computers,
1993, 10(2): 69

[5] Koenemann B. LFSR-coded test pattern for scan designs. Proc
European Test Conf, 1991: 237

[6] Hellebrand S, Rajski J, Tarnick S, et al. Built-in test for circuits
with scan based on reseeding of multiple-polynomial linear feed-
back shift registers. IEEE Trans Comput, 1995, 44(2): 223

[71 Kim H S, Kim Y J, Kang S. Test-decompression mechanism
using a variable-length multiple-polynomial LFSR. IEEE Trans
Very Large Scale Integration Syst, 2003, 11(4): 687

[8] Krishna C 'V, Jas A, Touba N A. Achieving high encoding effi-
ciency with partial dynamic LFSR reseeding. ACM Trans Design

Automation Electron Syst, 2004, 9(4): 500
[9] LiJ, Han Y, Li X. Deterministic and low power BIST based on

scan slice overlapping. IEEE Int Symp Circuits Syst, 2005: 5670

[10] Zhou B, Ye Y Z, Wu X C, et al. Reduction of test power and data
volume in BIST scheme based on scan slice overlapping. IEEE
Int Symp on Circuits and Systems, 2009: 2737

[11] LeeJ, Touba N A. LFSR-reseeding scheme achieving low-power
dissipation during test. IEEE Trans Comput Aided Design Integr
Circuits Syst, 2007, 26(2): 396

[12] Hirech M, Beausang J, Gu X. A new approach to scan chain re-
ordering using physical design information. Proceedings IEEE
International Test Conference, 1998: 348

[13] Makar S. A layout-based approach for ordering scan chain flip-
flops. Proceedings IEEE International Test Conference, 1998:
341

[14] Selvakkumaran N, Karypis G. Multi-objective hypergraph parti-
tioning algorithms for cut and maximum subdomain degree mini-
mization. Proc International Conference on Computer-Aided De-
sign, 2003: 726

[15] You Z, Inoue M, Fujiwara H. Extended compatibilities for scan
tree construction. Proc IEEE European Test Symposium, 2006:
13

[16] Bardell P H, McAnney W H. Self-testing of multichip logic mod-
ules. Proc IEEE International Test Conference, 1982: 200

[17] Hamzaoglu I, Patel J H. Test set compaction algorithms for com-
binational circuits. Proc International Conference on Computer-
Aided Design, 1998: 283

[18] Sankaralingam R, Oruganti R R, Touba N A. Static compaction
techniques to control scan vector power dissipation. Proc ATS,
2000: 35

[19] Jas A, Dastidar J G, Touba N A. Scan vector compres-
sion/decompression using statistical coding. Proc VLSI Test
Symp, 1999: 114

[20] Kavousianos X, Kalligeros E, Nikolos D. Optimal selective Huff-
man coding for test-data compression. IEEE Trans Comput,
2007, 56(8): 1146

[21] Wang S J, Li K S M, Chen S C, et al. Scan-chain partition for
high test-data compressibility and low shift power under rout-
ing constraint. IEEE Trans Computer-Aided Design of Integrated
Circuits Syst, 2009, 28(5): 716

075009-7

