High breakdown voltage InGaAs/InP double heterojunction bipolar transistors with $f_{\text{max}} = 256 \text{ GHz}$ and $\text{BV}_{\text{CEO}} = 8.3 \text{ V}$

Cheng Wei(程伟)[†], Zhao Yan(赵岩), Gao Hanchao(高汉超), Chen Chen(陈辰), and Yang Naibin(杨乃彬)

Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016, China

Abstract: An InGaAs/InP DHBT with an InGaAsP composite collector is designed and fabricated using triple mesa structural and planarization technology. All processes are on 3-inch wafers. The DHBT with an emitter area of $1 \times 15 \ \mu\text{m}^2$ exhibits a current cutoff frequency $f_t = 170 \text{ GHz}$ and a maximum oscillation frequency $f_{\text{max}} = 256 \text{ GHz}$. The breakdown voltage is 8.3 V, which is to our knowledge the highest BV_{CEO} ever reported for InGaAs/InP DHBTs in China with comparable high frequency performances. The high speed InGaAs/InP DHBTs with high breakdown voltage are promising for voltage-controlled oscillator and mixer applications at W band or even higher frequencies.

Key words: InP; double heterojunction bipolar transistor; planarization **DOI:** 10.1088/1674-4926/33/1/014004 **EEACC:** 2560J

1. Introduction

Although InP SHBTs have demonstrated good microwave characteristics, the low breakdown voltage and high thermal resistance of the InGaAs collector have limited their applications in millimeter or sub-millimeter wave monolithic ICs and wide dynamic mixed signal circuits. The collector of the In-GaAs/InP DHBT is InP, which has a wide gap and high thermal conductivity, these characteristics lead to the much higher breakdown voltage and lower thermal resistance of InP DHBT as compared with InP SHBT. However, there is a conduction band spike between the base and collector for the type I In-GaAs/InP DHBT, the spike must be removed otherwise the device performance will be severely degraded^[1]. Various composite collector structures have been proposed to overcome this problem^[2–4].

In this work, a composite collector with an InGaAs spacer and an InGaAsP quaternary layer was used to eliminate the conduction band spike between the base and the collector. The InGaAs/InP DHBTs were fabricated with a triple mesa process and a benzocyclobutene (BCB) planarization technique. The DHBTs in this process have an emitter area of $1 \times 15 \ \mu\text{m}^2$ and show cutoff frequencies f_t of 170 GHz and f_{max} of 256 GHz, while maintaining a high break down voltage of more than 8 V.

2. Growth and fabrication

The layer structure of the InGaAs/InP DHBTs was grown by molecular-beam epitaxy on a 3-inch semi-insulating InP substrate. The layer sequence is shown in Fig. 1. The DHBT structure includes an InGaAs cap layer (200 nm, 3×10^{19} cm⁻³), an InP emitter (200 nm, 2×10^{17} cm⁻³), a carbondoped InGaAs base (50 nm, 3×10^{19} cm⁻³) and a compositionally step-graded InGaAs/InGaAsP/InP collector (200 nm, 1×10^{16} cm⁻³). A composite collector with an InGaAs spacer and an InGaAsP quaternary layer was used to eliminate the conduction band spike at the B-C interface and thus the collector current blocking effect was minimized^[2].

In contrast to most recent reports in China^[5,6], the InP DHBTs in this work were fabricated using standard manufacturing techniques such as i-line stepper lithography and selective dry/wet etching, etc. All InP DHBT processes were on 3-inch wafers. The InP DHBTs were fabricated with conventional wet etching and metal deposition with a triple mesa design. Non-alloyed ohmic Ti/Pt/Au was used as the n-type ohmic contacts and Pt/Ti/Pt/Au was used as a p-type contact. After device isolation, BCB was used for device passivation and planarization. Subsequently, an RIE etch-back step was performed to expose the tops of the device contacts and then the first-level metal was deposited to form the probe pads.

Fig. 1. Layer structure of the InGaAs/InP DHBT.

[†] Corresponding author. Email: dspbuilder@yahoo.com.cn Received 16 June 2011, revised manuscript received 23 July 2011

Fig. 2. Typical common-emitter I-V curves of a $1 \times 15 \ \mu\text{m}^2$ InP DHBT device.

Fig. 3. H_{21} , MSG/MAG and U of the DHBT with emitter area of 1 × 15 μ m² at $V_{CE} = 2.0$ V and $I_C = 22$ mA.

3. Measurements and results

The InP DHBTs were measured on-wafer at room temperature. The DC characteristics of the InP DHBTs were measured by an Agilent 1500A semiconductor parameter analyzer. The common-emitter I-V characteristics of the DHBT with an emitter area of $1 \times 15 \ \mu\text{m}^2$ are shown in Fig. 2. The offset voltage is 0.15 V and the knee voltage is about 0.5 V. The small knee voltage and sharp rising current indicate that the current blocking effect is successfully suppressed with the composite collector^[7]. The typical current gain is more than 60. The common-emitter breakdown voltage is 8.3 V, which is defined at a current density of $J_c = 10 \ \mu\text{A}/\mu\text{m}^2$. To our knowledge, the common-emitter breakdown voltage is the highest in InGaAs/InP DHBT in China with comparable high frequency performance^[5, 8].

100 MHz to 40 GHz measurements were carried out using an HP8510C VNA, which was calibrated using standard shortopen-load-through (SOLT) standards. On-wafer open and short pad structures identical to those used by the devices were used

Fig. 4. Variation of f_t and f_{max} versus J_c for the DHBT with emitter area of $1 \times 15 \ \mu m^2$ at $V_{CE} = 2.0 \text{ V}$.

to de-embed the pad parasitics. Figure 3 shows the current gain (H_{21}), maximum stable gain/maximum available gain (MSG/MAG) and Mason's unilateral gain (U) as a function of the frequency at the collector-emitter junction voltage V_{CE} = 2.0 V and the collector current I_C = 22 mA. Extrapolating at -20 dB/decade, f_t and f_{max} are 170 GHz and 256 GHz, respectively. Figure 4 shows the variation of the f_t and f_{max} as a function of the collector current density at a collector-emitter voltage of 2.0 V. The decrease of f_t at a high collector density is due to the Kirk effect, and thus the corresponding Kirk current density of 1.5 mA/ μ m² can be derived.

4. Conclusion

In summary, InGaAs/InP DHBTs have been designed and fabricated using standard manufacturing techniques on 3-inch wafers. Devices with an emitter area of $1 \times 15 \,\mu\text{m}^2$ show cutoff frequencies f_t of 170 GHz and f_{max} of 256 GHz, while maintaining a high break down voltage (BV_{CEO}) of more than 8 V, which is to our knowledge the highest BV_{CEO} ever reported for InGaAs/InP DHBTs in China with comparable high frequency performance. The high speed InGaAs/InP DHBTs with a high breakdown voltage are suitable for voltage-controlled oscillators and mixers at W-band or even higher frequencies.

References

- Cheng Wei, Jin Zhi, Su Yongbo, et al. Composite-collector In-GaAs/InP double heterostructure bipolar transistors with currentgain cutoff frequency of 242 GHz. Chin Phys Lett, 2009, 26(3): 038502
- [2] Cheng Wei, Jin Zhi, Yu Jinyong, et al. Design of InGaAsP composite collector for InP DHBT. Journal of Semiconductors, 2007, 28(6): 943
- [3] Ida M, Kurishima K, Watanabe N. Over 300 GHz f_t and f_{max} InP/InGaAs double heterojunction bipolar transistors with a thin pseudomorphic base. IEEE Electron Device Lett, 2002, 23(12): 694
- [4] Dahlstrom M. Ultra high speed inp heterojunction bipolar transistors. PhD Thesis, UC Santa Barbara, 2003

- [5] Jin Zhi, Su Yongbo, Cheng Wei, et al. High breakdown voltage submicron InGaAs/InP double heterojunction bipolar transistor with $f_t = 170$ GHz and $f_{max} = 253$ GHz. Chin Phys Lett, 2008, 25(7): 2686
- [6] Zhou Lei, Jin Zhi, Su Yongbo, et al. Ultra high speed InP/InGaAs SHBTs with f_t and f_{max} of 185 GHz. Journal of Semiconductors, 2010, 31(9): 094007
- [7] Dahlstrom M, Rodwell M. Current density limits in InP DHBTs: collector current spreading and effective electron velocity. IEEE International Conference on Indium Phosphide and Related Materials, Kagoshima, Japan, 2004: 761
- [8] Jin Zhi, Su Yongbo, Cheng Wei, et al. High-speed InGaAs/InP double heterostructure bipolar transistor with high breakdown voltage. Chin Phys Lett, 2008, 25(7): 2683